Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Deactivation of bimetallic nickel-copper alloy catalyst in thermocatalytic decomposition of methane

Yi Shen*a, Moyan Ge,a and Aik Chong Lua*b

^a School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China, Tel.& Fax: +86 2087113843; Email: feyshen@scut.edu.cn

^b School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Republic of Singapore, Tel.:+65 67905535; Email: maclua@ntu.edu.sg

^{*} Corresponding authors E-mail:feyshen@scut.edu.cn (Y. Shen) and maclua@ntu.edu.sg (A.C. Lua)

Sample	Temperature (°C)	Average carbon deposition rate $(mg_C/(g_{Ni} s))$.	Life span (h)	Theoretical carbon yield (g/g _{Ni})	Actual carbon yield (g/g _{Ni})
Ni/CNT	500	1.85	>64*	>424*	401*
	550	2.86	53	552	532
	575	3.85	27	377	358
	600	5.14	10	182	158
Ni ₈₇ Cu ₁₃ /CNT	600	2.72	>46*	>462*	451*
	650	4.33	36	579	562
	700	4.82	29	503	496
Ni ₇₈ Cu ₂₂ /CNT	600	3.48	>48*	>607*	601*
	650	4.46	48	768	718
	700	5.26	32	614	602
	750	5.54	13	271	230
Ni ₅₈ Cu ₄₂ /CNT	650	4.67	32	566	539
	700	4.99	29	529	506
	750	5.19	13	279	243
Ni ₄₇ Cu ₅₃ /CNT	650	4.32	32	538	498
	700	4.37	26	415	407
	750	4.72	12	234	206

Table S1 Carbon yields and life span of the catalysts

Samula	Temperature	I _D /I _G	BET surface area	Pore volume
Sample	(°C)	(nm)	(m²/g)	(cm^3/g)
Ni/CNT	500	0.71	64	0.21
	550	0.74	70	0.21
	575	0.76	82	0.24
	600	0.78	86	0.25
Ni ₈₇ Cu ₁₃ /CNT	600	0.79	98	0.25
	650	0.83	110	0.27
	700	0.83	114	0.33
Ni ₇₈ Cu ₂₂ /CNT	600	0.81	107	0.32
	650	0.87	112	0.36
	700	0.92	134	0.36
	750	1.1	142	0.38
Ni ₅₈ Cu ₄₂ /CNT	650	0.94	127	0.37
	700	1.38	192	0.44
	750	1.47	246	0.46
Ni ₄₇ Cu ₅₃ /CNT	650	1.01	213	0.37
	700	1.52	237	0.47
	750	1.56	242	0.47

 Table S2 Structural properties of the resulting carbon nanofibers

Figure S1 (a) Methane conversion and (b) carbon yield over the catalysts as a function of reaction time. Experimental conditions: 5 mg of metallic nickel was involved in the catalysts; pure methane with a volume flow rate of 7.5 ml min⁻¹; working temperature 700°C; weight hourly space velocity 59 g h⁻¹ g_{Ni}⁻¹.

Figure S2 (a) HAADF-STEM micrograph of the spent $Ni_{78}Cu_{22}/CNT$ catalyst at 650°C, (b) EDS profile of NiCu nanoparticle, (c) HAADF-STEM image of a NiCu nanoparticle, (d) and (e) corresponding EELS elemental mappings of Ni and Cu, respectively.

Figure S3 (a) Maximum methane conversion and (b) working temperature of the catalysts as a function of cycle number under a cyclic heating-cooling temperature mode.

Figure S4 TEM images of deactivated (a) CNT, (b) $Ni_{87}Cu_{13}/CNT$, (c) $Ni_{78}Cu_{22}/CNT$, (d) $Ni_{58}Cu_{42}/CNT$ and (e) $Ni_{47}Cu_{53}/CNT$ under a cyclic heating-cooling temperature mode.