Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Origin of ligand effects on reactivities of pincer-Pd catalyzed hydrocarboxylation of allenes and alkenes with formate salts: a computational study

Xiangying Lv^a, Fang Huang^b, Yan-Bo Wu^c and Gang Lu^{*,d}

^a Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, P. R. China

^b College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China

^c Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China

^d Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA

Correspondence to: gal40@pitt.edu

Table of Contents

Comparison of hydrocarboxylation barriers using different functionals	S2
Energy profile of Pd-catalyzed styrene hydrocarboxylation	S3
Distortion/interaction analysis for 11-TS, 14-TS and 15-TS	S4
Disfavored conformers of CO_2 insertion transition states	S5
Ligand electronic effects on CO_2 insertion reactivity	S6
Cartesian coordinates (Å) and energies of key optimized structures	S8

Comparison of hydrocarboxylation barriers using different functionals

The barriers of the CO₂ insertion with allylpalladium and benzylpalladium intermediates were calculated using M06L, M06 and B3LYP-D3 (Table S1). Although the absolute activation energies differ by a few kcal/mol among the methods tested, the trend of the CO₂ insertion reactivity, i.e. **11-TS** with allylpalladium is lower than **14-TS** and **15-TS** with benzylpalladium, is only slightly affected by the choice of the density functional in single point calculations. Further, All these methods suggest that the Pd catalyst with Et-substituted *PGeP*-pincer ligand (**15-TS**) is more reactive than that with Ph-substituted ligand (**14-TS**).

Table S1. Comparison of activation free energies ($\Delta G_{sol}^{\ddagger}$ kcal/mol) of hydrocarboxylation transition states 11-TS, 14-TS and 15-TS

Methodfor single point energy calculation ^a	11-TS (ΔG [‡] _{sol})	14-TS (ΔG [‡] _{sol})	15-TS (ΔG [‡] _{sol})	ممح ⁺ (14-TS-15-TS)
M06L/SDD-6-311+G(d,p)/SMD	21.6	34.8	28.4	6.4
B3LYP-D3/SDD-6-311+G(d,p)/SMD	16.9	32.6	26.6	6.0
M06/SDD-6-311+G(d,p)/SMD	20.8	36.4	31.2	5.2

^a Geometries were optimized at B3LYP/LANL2DZ–6-31G(d) level. The calculated $\Delta G^{\ddagger}_{sol}$ are with respect to the corresponding allylpalladium and benzylpalladium intermediates.

Energy profile of Pd-catalyzed styrene hydrocarboxylation

The energy profile for Ph-substituted *PGeP*-pincer Pd catalyzed (**cat1** shown in Scheme 1) styrene hydrocarboxylation with formate was shown in Fig. S1. Similar to the energy profile for allene hydrocarboxylation shown in Fig. 1 in the manuscript, the rate-determining step is CO₂ insertion into benzylpalladium intermediate (**S8**). The transition state (**14-TS**) has a quite high barrier, 34.8 kcal/mol with respect to **S8**. This is consistent with the experimental observation that **cat1** is ineffective to promote the styrene hydrocarboxylation.

Fig. S1 Energy profile of Ph-substituted *PGeP*-pincer Pd catalyzed hydrocarboxylation of styrene. Energies are with respect to the Pd formate **4**.

Distortion/interaction analysis for 11-TS, 14-TS and 15-TS

As shown in Fig. S2, the trend of the total interaction energies of 11-TS, 14-TS and 15-TS is not consistent with the trend of their activation energies. This indicates that the contribution of interaction energies is negative to the CO_2 insertion reactivity. For example, although the total interaction energy in 14-TS is 6.4 kcal/mol larger than that in 15-TS, the total distortion energy in 14-TS is 10.3 kcal/mol higher than that in 15-TS. Thus, the neat result suggests that the higher barrier of 14-TS is attributed to the larger distortion energies.

Fig. S2 Distortion/interaction analysis for 11-TS, 14-TS and 15-TS. Energies are given in kcal/mol.

Disfavored conformers of CO₂ insertion transition states

For CO₂ insertion into the Pd–C(allyl) and Pd–C(benzyl) intermediates with the PGeP-pincer ligands, CO₂ can approach these Pd–C bonds from both sides of the pincer structure. We calculated both of these possibilities for CO₂ insertion. The transition states 11-TS, 14-TS and 15-TS shown in Fig. 2 in the manuscript are favored over 11-TSa, 14-TSa and 15-TSa shown in Fig. S3, respectively. The higher barriers of transition states 11-TSa, 14-TSa and 15-TSa are due to the larger distortion energies (ΔE_{dist} , Fig. S3) than those of **11-TS** (ΔE_{dist} = 37.1 kcal/mol), **14-**TS (ΔE_{dist} = 52.8 kcal/mol) and 15-TS (ΔE_{dist} = 42.5 kcal/mol), respectively.

Fig. S3 Disfavored CO₂ insertion transition states.

Ligand electronic effects on CO₂ insertion reactivity

In the transition states of CO₂ insertion, the γ -C in allylpalladium III and the α -C in benzylpalladium IV nucleophilically attack the central carbon of CO₂. This nucleophilicity would be affected by the electron-donating ability of the different pincer ligands. Thus, we computed the NBO charges on the γ -C in allylpalladium III and the α -C in benzylpalladium IV supported by pincer ligands with different *P*-bound R substituents (R = Ph, Me, Et, ⁱPr, Cy, ^tBu). Poor and moderate correlations between the NBO charges and the activation energy were observed for allylpalladium III (R² = 0.42, Fig. S3) and benzylpalladium IV (R² = 0.81), respectively. In contrast, as shown in Fig. 3 in the manuscript, the activation energy and the total distortion energy of CO₂ and Pd-allyl/Pd-benzyl complexes have excellent linear correlations (R² = 0.95 for allylpalladium III; R² = 0.97 for benzylpalladium IV). These results indicate that the reactivity of CO₂ insertion is dominated by the total distortion energy of CO₂ and Pd-allyl/Pd-benzyl

Fig. S4 Relationships between NBO charges and activation energies of CO₂ insertion.

Previously, the Wu group did computational study on CO₂ insertion with *PSiP*-pincer Pd allyl complex (ref. 47 in the manuscript). They suggested that the *P*-bond Ph substituents lead to a lower activation energy than *P*-bond ^{*i*}Pr substituents due to electronic effects. To compare with Wu's results, we calculated the reaction of CO₂ with *PSiP*-pincer Pd allyl complex using our method. As shown in Fig. S4, the activation free energy of **TS1** is 20.2 kcal/mol, which is comparable with the number of the same transition state reported by Wu ($\Delta G^{\ddagger} = 21.2$ kcal/mol). Also, the trend of reactivity between **TS1** and **TS2** is consistent with Wu's result, *i.e.* the *PSiP* pincer ligand with *P*-bound Ph substituents is more reactive than that with ^{*i*}Pr groups ($\Delta G^{\ddagger} = 20.2$ kcal/mol for **TS1** vs $\Delta G^{\ddagger} = 21.7$ kcal/mol for **TS2**). Based on the distortion/interaction

analysis, the disfavored **TS2** is mainly attributed to the larger total distortion energy of CO₂ and Pd-allyl fragments (ΔE_{dist} = 35.7 kcal/mol) compared to that of **TS1** (ΔE_{dist} = 34.2 kcal/mol). To study the ligand's electronic effect on CO₂ insertion reactivity, we calculated the NBO charges in **TS1**, **TS2** and Pd-allyl intermediates with Ph and ^{*i*}Pr substituents. The results show that the charge populations on the γ -carbon in **TS1** and **TS2** are opposite to the nature of nucleophilic addition to CO₂. The α -carbon has the same trend. Although the *PSiP*-pincer ligand with ^{*i*}Pr groups has stronger electron-donating ability, **TS2** obtains a higher barrier than **TS1** with the Ph substituted *PSiP*-pincer ligand. This indicates that the electron donicity of ligands exerts insignificant effects on the CO₂ insertion reactivity. The Pd-allyl intermediates with Ph and ^{*i*}Pr substituents give the same trend of charge populations with these transition states (not shown).

In addition, we compared the NBO charges in the CO₂ insertion transition states Ph- and ^{*i*}Prsubstituted *PGeP*-pincer ligands (**TSa-Ph** and **TSa-**^{*i*}**Pr**, shown below). Although the charges on γ and α -carbon atoms in **TSa-**^{*i*}**Pr** are more negative than those in **TSa-Ph**, these two transition states have comparable activation free energies of nucleophilic addition to CO₂. In contrast, the total distortion energies in **TSa-Ph** and **TSa-**^{*i*}**Pr** are comparable.

Taken together, the electronic effects of Ph and ^{*i*}Pr substituents are insignificant to the reactivity of CO_2 insertion. Instead, the distortions of CO_2 and Pd-allyl in the transition states show good consistence with the CO_2 insertion reactivity.

