Supporting Information

Synergistic Effect of Ti³⁺ Doping and Facet Regulation over Ti³⁺

Doped TiO₂ Nanosheets with Enhanced Photoreactivity

Xiaogang Liu^{a*} and Yingpu Bi^{b*}

^a College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China. Email: lxg133298@163.com.

^b State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, China. E-mail: yingpubi@licp.cas.cn.

Additional figures

Fig.S1 SEM images of Air-TiO₂-HF4.5 (A), Air-TiO₂-HF6 (B) and Air-TiO₂-HF9(C).

Fig. S2 Curves of the Kubelka–Munk function plotted against the photon energy for the samples before (black line) and after (red line) Al reduction with different volume of HF: A) 4.5 mL, B) 6 mL, and C) 9 mL.

Fig. S3 High resolution XPS spectra of Ti 2p and O 1s XPS spectra of TiO_2 nanosheets treated before and after Al reduction.

Fig. S4 (A) F 1s XPS spectra of pristine TiO_2 and Al reduced TiO_2

Fig. S5 XPS survey spectra and Al element analysis of of Al-TiO₂-HF6 sample.

Fig. S6 UV-vis light induced photocatalytic degradation of methylene orange of as prepared TiO_2 nanosheets treated before and after Al reduction.

Fig. S7 UV-vis light induced photocatalytic degradation of methylene orange of Al-TiO₂ (A) and Air-TiO₂ (A) samples.

Fig. S8 Photocatalytic H₂ evolution over TiO₂ treated (A) before and (B) after Al reduction and their comparative study of H₂ evolution rates (C) under visible light irradiation (λ >400 nm)

Fig. S9 Visible light ((λ >400 nm)) induced photocatalytic degradation of methylene orange of as prepared TiO₂ nanosheets treated before and after Al reduction.

Fig.S10 Stability tests of UV-vis light irradiation induced photocatalytic activities (MO decomposition) of the as prepared Al-TiO₂-HF6 nanosheets.

Fig. S11 Photoelectrochemical properties of pristine TiO_2 and Al-reduced TiO_2 electrodes: (A) chopped *J*–*V* curves and (B) *I*–*t* amperometric curves under UV-Vis light illumination using a three electrode setup (TiO_2 working, Pt counter, saturated calomel reference electrode) in a 1 M NaOH electrolyte.

Fig. S12 N_2 adsorption-desorption isotherm (A) and pore size distribution (B) of prepared TiO₂ nanosheets samples before and after Al reduction.

sample	Average Thickness	Average Length	Percentage of {001}
	(nm)	(nm)	Facet
Al-TiO ₂ -HF4.5	7.2	40-50	58
Al-TiO ₂ -HF6	5.9	120-150	72
Al-TiO ₂ -HF9	5.1	50-60	83

Table S1. Structural information of as-synthesized Al reduced TiO_2 nanosheets synthesized at different reaction conditions.

Table S2. Structure information of BET specific surface areas, average pore width and total pore volume for as prepared TiO_2 samples before and after Al reduction

Sample	BET specific surface	Average pore width	Total pore volume
	areas (m ² /g)	(nm)	(cm^{3}/g)
Air-TiO ₂ -HF4.5	37.48	8.95	0.083895
Al-TiO ₂ -HF4.5	49.86	22.42	0.279436
Air-TiO ₂ -HF6	73.86	15.12	0.279157
Al-TiO ₂ -HF6	26.45	8.42	0.05783
Air-TiO ₂ -HF9	29.39	8.62	0.066025
Al-TiO ₂ -HF9	39.61	10.89	0.103493