Electronic Supplementary Information

Tin-palladium supported on alumina as a highly active and selective catalyst for hydrogenation of nitrate in actual groundwater polluted with nitrate

Jun Hirayama^{a,b} and Yuichi Kamiya^{b*}

^a Research Fellow of Japan Society for the Promotion of Science (JSPS), 5-3-1 Chiyoda-ku,

Tokyo 102-0083, Japan

^b Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku,

Sapporo 060-0810, Japan

*Corresponding author

Yuichi Kamiya, E-mail: kamiya@ees.hokudai.ac.jp

Table S1 Catalytic performance of $Sn_{0.5}Pd/Al_2O_3$ with different metal loadings for the hydrogenation of NO_3^- .

Loading amount of Sn _{0.5} Pd	NO ₃ decomposition rate/	Selectivity ^a /%	
/wt%	$moderm{mmol\ h^{-1}\ g^{-1}}$	NH ₄ ⁺	Gas
6.5	8.0	1	99
1.0	1.4	1	99

Reaction conditions: catalyst weight, 10 mg; reactant NO_3^- (from KNO₃), 0.8 mmol dm^{-3} , volume of reaction solution 250 cm³; gas composition, $H_2/CO_2 = 1/1$; gas flow rate, $30 \text{ cm}^3 \text{ min}^{-1}$; and reaction temperature, 298 K.

^a Selectivity at around 30% conversion.