Fig. S5 Charge populations in the CO₂ insertion transition states.

Cartesian coordinates (Å) and energies of key optimized structures

1c						
B3LYP S	CF energy:			-195.29	021278 a.u.	
B3LYP e	nthalpy:			-195.16	9994 a.u.	
B3LYP f	ree energy:			-195.20	6460 a.u.	
M06 SCF	'energy in s	olution:		-195.31	534984 a.u.	
M06 ent	halpy in sol	ution:		-195.19	5131 a.u.	
M06 fre	e energy in	solution:		-195.23	1597 a.u.	
Three 1	owest freque	ncies (cm-1)	: 170.	8162	183.7385	187.0846
Contool						
ALCALLESI		es				
ATOM C	A 0 024524	I _0 004029	0 067940			
C	0.934324	-0.004028	0.007040			
U U	2.240433	-0.007081	0.140443			
H	2.8/066/	-0.069243	-0./38040			
Н	2.757090	0.052590	1.105/56			
C	-0.3/4821	-0.000/58	-0.01309/			
C	-1.1///62	-1.285158	0.021946			
H	-0.533646	-2.162669	0.121521			
H	-1.884819	-1.27/183	0.862855			
H	-1.773217	-1.394914	-0.894853			
С	-1.160825	1.287691	-0.146249			
H	-1.758288	1.283616	-1.068281			
H	-1.864751	1.400251	0.689793			
H	-0.504929	2.161936	-0.164436			
30						
	CE oporati			201 52	260120 2 11	
DJLIF S	off energy.			204.32	209439 a.u.	
DJIJI C	inchaipy.			-384.3/	4416 a.u.	
BOLIP I	ree energy:	-]+		-204.41	1679 d.u.	
MOC ant	helmu in s			-304.03 204 E4	2201	
MU6 ent	.naipy in soi	ution:		-384.34	3394 a.u.	
MU6 Ire	e energy in	solution:	• 45	-384.38 0216	111 1050	227 0176
Intee 1	owest freque	ncies (cm-i)	40.	9310	114.4000	221.0410
Cartesi	an coordinat	es				
ATOM	X	Y	Z			
С	2.687623	5.443121	0.611322			
H	3.718360	5.627639	0.310338			
Н	2.425701	5.736819	1.625896			
С	1.811218	4.867101	-0.222077			
C	0.374652	4.505990	0.036005			
C	-0.053310	4.725215	1.487786			
Н	-1 083401	4 383305	1 622458			
н	0 012117	5 785552	1 780846			
н	0 568289	4 136446	2 170037			
C C	-0 51/82/	5 339687	_0 9159/5			
ч	-0 251862	5 11//07	_1 0527/1			
н	-0 401717	6 <u>4</u> 21263	-0 7/0961			
н	-1 57188/	5 076565	-0 77015Q			
н	2 1387/7	4 577882	-1 22001/			
с С	2.130/4/ 0 178121	2 961070				
0	-0 347264	2.201079	0.429290			

4 B3LYP SCF energy: -4502.04876041 a.u. B3LYP enthalpy: -4501.413908 a.u. B3LYP free energy: -4501.535166 a.u. M06 SCF energy in solution: -4505.71554801 a.u. M06 enthalpy in solution: -4505.080696 a.u. M06 free energy in solution: -4505.201954 a.u. Three lowest frequencies (cm-1): 12.9148 20.1952 35.9416 Cartesian coordinates Х ΔΠΟΠΔ Y Ζ Pd -0.000025 0.525536 0.130483 Ρ -2.334480 0.200947 -0.009091 Ρ 2.334538 0.200955 -0.009104 С -1.242078 -1.104479 -2.721541 С -3.200879 -3.451597 -2.746113 С -3.973189 -1.408106 -1.714677 С -1.689816 -2.180686 -1.316947 С -2.133794 -1.956081 -3.286689 С -4.210124 -2.510576 -2.537332Η -0.670318 -4.755983 -1.565280Η -1.183090 -4.030759 -2.310156 Η -5.177488 -2.628649 -3.018208 -3.379405 -4.308297 -3.391099 Η С 2.721458 -1.241905 -1.104762 -3.450950 С 3.200512 -2.747118 С 1.689689 -2.180445 -1.317336 С -1.715172 3.973022 -1.407796 С 4.209818 -2.510035 -2.538181 С 1.955803 -3.286193 -2.134573 Η 4.755848 -0.670066 -1.565674 Η 5.177111 -2.627995 -3.0192271.182759 -4.030173 -2.311076 Η Η 3.378920 -4.307452 -3.392399 -1.837790 Ge 0.000020 -0.338387 1.235649 С 0.000308 -3.048065 0.889959 -2.871782 Η 1.847637 -4.094833 0.910117 Η 0.000471 -0.889342 -2.872087 1.847731 Η С -3.003276 -0.209841 1.655721 С -0.719298 -3.910020 4.259645 С -1.301129 -3.845056 1.910155 2.719512 0.621767 С -2.609296 С -3.068267 0.369146 4.011465 С -4.294377 -1.553762 3.209674 Η -4.147486 -1.957091 1.099209 Η -1.938707 1.457254 2.529913 1.018070 Η -2.760990 4.827165 Η -4.944079 -2.404513 3.397951 -0.918245 Η -4.259828 5.269163 С -3.422312 1.556623 -0.609245 С -5.069952 3.573713 -1.642043 С -4.748156 1.687255 -0.162248

С	-2.922342	2.454648	-1.563820
С	-3.748850	3.456574	-2.076577
С	-5.567660	2.690487	-0.680708
Н	-5.138481	1.014390	0.595685
Н	-1.879612	2.410138	-1.862081
Н	-3.347262	4.155873	-2.804567
Н	-6.591303	2.785764	-0.327883
Н	-5.707705	4.358794	-2.040130
С	3.003316	-0.210158	1.655635
С	3.910107	-0.720089	4.259451
С	3.845221	-1.301421	1.909833
С	2.609242	0.621154	2.719603
С	3.068232	0.368306	4.011511
С	4.294566	-1.554282	3.209292
Н	4.147715	-1.957162	1.098732
Н	1.938560	1.456611	2.530193
Н	2.760862	1.017016	4.827345
Н	4.944369	-2.404993	3.397400
Н	4.259940	-0.919226	5.268923
С	3.422494	1.556671	-0.608949
С	5.070222	3.573928	-1.641284
С	2.922486	2.455094	-1.563130
С	4.748432	1.686969	-0.162123
С	5.567974	2.690286	-0.680348
С	3.749043	3.457107	-2.075657
Н	1.879703	2.410829	-1.861265
Н	5.138789	1.013762	0.595491
Н	6.591683	2.785318	-0.327649
Н	3.347426	4.156704	-2.803345
Н	5.708012	4.359083	-2.039165
С	-0.000338	3.519775	0.043779
0	-0.000365	2.577272	0.914866
0	-0.000089	3.417542	-1.190886
Н	-0.000542	4.535245	0.497898

 5-TS

 B3LYP SCF energy:
 -4502.01504026 a.u.

 B3LYP enthalpy:
 -4501.385795 a.u.

 B3LYP free energy:
 -4501.509151 a.u.

 M06 SCF energy in solution:
 -4505.69012816 a.u.

 M06 enthalpy in solution:
 -4505.060883 a.u.

 M06 free energy in solution:
 -4505.184239 a.u.

 Three lowest frequencies (cm-1):
 -244.5253
 9.2269
 17.3338

 Imaginary frequency:
 -244.5253 cm-1

Cartes	sian coordinat	ces	
ATOM	Х	Y	Z
Pd	-0.006837	0.454814	0.128251
Ρ	-2.331096	0.216984	-0.041102
Ρ	2.296543	0.102856	-0.043314
С	-2.684511	-1.237159	-1.138093
С	-3.141230	-3.497303	-2.717556
С	-3.854574	-1.337718	-1.904018
С	-1.715910	-2.265788	-1.165983
С	-1.975547	-3.394153	-1.954147

