Electronic Supplementary Information Tin-palladium supported on alumina as a highly active and selective catalyst for hydrogenation of nitrate in actual groundwater polluted with nitrate Jun Hirayama^{a,b} and Yuichi Kamiya^{b*} ^a Research Fellow of Japan Society for the Promotion of Science (JSPS), 5-3-1 Chiyoda-ku, Tokyo 102-0083, Japan ^b Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo 060-0810, Japan *Corresponding author Yuichi Kamiya, E-mail: kamiya@ees.hokudai.ac.jp Table S1 Catalytic performance of $Sn_{0.5}Pd/Al_2O_3$ with different metal loadings for the hydrogenation of NO_3^- . | Loading amount of Sn _{0.5} Pd | NO ₃ decomposition rate/ | Selectivity ^a /% | | |--|-------------------------------------|------------------------------|-----| | /wt% | $moderm{mmol\ h^{-1}\ g^{-1}}$ | NH ₄ ⁺ | Gas | | 6.5 | 8.0 | 1 | 99 | | 1.0 | 1.4 | 1 | 99 | Reaction conditions: catalyst weight, 10 mg; reactant NO_3^- (from KNO₃), 0.8 mmol dm^{-3} , volume of reaction solution 250 cm³; gas composition, $H_2/CO_2 = 1/1$; gas flow rate, $30 \text{ cm}^3 \text{ min}^{-1}$; and reaction temperature, 298 K. ^a Selectivity at around 30% conversion.