Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supporting information

First-principles design of bifunctional oxygen reduction and evolution catalysts

through bimetallic centers in metal-organic frameworks

Peng Zhang^{1,3,4}, Xuejing Yang¹, Wang Gao², Xiuli Hou¹, Jianli Mi¹, Lei Liu¹, Jun

Huang^{*,4}, Mingdong Dong^{*,5}, Catherine Stampfl^{*,3}

¹ Institute for Advanced Materials, School of Materials Science and Engineering,

Jiangsu University, Zhenjiang 212013, China

² School of Materials Science and Engineering, Jilin University, Changchun 130022,

China

³ School of Physics, The University of Sydney, Sydney, New South Wales 2006,

Australia

⁴ Laboratory for Catalysis Engineering, School of Chemical and Biomolecular

Engineering, The University of Sydney, New South Wales 2006, Australia

⁵ Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus DK-

8000, Denmark

*E-mail: jun.huang@sydney.edu.au, dong@inano.au.dk,

catherine.stampfl@sydney.edu.au

Fig. S1. Partial density of states (PDOS) of (a) Fe₃(THT)₂, (b) Os₃(THT)₂, and (c)

 $Ir_3(THT)_2$.

Table S1. Adsorption energy (E_{ad}) values of ORR intermediates and d-band center of $M_3(THT)_2$ nanosheets. All results are in the unit of eV. The corresponding adsorption structures are shown in Fig. S2.

OOH	0	OH	\mathcal{E}_d
1.36	3.92	2.51	-1.23
1.76	4.86	2.35	-1.88
1.96	5.59	3.18	-2.05
0.87	3.77	2.07	-1.56
0.96	4.03	2.08	-2.13
0.95	3.91	2.18	-2.59
0.51	3.68	1.93	-1.88
0.64	3.74	2.05	-2.62
0.49	3.63	1.90	-3.01
1.37	3.95	2.52	-1.14
0.89	3.56	2.07	-1.56
1.37	3.98	2.58	-1.15
0.86	3.75	2.02	-1.57
	OOH 1.36 1.76 1.96 0.87 0.96 0.95 0.51 0.64 0.49 1.37 0.89 1.37 0.86	OOHO1.363.921.764.861.965.590.873.770.964.030.953.910.513.680.643.740.493.631.373.950.893.561.373.980.863.75	OOHOOH1.363.922.511.764.862.351.965.593.180.873.772.070.964.032.080.953.912.180.513.681.930.643.742.050.493.631.901.373.952.520.893.562.071.373.982.580.863.752.02

Fig. S2. Favorable adsorption structures of ORR intermediates on single-metal

M₃(THT)₂ nanosheets.

Fig. S3. Schematic free energy diagrams for ORR/OER on single-metal M₃(THT)₂

nanosheets.

Table S2. Mulliken charge analysis for $Fe_3(THT)_2$, $Co_3(THT)_2$, $Fe_2Co(THT)_2$ and $FeCo_2(THT)_2$ in units of *e*.

	Fe	S-Fe ^a	Co	S-Co ^a
Fe ₃ (THT) ₂	0.425	-0.233		
$Co_3(THT)_2$			0.147	-0.161
Fe ₂ Co(THT) ₂	0.424	-0.234	0.148	-0.161
FeCo ₂ (THT) ₂	0.419	-0.233	0.147	-0.161

^a S-Fe and S-Co indicate the S atoms bonded with Fe or Co atoms.

Fig. S4. Schematic free energy diagrams for ORR/OER on Fe_xCo_{3-x}(THT)₂

nanosheets.

Fig. S5. The band structures of bi-metal $M_3(THT)_2$ nanosheets.

Fig. S6. Partial density of states (PDOS) of (a) Fe-3*d* in Fe₃(THT)₂, Fe₂Co(THT)₂, and FeCo₂(THT)₂, (b) Co-3*d* in Co₃(THT)₂, Fe₂Co(THT)₂, and FeCo₂(THT)₂, (c) S-3*p* of S atoms bonded with Fe atoms in Fe₃(THT)₂, Fe₂Co(THT)₂, and FeCo₂(THT)₂, (d) S-3*p* of S atoms bonded with Co atoms in Co₃(THT)₂, Fe₂Co(THT)₂, and FeCo₂(THT)₂, (e) Fe₂Co(THT)₂, and (f) FeCo₂(THT)₂.

Fig. S7. Partial density of states (PDOS) of (a) Fe-3*d* in Fe₃(THT)₂, Fe₂Ir(THT)₂, and FeIr₂(THT)₂, (b) Ir-5*d* in Ir₃(THT)₂, Fe₂Ir(THT)₂, and FeIr₂(THT)₂, (c) S-3*p* of S atoms bonded with Fe atoms in Fe₃(THT)₂, Fe₂Ir(THT)₂, and FeIr₂(THT)₂, (d) S-3*p* of S atoms bonded with Co atoms in Ir₃(THT)₂, Fe₂Ir(THT)₂, and FeIr₂(THT)₂, (e) Fe₂Ir(THT)₂, and (f) FeIr₂(THT)₂.

Fig. S8. Adsorption energies (E_{ad}) of O and OH plotted against the E_{ad} of OOH on $M_3(THT)_2$ nanosheets.