С	-4.079721	-2.465329	-2.696089
Н	-4.583349	-0.532879	-1.898659
Н	-1.252655	-4.205545	-1,991309
ц	-1 982717	-2 532338	-3 297024
11	2 210600	4 276002	2 22/024
п	-3.310696	-4.376002	-3.334005
C	2.631458	-1.4/64/1	-0.955/93
С	3.084209	-3.910257	-2.252869
С	1.604780	-2.444483	-0.980147
С	3.859660	-1.721746	-1.588601
С	4.083146	-2.935285	-2.239755
С	1.862593	-3.663197	-1.623296
н	4 636809	-0 963165	-1 585623
ц П	5 032778	-3 116301	-2 736176
11	1 007205	-3.110391	-2.750170
H	1.09/395	-4.435665	-1.645/54
Н	3.253614	-4.85/591	-2./58621
Ge	-0.091816	-1.986208	-0.048971
С	-0.228522	-3.174931	1.534996
Н	0.628226	-3.011203	2.195546
Н	-0.240259	-4.228152	1.231643
Н	-1.146201	-2.960038	2.089969
С	-3 152993	-0 169112	1 563292
C	-4 330933	-0 651749	4 064545
C	-4 090621	_1 201009	1 710/05
C	-4.009031	-1.201000	1.710405
C ~	-2.804135	0.613257	2.677542
С	-3.394928	0.3/581/	3.91//32
С	-4.674424	-1.439493	2.965411
Н	-4.360471	-1.822587	0.870384
Н	-2.066676	1.405090	2.571947
Н	-3.118046	0.988664	4.771188
Н	-5.397365	-2.243680	3.074585
Н	-4.785673	-0.840087	5,033390
C	-3 313618	1 620173	-0 713408
C	-1 750191	3 7719/9	-1 79/397
C	4.750191	1 726024	0 502706
	-4.699421	1.720024	-0.303706
C	-2.652999	2.614200	-1.449655
С	-3.3/1319	3.683016	-1.989154
С	-5.412817	2.794594	-1.046950
Н	-5.219479	0.984907	0.096822
Н	-1.574816	2.577113	-1.564241
Н	-2.843807	4.454096	-2.543159
Н	-6.483728	2.869366	-0.877161
Н	-5.306622	4.608436	-2.209011
С	3.114571	-0.069830	1.596752
C	4 261405	-0 236555	4 149998
C	2 012405	-1 160102	1 0/2/52
C	3.912403	-1.109192	1.943432
C	2.88/251	0.946251	2.543087
С	3.465375	0.860834	3.809166
С	4.482114	-1.250145	3.217222
H	4.090226	-1.962991	1.224693
H	2.261535	1.799623	2.291412
Н	3.287005	1.651966	4.532368
Н	5.097495	-2.107636	3.476822
Н	4.704485	-0.301808	5.140283
С	3.288902	1.381915	-0.918106
C	4 749924	3 304079	-2 343515
C	2 66/610	2 150211	_1 Q0/620
C	4 640520	2.1JJJII 1 E00067	-1.904020
C	4.649530	1.98886/	-u.b39/13

С	5.375307	2.544704	-1.352252
С	3.394181	3.112314	-2.616053
Н	1.601788	2.039319	-2.090745
Н	5.138537	1.015037	0.142194
Н	6.426636	2.701450	-1.125845
Н	2.896802	3.716486	-3.369408
Н	5.314846	4.053181	-2.891922
Н	0.071867	2.164572	0.143091
С	0.433021	3.649982	0.445509
0	0.855570	3.660594	1.568626
0	0.149602	4.225628	-0.567217

6

B3LYP SCF energy: -4313.44181517 a.u. B3LYP enthalpy: -4312.827934 a.u.

 B3LYP free energy:
 -4312.027934 d.u.

 M06 SCF energy in solution:
 -4312.943329 a.u.

 M06 enthalpy in solution:
 -4316.446541 a.u.

 M06 free energy in solution:
 -4316.561936 a.u.

 Three lowest frequencies (cm-1):
 9.7308
 17.3538

Cartesia	an coordinat	es	
ATOM	Х	Y	Z
Pd	0.006275	0.625080	0.373423
Р	-2.292990	0.409322	0.104073
Р	2.298977	0.391988	0.112890
С	-2.602611	-0.702774	-1.352305
С	-2.994801	-2.441002	-3.505698
С	-3.755051	-0.596024	-2.145317
С	-1.620688	-1.680248	-1.634780
С	-1.849743	-2.545920	-2.712329
С	-3.948293	-1.462300	-3.222909
Н	-4.496432	0.169092	-1.935012
Н	-1.115699	-3.311808	-2.951976
Н	-4.837883	-1.367536	-3.840243
Н	-3.138755	-3.115670	-4.346277
С	2.673461	-0.893064	-1.177098
С	3.200493	-2.898730	-3.051680
С	1.681911	-1.863419	-1.440992
С	3.900001	-0.918965	-1.859909
С	4.161151	-1.918192	-2.798023
С	1.980256	-2.867163	-2.373872
Н	4.648433	-0.155112	-1.669889
Н	5.109777	-1.928454	-3.328501
Н	1.244594	-3.639700	-2.586817
Н	3.398699	-3.680586	-3.780950
Ge	-0.029808	-1.719163	-0.422052
С	-0.189109	-3.394929	0.641117
Н	0.651954	-3.480597	1.336102
Н	-0.194917	-4.277878	-0.008699
Н	-1.118414	-3.382827	1.218995
С	-3.136638	-0.406162	1.528554
С	-4.332244	-1.583443	3.780609
С	-4.008169	-1.494714	1.382285
С	-2.863794	0.081639	2.818041

C H	-4.601366 -4.220268	-2.079606	2.504849
H	-4.220268	1 001024	
ц		-1.091024	0.394064
11	-2.175506	0.913634	2.942936
Н	-3.243665	-0.112777	4.926088
Н	-5.272428	-2.925249	2.378417
Н	-4.792854	-2.040908	4.652199
С	-3.328238	1.905376	-0.206842
С	-4.838353	4.203732	-0.769081
С	-4.702345	1.941664	0.080207
С	-2.717557	3.038339	-0.762993
С	-3.470474	4.177884	-1.049045
С	-5.451920	3.085764	-0.200010
Н	-5.186660	1.081557	0.533777
Н	-1.646012	3.026912	-0.940726
Н	-2.984990	5.050419	-1.478232
Н	-6.513597	3.104538	0.032220
Н	-5.422307	5.095085	-0.983190
С	3.142393	-0.184114	1.648044
С	4.332607	-0.979131	4.063732
С	4.042741	-1.258396	1.675780
С	2.835427	0.482018	2.847428
С	3.432016	0.089694	4.044740
С	4.633400	-1.652676	2.879657
Н	4.279453	-1.792843	0.761139
Н	2.121939	1.301979	2.836713
Н	3.187661	0.613586	4.965032
Н	5.327249	-2.489279	2.888668
Н	4.791983	-1.288398	4.998880
С	3.283795	1.862324	-0.409363
С	4.715785	4.098287	-1.319189
С	2.656354	2.833690	-1.203130
С	4.633054	2.031420	-0.062530
С	5.343789	3.145265	-0.515377
С	3.370692	3.940421	-1.661684
Н	1.600769	2.726713	-1.436378
H	5.128135	1.299964	0.569707
Н	6.386694	3.268936	-0.235226
Н	2.873152	4.686326	-2.275890
Н	5.269402	4.965696	-1.669026
Н	0.043053	2.237381	0.733470

 7-TS

 B3LYP SCF energy:
 -4508.71538958 a.u.

 B3LYP enthalpy:
 -4507.981456 a.u.

 B3LYP free energy:
 -4508.111353 a.u.

 M06 SCF energy in solution:
 -4512.37524883 a.u.

 M06 enthalpy in solution:
 -4511.641315 a.u.

 M06 free energy in solution:
 -4511.771212 a.u.

 M06 free energy in solution:
 -4511.771212 a.u.

 Three lowest frequencies (cm-1):
 -808.7685 11.4705 21.7615

 Imaginary frequency:
 -808.7685 cm-1

 Cartesian coordinates
 Z

Pd 0.098606 1.042141 0.256037

P	1.949362	-0.530045	0.242707
Р	-2.194280	-0.021442	0.278860
С	1.888972	-1.586844	-1.276855
С	1 782322	-3 086335	-3 632915
C	2 613494	-2 784494	-1 386267
C	1 089385	-1 130703	-2 3/369/
C	1 060060	_1 007070	-2 510710
	1.000900 2.55044C	-1.097070	-3.510710
C	2.338446	-3.533649	-2.561103
Н	3.215021	-3.13/10/	-0.553370
Н	0.448896	-1.572363	-4.357645
Н	3.116925	-4.463101	-2.638039
Н	1.732965	-3.667816	-4.550567
С	-2.768966	-0.212926	-1.481024
С	-3.640191	-0.430532	-4.132716
С	-1.857888	0.042140	-2.525791
С	-4.094997	-0.576224	-1.768984
C	-4 530451	-0 688227	-3 087920
C	-2 323920	-0 069069	-3 846494
ц ц	-4 705076	-0.762070	-0.060546
п	-4.79J970	-0.703079	-0.900340
H	-5.560309	-0.965332	-3.298241
Н	-1.64/054	0.138/55	-4.6/226/
Н	-3.973187	-0.504982	-5.165275
Ge	0.028324	0.553536	-2.127826
С	0.606254	1.767285	-3.591747
Н	0.559924	1.278186	-4.571787
Н	1.639460	2.084399	-3.419341
Н	-0.030607	2.657122	-3.616132
С	3.561658	0.367377	0.101578
С	5.928988	1.883281	-0.058829
C	4 371706	0 308864	-1 041566
C	3 95/236	1 202323	1 162829
C	5 120720	1 0/7107	1 006604
C	J.129730	1.94/10/	1 1205054
	5.545222	1.064605	-1.120595
Н	4.089/86	-0.328075	-1.8/3/02
Н	3.336237	1.270270	2.053870
Н	5.420556	2.581110	1.920489
Н	6.160445	1.006637	-2.014945
Н	6.842928	2.468144	-0.120813
С	2.281444	-1.713795	1.625402
С	2.646302	-3.548515	3.724517
С	3.571061	-2.137398	1.987937
С	1.180580	-2.213840	2.337358
С	1.361022	-3.130538	3.374055
C	3 750485	-3 047895	3 031135
с ч	1 137911	-1 7/9597	1 461426
11	0 170750	1 970674	2 001001
н	0.179750	-1.0/90/4	2.001991
H	0.494374	-3.510916	3.90/809
Н	4./544//	-3.364489	3.302350
Н	2.788442	-4.256099	4.537326
С	-3.543325	1.001400	1.039205
С	-5.531011	2.692680	2.098608
С	-4.737942	0.470477	1.553887
С	-3.360506	2.393722	1.071010
С	-4.347987	3.232370	1.591104
С	-5.721631	1.309505	2.080388
Н	-4.899828	-0.602989	1.555531
Н	-2.436463	2.816447	0.686481

H	-4.187592	4.307302	1.604949
Н	-6.638788	0.880021	2.475669
Н	-6.297839	3.344211	2.509389
С	-2.482185	-1.695431	1.009997
С	-2.670708	-4.248125	2.195643
С	-2.461177	-2.857775	0.222369
С	-2.582083	-1.837471	2.406933
С	-2.686229	-3.099591	2.992155
С	-2.552491	-4.121102	0.811224
Н	-2.376817	-2.777593	-0.856731
H	-2.589677	-0.954883	3.041173
Н	-2.780893	-3.184788	4.071928
Н	-2.535703	-5.007038	0.181751
H	-2.749170	-5.231535	2.651349
С	0.186213	1.994736	2.299969
Н	0.907655	1.466930	2.919913
Н	-0.831589	2.033442	2.681974
С	0.627100	2.909487	1.347177
С	1.318565	4.025837	1.119198
С	1.736630	4.894209	2.289184
H	1.327731	5.909493	2.187823
Н	2.830575	4.997660	2.321177
Н	1.399764	4.479770	3.242919
С	1.735328	4.517181	-0.241380
Н	1.311281	3.899196	-1.036157
H	2.829570	4.493241	-0.339504
H	1.424860	5.560484	-0.393441
Н	-0.241026	2.607148	-0.127305

 8

 B3LYP SCF energy:
 -4508.78177436 a.u.

 B3LYP enthalpy:
 -4508.040902 a.u.

 B3LYP free energy:
 -4508.172632 a.u.

 M06 SCF energy in solution:
 -4512.43633202 a.u.

 M06 enthalpy in solution:
 -4511.695460 a.u.

 M06 free energy in solution:
 -4511.827190 a.u.

 Three lowest frequencies (cm-1):
 11.1669
 13.3926

Cartesian coordinates ATOM Y Ζ Х 0.171744 Pd 0.008808 0.362628 0.027270 0.212415 Ρ 2.331296 -0.079363 0.205687 Ρ -2.285033 С 2.682703 -1.761099 0.550808 -4.481077 С 3.179445 0.930865 С 3.870262 -2.180546 1.170013 С 1.717529 -2.697628 0.122200 С 1.999824 -4.057229 0.314229 С 4.115584 -3.540606 1.363787 -1.448641 Η 1.510334 4.597558 -4.807967 Η 1.283976 -0.011966 Н 1.851552 5.032158 -3.862254 Η 3.365030 -5.542265 1.078943 С -2.574523 -1.886925 0.500254 С -2.974385 -4.631611 0.810773

С	-1.566899	-2.776483	0.070441
С	-3.754974	-2.364287	1.090277
С	-3.951698	-3.736764	1.249384
C	-1 801342	-4 149933	0 224854
с ч	-1 515461	-1 668/12	1 /33503
11	4.060140	1 102516	1 714406
п	-4.003143	-4.103310	1.714400
H	-1.053088	-4.865654	-0.10/599
Н	-3.122/64	-5./02133	0.931002
Ge	0.068787	-1.955686	-0.735101
С	0.112411	-2.547438	-2.636066
Н	0.138438	-3.640344	-2.714999
Н	0.999578	-2.142244	-3.132959
Н	-0.776694	-2.182637	-3.160168
C	3 165158	0 370369	-1 399586
C	1 359/59	0 963123	-3 871879
C	4.339439	0.905125	- 3.071079
C	4.319176	-0.312611	-1.014975
C	2.611096	1.346624	-2.243204
С	3.208872	1.643892	-3.469172
С	4.911550	-0.016686	-3.043921
Η	4.750317	-1.085085	-1.185362
Н	1.709005	1.869269	-1.937779
Н	2.769734	2.402396	-4.111663
Н	5.801925	-0.556363	-3.355877
н	4 820434	1 189803	-4 829662
C	3 354085	0 924222	1 159738
C	1 770(74	0.024222	2 451(00
C	4.//86/4	2.304922	3.451623
C	4.452262	1./2/694	1.1222/1
С	2.971055	0.831376	2.809539
С	3.682809	1.508998	3.797670
С	5.158276	2.414466	2.114059
Н	4.761538	1.817390	0.085995
Н	2.110965	0.225614	3.084206
Н	3.377069	1.423245	4.837011
н	6 007153	3 033964	1 836608
и П	5 328896	2 839700	1 221176
11 C	2 007202	2.035700	1 111210
C	-3.09/392	0.268/38	-1.414240
C	-4.242267	0.880005	-3.903946
С	-4.189585	-0.469774	-1.895152
С	-2.577066	1.309152	-2.201203
С	-3.150669	1.615042	-3.436159
С	-4.758382	-0.163641	-3.133264
Н	-4.589402	-1.292592	-1.310162
Н	-1.717369	1.870384	-1.844921
н	-2.738897	2.422388	-4.035869
н	-5 601280	-0 745483	-3 497010
и П	-1 694003	1 11/177	-1 969076
п	-4.004003		-4.000970
C	-3.360260	0./44/52	1.459505
С	-4.891660	1.965427	3.475753
С	-2.896466	0.785230	2.785662
С	-4.593933	1.338089	1.155310
С	-5.353651	1.944838	2.159639
С	-3.659907	1.382794	3.786995
Н	-1.928279	0.354497	3.028518
Н	-4 965716	1 329030	0 135615
н	-6 207222	2 101022	1 909795
ц	_3 2005E0	1 102600	1 000195
п	-3.200330	1.4U308U	4.000103
н	-5.483291	∠.439153	4.2545/6

С	-0.037682	2.314135	1.160451
Н	0.669326	2.207455	1.988736
Н	-1.037661	2.488824	1.559499
С	0.409340	3.329830	0.192543
С	-0.307961	4.247868	-0.501412
С	-1.795443	4.451083	-0.350651
Н	-2.319532	4.339391	-1.311826
Н	-2.015551	5.472046	-0.001838
Н	-2.250497	3.753887	0.357353
С	0.365541	5.197717	-1.462794
Н	1.445186	5.019672	-1.522871
Н	0.215572	6.247367	-1.165104
Н	-0.046336	5.111488	-2.480966
Н	1.486865	3.335016	0.007041

9-TS

B3LYP SCF energy:	-4508.70230095 a.u.	
B3LYP enthalpy:	-4507.968244 a.u.	
B3LYP free energy:	-4508.096957 a.u.	
M06 SCF energy in solution:	-4512.36495838 a.u.	
M06 enthalpy in solution:	-4511.630901 a.u.	
M06 free energy in solution:	-4511.759614 a.u.	
Three lowest frequencies (cm-1):	-820.1305 7.0119	14.9013
Imaginary frequency:	-820.1305 cm-1	

Cartesian coordinates

ATOM	Х	Y	Z
Pd	0.039350	-0.093290	1.325529
Р	-2.076816	0.242458	-0.043564
Ρ	2.042584	0.220472	-0.126474
С	-2.050263	-0.981529	-1.440925
С	-2.061230	-2.947132	-3.434901
С	-2.877497	-0.848142	-2.568847
С	-1.210545	-2.104665	-1.302799
С	-1.240868	-3.077789	-2.314684
С	-2.880792	-1.823604	-3.563984
Н	-3.513276	0.025482	-2.680001
Н	-0.596042	-3.950897	-2.237421
Н	-3.520888	-1.707157	-4.435001
Н	-2.058137	-3.713401	-4.206555
С	2.620174	-1.423883	-0.777841
С	3.511970	-3.930839	-1.638206
С	1.799684	-2.549016	-0.578028
С	3.865954	-1.554118	-1.412816
С	4.309978	-2.802990	-1.844622
С	2.272226	-3.797729	-1.012104
Н	4.499654	-0.683450	-1.556637
Н	5.279398	-2.896796	-2.327318
Н	1.664684	-4.686061	-0.853726
Н	3.858422	-4.910312	-1.959511
Ge	0.017494	-2.299295	0.269400
С	-0.469700	-4.014338	1.144578
Н	-0.495889	-4.843464	0.427894
Н	-1.462052	-3.925312	1.597145
Н	0.250587	-4.255335	1.932702

С	-3.654439	-0.244299	0.819133
С	-5.988144	-1.112904	2.135980
С	-4.918366	-0.079346	0.226436
C	-3 582762	-0 854534	2 079/16
C	_1 710270	-1 207074	2 7 7 2 2 1 4 6
C	-4.740278	-1.20/0/4	2.733140
C	-6.0/3/68	-0.506583	0.8/94/5
Н	-5.004327	0.391160	-0.748046
H	-2.611963	-0.994714	2.545067
Н	-4.661795	-1.757729	3.709807
Н	-7.042283	-0.368899	0.405371
Н	-6.889588	-1.446696	2.643263
C	-2 525153	1 851900	-0 833407
C	-2 985214	1 117288	-1 915016
	2.905214	9.917200	-1.913010
C a	-3.381837	2.764112	-0.191113
С	-1.88839/	2.2589/4	-2.019088
С	-2.123731	3.524727	-2.556514
С	-3.609483	4.032862	-0.727564
Н	-3.886881	2.479104	0.726291
Н	-1.207396	1.585734	-2.530985
н	-1 624926	3 811832	-3 478048
и и	_1 201206	1 717776	-0.216424
11	-4.201300	4./1///0	-0.210424
H ~	-3.1664/1	5.402985	-2.335445
С	3.595596	0.84060/	0.6/903/
С	5.963439	1.592586	2.002944
С	4.539548	1.663305	0.044559
С	3.855408	0.403359	1.989126
С	5.031378	0.772700	2.642839
С	5.712754	2.037660	0.704225
н	4 362442	2 018083	-0 965692
ч	3 12/383	-0 21/911	2 501101
11	5.124505	0.214911	2.501101
п	5.214550	0.423010	0 107050
н	6.432004	2.6/653/	0.19/950
Н	6.877022	1.884935	2.513911
С	1.901693	1.272756	-1.641293
С	1.541669	2.927267	-3.892671
С	1.780566	0.718705	-2.924944
С	1.815139	2.669555	-1.501639
С	1.649452	3.489109	-2.617178
C	1 597655	1 540813	-4 040567
с и	1 832830	-0 356915	-3 057260
11	1 006020	2 110076	0 515240
н	1.000030	5.119970	-0.515546
Н	1.59/990	4.56/10/	-2.489132
Н	1.508735	1.092739	-5.026874
Н	1.413043	3.566063	-4.762607
С	-0.023376	1.671865	2.854233
С	0.386457	0.473591	3.440395
С	0.976266	-0.062961	4.504472
Н	-0.367986	-0.860040	2.713893
н	1 233927	-1 115871	4 563553
 Н	1 200/57	0 556691	5 370780
 C	_1 //1202	2 160465	2 060001
	-1.44130Z	2.109400 1 051100	2 011000
п	-2.150809	1.331132	3.211833
Н	-1.//8/99	2.//9642	2.225196
Н	-1.477797	2.806840	3.969304
С	0.993185	2.769379	2.599120
Н	1.040265	3.443254	3.471264
Н	0.703173	3.382937	1.737767

Η

10 B3LYP SCF energy: -4508.75539924 a.u. B3LYP enthalpy: -4508.014793 a.u. B3LYP free energy: -4508.142652 a.u. M06 SCF energy in solution: -4512.42084694 a.u. M06 enthalpy in solution: -4511.680241 a.u. M06 free energy in solution: -4511.808100 a.u. Three lowest frequencies (cm-1): 10.0344 13.0293 26.6662 Cartesian coordinates ΔΠΟΠΔ Х Y Ζ Pd -0.031090 0.497327 0.295227 Ρ -2.360581 0.198932 -0.025559 Ρ 2.290840 0.079151 -0.061231 С -2.695198 -1.253196 -1.138404 С -3.190758 -3.543160 -2.658418 С -3.877766 -1.360717 -1.887828 С -1.736791 -2.284583 -1.152807С -2.015965 -3.429438 -1.913027 С -4.122050 -2.503086 -2.649941Η -0.550909 -4.601429 -1.891248Η -1.302340 -4.249289 -1.936349 -5.034711 -2.578434 -3.235525 Η -3.376631 -4.436702 -3.249545 Η С 2.530469 -1.411641 -1.151639 -2.619173 С 2.895475 -3.763005 С 1.517317 -2.389190 -1.143547 С 3.702899 -1.603914 -1.900802 С -2.775073 3.881795 -2.636552 С 1.730832 -3.566272 -1.875747 Η 4.470557 -0.836442 -1.923906 Η 4.787866 -2.914161 -3.220751 -4.346611 Η 0.973678 -1.876681 Η 3.031117 -4.679805 -3.187949 -1.984246 Ge -0.100314 -0.058631 1.403537 С -0.147640 -3.337662 0.998656 Η -0.174014 -4.356009-1.035438 -3.189199 Η 2.026414 0.741789 -3.238431 2.033635 Η С -3.270047 -0.240536 1.523620 С -4.542335 -0.938112 3.930414 С -4.579783 -0.748179 1.517680 2.750354 -0.102192 С -2.604556 С -3.236723 -0.446476 3.947129 С -5.211733 -1.090395 2.713171 Η -5.105092-0.887899 0.577845 -1.583362 0.268013 2.757126 Н -2.706907 Η -0.333392 4.889139 Η -6.225065 2.693632 -1.482755 Η -5.035568 -1.208861 4.860190 С -3.372775 1.524407 -0.824646 С -4.775285 3.575152 -2.143318 С -4.451401 2.165990 -0.200084

С	-3.000818	1.931423	-2.118006
С	-3.699349	2.943820	-2.773653
С	-5.147067	3.184841	-0.857110
Н	-4.750798	1.876310	0.801722
Н	-2.162572	1.450363	-2.615433
Н	-3.400192	3.243408	-3.774476
Н	-5.979909	3.672967	-0.357779
Н	-5.316796	4.368296	-2.651751
С	3.207403	-0.395493	1.473842
С	4.493075	-1.176419	3.848638
С	4.518387	-0.899107	1.444620
С	2.549177	-0.300024	2.708018
С	3.187076	-0.687610	3.888497
С	5.157174	-1.282332	2.623704
Н	5.041426	-1.000808	0.498800
Н	1.530881	0.075174	2.735776
Н	2.661817	-0.607894	4.836535
Н	6.171811	-1.669932	2.585111
Н	4.991131	-1.479224	4.765924
С	3.357052	1.327771	-0.902241
С	4.863539	3.256733	-2.288926
С	3.036537	1.673066	-2.227486
С	4.433527	1.973825	-0.279610
С	5.184098	2.928446	-0.972583
С	3.785001	2.625732	-2.916176
Н	2.201034	1.188433	-2.726227
Н	4.692193	1.732416	0.744672
Н	6.016696	3.418698	-0.474915
Н	3.525989	2.876173	-3.941449
Н	5.447340	4.000476	-2.824727
С	0.031022	2.722386	0.726792
С	1.174738	2.896930	1.655323
С	2.299021	3.616748	1.482202
Н	1.035950	2.428620	2.634186
Н	3.049594	3.682706	2.266321
Н	2.512716	4.153510	0.563362
С	-1.236408	3.162550	1.481315
Н	-1.379591	2.608809	2.417662
Н	-2.141880	3.052451	0.879796
Н	-1.163435	4.230869	1.753410
С	0.162738	3.513402	-0.571471
Н	0.233167	4.598551	-0.370323
Н	-0.711504	3.362652	-1.214741
Н	1.053334	3.232968	-1.142531

11-TS -4697.34077400 a.u. B3LYP SCF energy: B3LYP enthalpy: -4696.584218 a.u. B3LYP free energy: -4696.720478 a.u. M06 SCF energy in solution: -4701.05509090 a.u. M06 enthalpy in solution: -4700.298535 a.u. M06 free energy in solution: -4700.434795 a.u. Three lowest frequencies (cm-1): -311.8515 9.2273 12.1296 -311.8515 cm-1 Imaginary frequency:

Cartesia	an coordinat	ces	
ATOM	Х	Y	Z
Pd	-0.064399	0.195128	0.177671
D D	2 226199	-0 /13615	0 258599
L D	2.220199	0.413015	0.160702
r ~	-2.415506	0.003605	0.109/93
C	2.31/869	-2.188514	0.783199
С	2.412668	-4.917815	1.366098
С	3.409793	-2.721657	1.483421
С	1.252894	-3.015312	0.370483
С	1.329847	-4.383271	0.663901
C	3 452604	-1 081691	1 780355
	1 210664	2 075090	1 010005
п	4.210004	-2.075089	1.010005
Н	0.529077	-5.050134	0.354685
H	4.295147	-4.492166	2.332944
Н	2.441328	-5.980401	1.594276
С	-2.909100	-1.748432	0.494084
С	-3.624417	-4.431442	0.772801
С	-1 995156	-2 744254	0 097658
C	-1 152015	-2 091218	1 0/8078
	4. 505157	2.001210	1 102464
C a	-4.505157	-3.433248	1.193464
С	-2.386461	-4.084158	0.22/55/
Н	-4.838416	-1.314867	1.374459
Н	-5.464626	-3.697047	1.630499
Н	-1.715298	-4.878541	-0.089589
Н	-3.897542	-5.478500	0.877731
Ge	-0.238386	-2.133412	-0.616166
C	-0 143580	-2 694568	-2 517059
с и	_0 947383	-2 216428	-3 085060
11	-0.947303	-2.210420	-3.003000
п	-0.232403	-3.701300	-2.004005
н	0.816222	-2.402157	-2.952085
С	3.137757	-0.399006	-1.343669
С	4.466449	-0.395971	-3.813589
С	4.398108	-1.007983	-1.474577
С	2.551473	0.208422	-2.462071
С	3.217257	0.210291	-3.690968
С	5.057171	-1.005483	-2.702111
н	4 863509	-1 491749	-0 620910
ч	1 582692	0 689632	-2 376848
11	1.302092	0.000002	2.570040
H	2.755260	0.694948	-4.546224
Н	6.029969	-1.481611	-2./92/13
H	4.982178	-0.394865	-4.770311
С	3.321072	0.488353	1.433533
С	4.839436	1.975030	3.271290
С	4.261640	1.427434	0.982850
С	3.136603	0.317762	2.816582
С	3.896007	1.050963	3.728005
C	5 015743	2 163554	1 899693
с и	1 200600	1 601624	_0 000122
п	4.390009	1.001034	-0.080133
н	2.404085	-0.396922	3.182844
Н	3./48036	0.902768	4./94421
Н	5.739370	2.888088	1.536295
Н	5.428543	2.548874	3.981567
С	-3.206589	0.420039	-1.441436
С	-4.344235	1.122795	-3.907332
С	-4.451801	-0.105784	-1.825092
C	-2 531703	1 292968	-2 309117
Č	-3 104881	1 643949	-3 53/105
\sim	~ • • • • • • • • • • • • • • • • • • •		J.JJ.TTJJ

С	-5.015845	0.245294	-3.051581
Н	-4.977478	-0.797909	-1.174431
Н	-1.559744	1.696368	-2.041929
Н	-2.570603	2.321002	-4.194679
Н	-5.977436	-0.170929	-3.340453
Н	-4.784771	1.392562	-4.863680
С	-3.356674	0.967740	1.428746
С	-4.678968	2.431602	3.429000
С	-3.053854	0.759771	2.785852
С	-4.319125	1.927923	1.087480
С	-4.975379	2.655065	2.084766
С	-3.715367	1.480648	3.777896
Н	-2.295536	0.032426	3.064969
Н	-4.560626	2.109634	0.045315
Н	-5.719390	3.396344	1.805627
Н	-3.473936	1.305917	4.822926
Н	-5.190508	2.998110	4.202435
С	-0.025546	2.131680	1.399754
Н	0.321566	1.613565	2.296442
Н	-1.069654	2.428328	1.453581
С	0.880659	3.104005	0.907919
С	0.620441	4.203165	0.071433
С	-0.817798	4.571878	-0.235465
Н	-0.870543	5.292235	-1.059567
Н	-1.302161	5.033552	0.638485
Н	-1.406494	3.697618	-0.523484
С	1.584214	5.379338	0.139619
Н	2.613550	5.042957	0.287674
Н	1.317185	6.048530	0.971363
Н	1.558686	5.975346	-0.779774
Н	1.927060	2.971326	1.183597
С	1.318850	3.231262	-1.618860
0	0.358735	2.736118	-2.169132
0	2.509990	3.402812	-1.683141

12B3LYP SCF energy:-4697.38523739 a.u.B3LYP enthalpy:-4696.626024 a.u.B3LYP free energy:-4696.762621 a.u.M06 SCF energy in solution:-4701.08109079 a.u.M06 enthalpy in solution:-4700.321877 a.u.M06 free energy in solution:-4700.458474 a.u.Three lowest frequencies (cm-1):11.527413.1742

Cartes	ian coordinat	tes	
ATOM	Х	Y	Z
Pd	-0.039597	0.027369	0.045112
P	-2.393027	-0.109715	-0.054134
P	2.259632	-0.513053	-0.067312
С	-2.922468	-1.677306	-0.887380
С	-3.612611	-4.083388	-2.129938
С	-4.191743	-1.834732	-1.462463
С	-1.977909	-2.724351	-0.937887
С	-2.349272	-3.925378	-1.555120
С	-4.534085	-3.036206	-2.085202

Н	-4.905429	-1.016245	-1.445017
Н	-1.644907	-4.752312	-1.602719
Н	-5.514601	-3.149414	-2.539894
н	-3 873482	-5 018329	-2 619429
C	2 499991	-2 155370	-0 892841
C	2.455551	_1 659010	-2 107220
C	2.704007	-4.656949	-2.10/330
C	1.389866	-3.024917	-0.932914
С	3.722993	-2.536346	-1.464014
С	3.852996	-3.785740	-2.072720
С	1.548076	-4.278982	-1.536213
Н	4.567736	-1.853808	-1.451122
Н	4.799496	-4.071652	-2.523683
ч	0 712108	-1 973188	-1 57/59/
11	0.712100	F (20(70	2 505214
н	2.860622	-5.630678	-2.385214
Ge	-0.249469	-2.368520	-0.03505/
С	-0.345393	-3.267997	1.732466
Н	0.577246	-3.100473	2.295823
Н	-0.487714	-4.347324	1.604406
Н	-1.187025	-2.869436	2.306867
C	-3 099660	-0 145924	1 644120
C	-1 059967	-0 071254	1 276169
C	4.033307	1 000217	9.270105
C	-4.0/4258	-1.060317	2.066212
C	-2.598/99	0.802444	2.554356
С	-3.084817	0.840384	3.860612
С	-4.550492	-1.021573	3.379927
Н	-4.459198	-1.804568	1.375357
Н	-1.826063	1.498640	2.234448
Н	-2.695256	1,577583	4,557521
н	-5 304015	-1 736403	3 700134
и П	_/ /31201	-0 043684	5 207102
	2 220740	1 222447	0 007002
C	-3.329740	1.222447	-0.907903
C	-4./45/95	3.185881	-2.31890/
С	-4.645407	1.550628	-0.539000
С	-2.721334	1.899482	-1.975063
С	-3.432946	2.875263	-2.676717
С	-5.349705	2.526167	-1.245546
Н	-5.116484	1.054098	0.304439
н	-1 680938	1 709906	-2 219514
ч	-2 9/829/	3 103062	-3 /93178
и и	-6 266211	2 775102	-0.052470
п	-0.300311	2.775102	-0.952478
Н	-5.293/15	3.949678	-2.864663
С	2.951351	-0.680533	1.630154
С	3.913699	-0.795813	4.260514
С	3.738597	-1.762493	2.047672
С	2.638958	0.341281	2.544728
С	3.126075	0.283752	3.849863
С	4.215703	-1.818304	3.360407
ч	3 976999	-2 562804	1 353418
и и	2 000402	1 170740	2 220001
11	2.009403	1 070040	Z.Z3UUUI
н	2.883060	1.0/8842	4.5495/7
Н	4.822590	-2.662670	3.676725
H	4.285436	-0.841519	5.280737
С	3.432470	0.611840	-0.927971
С	5.205078	2.232925	-2.370230
С	2.976295	1.344517	-2.033603
С	4.777785	0.714403	-0.536223
C	5 659021	1 520831	-1 257509
<u> </u>	J. UJJUZI	T.020001	

С	3.865162	2.147001	-2.751711
Н	1.923122	1.336226	-2.293916
Н	5.136599	0.173105	0.334257
Н	6.697484	1.596656	-0.945765
Н	3.500185	2.717652	-3.601194
Н	5.892013	2.863499	-2.928808
С	2.677892	5.374476	0.645731
Н	3.701041	5.598303	0.354005
Н	2.413131	5.591539	1.676972
С	1.810718	4.861062	-0.229653
С	0.355115	4.502999	0.016184
С	-0.081978	4.745215	1.465761
Н	-1.131294	4.461336	1.597709
Н	0.016708	5.806481	1.725424
Н	0.512103	4.155903	2.168449
С	-0.518973	5.346411	-0.942889
Н	-0.237190	5.160347	-1.981867
Н	-0.401539	6.414724	-0.725598
Н	-1.578086	5.084677	-0.829611
Н	2.144018	4.660110	-1.247694
С	0.215696	2.998706	-0.396065
0	0.087255	2.159880	0.568767
0	0.261588	2.712375	-1.606299

 13-TS

 B3LYP SCF energy:
 -4697.28455017 a.u.

 B3LYP enthalpy:
 -4696.528487 a.u.

 B3LYP free energy:
 -4696.662705 a.u.

 M06 SCF energy in solution:
 -4701.01499410 a.u.

 M06 enthalpy in solution:
 -4700.258931 a.u.

 M06 free energy in solution:
 -4700.393149 a.u.

 Three lowest frequencies (cm-1):
 -165.3664 cm-1

16.7079

Cartesi	lan coordinat	tes	
ATOM	Х	Y	Z
Pd	-0.014267	0.437800	-0.016961
Ρ	-2.406002	0.029672	-0.030442
Ρ	2.338764	-0.086648	0.025057
С	-2.774889	-1.246890	-1.323701
С	-3.207187	-3.274921	-3.200916
С	-4.017365	-1.363924	-1.964947
С	-1.737800	-2.158980	-1.607252
С	-1.978422	-3.171557	-2.544616
С	-4.228877	-2.371416	-2.908110
Н	-4.817484	-0.665813	-1.740169
Н	-1.200113	-3.892776	-2.779110
Н	-5.189295	-2.447476	-3.410940
Н	-3.365371	-4.058262	-3.937854
С	2.675823	-1.431232	-1.211375
С	3.071972	-3.558105	-2.987757
С	1.599135	-2.286670	-1.518760
С	3.940978	-1.657351	-1.775632
С	4.134607	-2.712028	-2.669286
С	1.820850	-3.350235	-2.403435

Н	4.774146	-1.008366	-1.527126
Н	5.114189	-2.871018	-3.112202
Н	1.010817	-4.031799	-2.649323
н	3.216757	-4.379077	-3.685465
Ge	-0 084519	-1 952181	-0 533474
C	-0 167844	-3 2002201	0 920429
с и	-0 10/220	-4 206411	0.020420
11	1 000004	-4.JU0411 2 1E2702	1 525040
H	-1.066084	-3.152/82	1.525940
Н	0./1343/	-3.21544/	1.562029
С	-2.998386	-0.758371	1.537053
С	-3.858402	-1.943928	3.935310
С	-3.996135	-1.746608	1.527163
С	-2.433030	-0.372835	2.763823
С	-2.867826	-0.960810	3.953760
С	-4.421333	-2.335260	2.718976
Н	-4.435923	-2.069496	0.589226
н	-1 673673	0 401132	2 787252
н	-2 425195	-0 648742	4 895857
и и	-5 100002	-3 102263	2 694206
п	-J.190992	-3.102203	2.094200
H	-4.188948	-2.404687	4.862492
C	-3.634181	1.369586	-0.337705
С	-5.401438	3.506318	-0.797854
С	-4.291439	1.993942	0.733059
С	-3.865884	1.838838	-1.642449
С	-4.747633	2.895195	-1.869649
С	-5.169175	3.053824	0.501754
Н	-4.112405	1.660530	1.749040
Н	-3.365737	1.375189	-2.487186
Н	-4.918344	3.242886	-2.884907
н	-5.668639	3.527403	1.342483
н	-6 084346	4 332758	-0 974883
C	2 817214	-0 864547	1 639285
C	3 /01/214	-2 031900	1 107652
C	2 620241	2.031500	1 600227
C	3.020341	-2.015165	1.090237
Ĉ	2.353951	-0.305596	2.842889
С	2.69/352	-0.884814	4.066062
С	3.952494	-2.594590	2.916536
Н	3.982892	-2.469668	0.774497
Н	1.746968	0.593274	2.823830
Н	2.336908	-0.436098	4.987913
Н	4.571155	-3.488027	2.936916
Н	3.750078	-2.484731	5.061323
С	3.674649	1.145154	-0.283577
С	5.744469	2.979573	-0.779215
С	4.008118	1,508394	-1.598385
C	4 361826	1 747120	0 780064
C	5 388356	2 658699	0 531/28
C	5 017959	2.050000	-1 8/3683
	3.047939	1 076002	-1.043003
п	3.4/120/	1.070092	-2.43/432
п	4.1U3/29 E 014600	1.JU2UJ1	1 267204
H 	5.914693	3.11150/	1.36/304
Н	5.304259	2.662639	-2.867939
Н	6.553319	3.679810	-0.970331
С	-0.012500	3.235816	-0.646087
С	1.240452	4.010695	-0.549659
С	2.160538	4.200168	-1.510079
Н	1.392078	4.531575	0.394188

Н	3.032158	4.823696	-1.333229
Н	2.090921	3.745045	-2.493501
С	-1.212000	4.116921	-0.294903
Н	-1.012429	4.751964	0.574415
Н	-2.106333	3.534105	-0.073067
Н	-1.440058	4.784331	-1.144210
С	-0.209535	2.586573	-2.015756
Н	-0.237406	3.366215	-2.800131
Н	-1.156900	2.046376	-2.083764
Н	0.598171	1.896420	-2.286576
С	0.050169	2.453206	1.593278
0	-1.097569	2.403067	1.981337
0	1.198886	2.549846	1.962005

 14-TS

 B3LYP SCF energy:
 -4811.63975893 a.u.

 B3LYP enthalpy:
 -4810.862200 a.u.

 B3LYP free energy:
 -4810.997684 a.u.

 M06 SCF energy in solution:
 -4815.38823978 a.u.

 M06 enthalpy in solution:
 -4814.610681 a.u.

 M06 free energy in solution:
 -4814.746165 a.u.

 Three lowest frequencies (cm-1):
 -205.7241 22.0561

 Imaginary frequency:
 -205.7241 cm-1

Cartesian coordinates				
ATOM	Х	Y	Z	
Pd	-0.039360	-0.325454	-0.289888	
P	2.299556	0.226198	-0.039209	
P	-2.412525	-0.043428	-0.043187	
С	2.566740	1.901773	-0.762846	
С	2.843549	4.496506	-1.753211	
С	3.791208	2.321322	-1.297299	
С	1.462619	2.775416	-0.721274	
С	1.626788	4.077240	-1.207827	
С	3.924969	3.617320	-1.800375	
Н	4.633813	1.638033	-1.335511	
Н	0.798442	4.780199	-1.178306	
Н	4.871626	3.935647	-2.228664	
Н	2.942398	5.505134	-2.146229	
С	-2.853821	1.535340	-0.883817	
С	-3.382532	4.012773	-2.046369	
С	-1.868145	2.541913	-0.831423	
С	-4.083505	1.763452	-1.511023	
С	-4.342969	3.003372	-2.100002	
С	-2.159648	3.782447	-1.408554	
Н	-4.828732	0.975168	-1.557212	
Н	-5.291239	3.175613	-2.601944	
Н	-1.425321	4.582958	-1.382801	
Н	-3.578827	4.977028	-2.508108	
Ge	-0.190371	2.084121	0.125634	
С	-0.271430	2.876441	1.940629	
Н	-1.176630	2.562449	2.464762	
Н	-0.276000	3.969306	1.852095	
Н	0.604210	2.577671	2.523070	
С	2.673493	0.444796	1.758000	

22.9591

С	3.183521	0.688523	4.508842
С	3.501277	1.470164	2.239477
С	2.103115	-0.457787	2.670277
C	2 364776	_0 330715	1 036082
C	2.304770	1 602216	9.000002
C	3.749583	1.593315	3.608446
Н	3.946289	2.1/8819	1.54/618
H	1.460999	-1.257712	2.312308
Н	1.923422	-1.050387	4.729773
Н	4.385678	2.397224	3.969487
Н	3.378327	0.785550	5.573637
С	3 728521	-0 785495	-0 636212
C	5 893446	-2 315487	-1 573714
C	1 667945	_1 318936	0 260795
C	2 002521	1 0210/1	0.200755
C	3.003031	-1.031041	-2.012347
C	4.962893	-1./8//99	-2.4/1865
С	5.741603	-2.079577	-0.207099
Н	4.568070	-1.145228	1.326068
Н	3.148612	-0.653156	-2.711809
Н	5.069596	-1.969329	-3.538036
Н	6.459393	-2.484576	0.501505
Н	6.729453	-2.907702	-1.936566
С	-2.883503	0.254343	1.720931
C	-3 554031	0 655450	4 418425
C	-3 931957	1 1186/8	2 072635
C	-3.931957	0 404126	2.072033
C	-2.1/3200	-0.404120	2.750454
C	-2.512191	-0.209158	4.0/66/0
С	-4.261811	1.319/96	3.414089
Н	-4.484554	1.643691	1.299475
Н	-1.351615	-1.064355	2.475065
Н	-1.953827	-0.725137	4.853170
Н	-5.070467	1.997939	3.673468
Н	-3.810669	0.814944	5.462317
С	-3.657379	-1.295812	-0.588266
C	-5 519791	-3 220338	-1 441390
C	-3 739102	-1 653847	-1 946601
C	-1 510527	_1 022212	0 225/1/
C	-4.310327	-1.923313	0.333414
C	-5.433686	-2.8/9981	-0.091047
C	-4.6/105/	-2.6051/1	-2.3639/3
Н	-3.058206	-1.207213	-2.662610
Н	-4.461879	-1.668006	1.387999
Н	-6.086769	-3.355097	0.636217
Н	-4.724144	-2.870787	-3.416338
Н	-6.240068	-3.964125	-1.771853
С	-0.092553	-2.575727	-1.719251
Н	-1.168586	-2.687172	-1.846371
C	0 668266	-3 291680	-2 839814
ч	1 697410	-2 931790	-2 937094
11	0 170042	2.10076	2.957094
н	0.1/9943	-3.120270	-3.000314
H Q	0./10051	-4.3//599	-2.658378
C	0.3046/1	-3.042500	-0.3596//
С	0.992919	-4.109831	2.202255
С	1.630313	-3.433122	-0.042139
С	-0.664751	-3.238142	0.659357
С	-0.327692	-3.755216	1.910439
С	1.963835	-3.948912	1.208651
Н	2.404672	-3.340395	-0.795150
Н	-1.707835	-3.034302	0.433987

Н	-1.110105	-3.908810	2.651020
Н	2.994248	-4.237157	1.404176
Н	1.254693	-4.525991	3.171505
С	-0.034863	-0.721613	-2.853991
0	-1.172102	-0.568876	-3.245688
0	1.102715	-0.358240	-3.069008

15-TS		
B3LYP SCF energy:	-4201.98082594 a.u.	
B3LYP enthalpy:	-4201.309432 a.u.	
B3LYP free energy:	-4201.428719 a.u.	
M06 SCF energy in solution:	-4205.63310236 a.u.	
M06 enthalpy in solution:	-4204.961708 a.u.	
M06 free energy in solution:	-4205.080995 a.u.	
Three lowest frequencies (cm-1):	-206.9033 19.0672	21.9917
Imaginary frequency:	-206.9033 cm-1	

Cartesian coordinates

ATOM	Х	Ŷ	Z
Pd	-0.194368	-0.527889	0.173885
P	-1.464299	1.430125	0.722154
Р	1.812003	-1.820673	0.083529
С	-0.530178	2.988573	0.325874
С	0.938464	5.302902	-0.279489
С	-0.979240	4.252267	0.747590
С	0.675927	2.882488	-0.393160
С	1.391024	4.050668	-0.695147
С	-0.249004	5.402084	0.448111
Н	-1.894263	4.347729	1.323561
Н	2.316716	3.989592	-1.262698
Н	-0.605649	6.371970	0.784651
Н	1.510525	6.196293	-0.516619
С	3.304509	-0.752062	-0.151931
С	5.499192	0.950483	-0.500130
С	3.093018	0.572084	-0.585720
С	4.606975	-1.210263	0.106261
С	5.700308	-0.360566	-0.064204
С	4.205804	1.406161	-0.761013
Н	4.774515	-2.224588	0.457541
Н	6.703761	-0.719490	0.148412
Н	4.069277	2.431150	-1.096685
Н	6.347548	1.617607	-0.630159
Ge	1.210436	1.069625	-0.963583
С	0.990602	1.001624	-2.939751
Н	1.650886	1.737077	-3.414438
Н	-0.042654	1.233048	-3.214240
Н	1.244109	0.010297	-3.327682
С	-1.742446	-2.546238	-0.184502
Н	-0.877749	-2.607285	-0.853630
С	-1.970145	-3.948299	0.394179
Н	-2.807961	-3.993893	1.097982
Н	-1.084909	-4.302510	0.932947
Н	-2.189231	-4.673113	-0.407178
С	-2.872521	-1.964542	-0.938021
С	-5.003546	-0.861160	-2.474038

С	-4.215723	-2.050642	-0.507988		
С	-2.643302	-1.310524	-2.172429		
С	-3.683420	-0.770233	-2.925974		
С	-5.256760	-1.506589	-1.260522		
Н	-4.443114	-2.539697	0.432752		
Н	-1.623786	-1.246761	-2.548555		
Н	-3.464972	-0.289769	-3.877612		
Н	-6.278320	-1.593625	-0.896601		
Н	-5.819216	-0.448394	-3.061939		
С	1.877772	-3.102612	-1.276614		
н	1 630224	-2 567828	-2 201476		
н	1 031172	-3 771631	-1 077677		
C	2 157321	-2 791511	1 631846		
н	1 265583	-3 403609	1 796484		
н	3 001804	-3 467225	1 448471		
C	-3 137126	1 557048	-0 080562		
н	-3 631330	0 621191	0.203845		
и П	-2 966456	1 480713	-1 150106		
C	$-1 \ 911407$	1 624621	2 5/122/		
	-1.011407	0 070065	2.341334		
п	-2.330000	0.072303	2.799495		
п	-2.2/0130	2.010400	2.090045		
	Z.41/233 1 EE1402	-1.921692	2.000009		
н	1.551403	-1.290509	3.079298		
Н	3.296914	-1.282972	2./36/33		
н	2.58/335	-2.559/51	3./41201		
С	3.164503	-3.914070	-1.4662/4		
H	3.419933	-4.495/82	-0.5/4090		
H	4.015084	-3.2/0115	-1./09551		
Н	3.037346	-4.623868	-2.292013		
С	-4.033784	2.758731	0.237978		
Н	-4.228697	2.858326	1.311498		
Н	-5.002572	2.626596	-0.257498		
Н	-3.604862	3.698724	-0.123098		
С	-0.564873	1.497879	3.423370		
Н	-0.128679	0.498932	3.329655		
Н	-0.828628	1.652528	4.475894		
Н	0.201916	2.234072	3.157434		
С	-1.783112	-1.792926	2.086200		
0	-0.812555	-2.236793	2.638833		
0	-2.886066	-1.329493	2.160275		
CO2					
B31.VP	SCF energy.		-188 5	יו ב 7757052	
BSLVP	enthalny.		-188 5	62367 a 11	
BSLVP	free energy.		-188 5	86668 = 11	
MOG C	CE oporau in a	olution.	_100.5	2207200 2.4.	
MOG o	cr energy in a nthalaw in col	ution.	-100.0	17770 , 17770	
M06 f	nchaipy in Sol ree epergy in	solution.	-188 6	17770 a.u.	
Throo L	lowest from	ncies (cm-1)	-100.0	-2011 a.u. 616 8500	1370 1160
титее	TOMESC TIEdne	meres (cm-1)	. 040.0390	040.0390	13/0.4409
Carte	sian coordinat	tes	-		
A'T'OM	X 0.000000	Y O OOOOOO	2		
			U.UUUUUU 1 160500		
0	0.000000	0.000000	1.109583		
U	0.000000	0.000000	-1.109383		

 HCOO

 B3LYP SCF energy:
 -189.17318093 a.u.

 B3LYP enthalpy:
 -189.149023 a.u.

 B3LYP free energy:
 -189.176737 a.u.

 M06 SCF energy in solution:
 -189.33137975 a.u.

 M06 enthalpy in solution:
 -189.307222 a.u.

 M06 free energy in solution:
 -189.334936 a.u.

 Three lowest frequencies (cm-1):
 764.6702
 1069.3226
 1370.1625

 Cartesian coordinates
 ATOM
 X
 Y
 Z

 C
 -3.911251
 -0.481833
 0.000000

<u> </u>	0.011001	0.101000	0.00000
Н	-5.063939	-0.481833	0.00000
0	-3.392668	0.660068	0.00000
0	-3.392668	-1.623733	0.00000