Low-temperature, highly selective, highly stable Nb₂O₅-NiO/Ni-foam catalyst for the oxidative dehydrogenation of ethane

Zhiqiang Zhang, Guofeng Zhao*, Ruijuan Chai, Jian Zhu, Ye Liu, and Yong Lu*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry

and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Fax: (+86) 21-62233424, E-mail: ylu@chem.ecnu.edu.cn

Part I. Supplementary characterization and catalytic experimental results.

	2 0			2 3			<u></u>
Catalyst	Region	Weight/%			Atomic/%		
		Ni K	Nb L	O K	Ni K	Nb L	O K
Nb ₂ O ₅ -NiO/Ni-foam	A1	94.09	2.39	3.52	86.76	1.47	11.77
Nb ₂ O ₅ -NiO/Ni-foam	A2	9.65	44.22	46.13	4.66	13.51	81.83
Nb2O5-NiO/Ni-foam-A	A3	56.02	6.67	37.31	28.41	2.14	69.45

Table S1. EDX results of the Nb₂O₅-NiO/Ni-foam and Nb₂O₅-NiO/Ni-foam-A in Fig.2.

Nb ₂ O ₅ content (wt%)	Conv. (%)	Select. (%)		Productivity	
		C_2H_4	CO ₂	$(g_{Ethylene} g_{cat}^{-1} h^{-1})$	
0.0	43.4	44.0	56.0	0.20	
1.0	51.8	56.0	44.0	0.30	
3.0	57.6	64.9	35.1	0.39	
5.0	59.6	68.0	32.0	0.43	
7.0	58.5	68.9	31.1	0.42	

Table S2. Catalytic performance of Nb_2O_5 -NiO/Ni-foam catalysts with different Nb_2O_5 loadings.^a

^a Reaction conditions: T = 410 °C, $C_2H_6/O_2/N_2 = 1/1/8$, GHSV = 9000 cm³ g⁻¹ h⁻¹.

- 1	5				
Catalyst	H_2 consumption (mmol g ⁻¹) ^a				
NiO/Ni-foam-A	3.75				
Nb ₂ O ₅ -NiO/Ni-foam-A	3.68				
Nb ₂ O ₅ -NiO/Ni-foam	3.67				

Table S3. H_2 consumption of Ni-foam structured catalysts.

^a Measured by H₂ pulse experiment.

Catalyst	Temperature (°C)		$C_{2} = (0/2)$	Select. (%)		Productivity	
	Furnace	Bed	- Conv. (%)	C ₂ H ₄	CO ₂	$(g_{C2H4} g_{cat}^{-1} h^{-1})$	
Nb ₂ O ₅ /NiO	340	352	20.8	79.8	20.2	0.17	
(5/28, wt/wt) Nb ₂ O ₅ -NiO/Ni-foam	350	384	44.7	67.1	32.9	0.31	
	360	399	50.5	66.9	33.1	0.35	
	370	412	52.3	65.9	34.1	0.36	
	380	422	52.5	64.5	35.5	0.35	
	350	355	22.6	76.1	23.9	0.18	
	375	384	39.1	72.7	27.3	0.30	
	400	411	55.0	69.6	30.4	0.40	
	410	424	59.6	68.1	31.9	0.43	
	425	438	57.1	67.3	32.7	0.40	

Table S4. Catalytic performance of Ni-foam structured and particulate catalysts as a function of ODE reaction temperature.^a

^a Reaction conditions: $C_2H_6/O_2/N_2 = 1/1/8$, GHSV = 9000 cm³ g⁻¹ h⁻¹.

Fig. S1 NiO loading of NiO/Ni-foam-A prepared under varied hydrothermal conditions. (A) Effect of oxalic acid concentration with a fixed hydrothermal time of 24 h and hydrothermal temperature of 100 °C. (B) Effect of hydrothermal temperature with a fixed hydrothermal time of 24 h and oxalic acid concentration of 0.2 mol L^{-1} . (C) Effect of hydrothermal time with a fixed hydrothermal temperature of 100 °C and oxalic acid concentration of 0.2 mol L^{-1} .

Fig. S2 Low-magnification SEM images of NiO/Ni-foam-A prepared by hydrothermal treatment for 24 h at 100 °C, using different oxalic acid concentrations of (a) 0.06 mol L^{-1} H₂C₂O₄, (b) 0.1 mol L^{-1} H₂C₂O₄ and (c) 0.26 mol L^{-1} H₂C₂O₄.

Fig. S3 TG-DTA curve of the NiC₂O₄/Ni-foam sample.

Fig. S4 Low-magnification SEM images of (a) Ni-foam, (b) $NiC_2O_4/foam$, (c) Nb_2O_5 -NiO/Ni-foam and (d) Nb_2O_5 -NiO/Ni-foam-A.

Fig. S5 Adherence test of the NiC_2O_4/Ni -foam sample.

Fig. S6 Oxygen conversion of the as-prepared catalysts. Reaction conditions: $C_2H_6/O_2/N_2 = 1/1/8$, GHSV = 9000 cm³ g⁻¹ h⁻¹.

Fig. S7 H₂-TPR profiles of the Nb₂O₅.

Fig. S8 Temperature-rising of the Ni-foam structured catalyst Nb₂O₅-NiO/Ni-foam and the particulate counterpart Nb₂O₅/NiO (5/28, wt/wt).

Part II. Additional discussion.

2.1. Effects of hydrothermal conditions on NiC₂O₄ loading

To gain the optical NiC₂O₄ loading, a series of control experiments with varied hydrothermal temperature, hydrothermal time and oxalic acid concentrations were performed. The morphology and NiO loading were studied by SEM and TPR measurements, respectively. In order to easily determine the NiC₂O₄ loading on Ni-foam, all the NiC₂O₄/Ni-foam samples were first calcined to transform into NiO/Ni-foam-A, of which NiO loading could be easily measured by H₂-TPR.^{S1-S3}

Fig. S1A shows that the NiO loading displays a volcano-shaped evolution behavior with the hydrothermal temperature and reaches a maximum NiO loading of 28 wt% at 100 °C, when fixing oxalic acid concentration at 0.2 mol L⁻¹ and hydrothermal time at 24 h. This observation indicates that 100-120 °C is beneficial for the growth of NiC₂O₄. Additionally, the NiO loading presents a pronounced increase with the oxalic acid concentration at the hydrothermal temperature of 100 °C and hydrothermal time of 24 h (Fig. S1B). However, when the oxalic acid concentration was further increased to 0.26 mol L⁻¹, the Ni-foam framework is seriously etched and collapses (Fig. S2). Besides, the effect of hydrothermal time (6, 12, 18, 24 and 36 h) on the NiC₂O₄ loading was investigated by fixing oxalic acid concentration at 0.2 mol L⁻¹ and hydrothermal temperature at 100 °C, but no higher NiO loading than that at the hydrothermal time of 24 h could be obtained owing to the limitation of the Ni-foam surface area (Fig. S1C). Therefore, the NiC₂O₄/Ni-foam sample with the highest NiC₃O₄ loading and preferable Ni-foam framework could be prepared readily at an optimal temperature of 100 °C in 0.2 mol L^{-1} H₂C₂O₄ solution for 24 h.

2.2. Enhanced heat/mass transfer: Ni-foam-structured catalyst vs. powdered catalyst

Table S4 shows the ODE reaction results catalyzed by the structured Nb₂O₅-NiO/Ni-foam and powdered Nb₂O₅/NiO (5/28, wt/wt) catalysts. Clearly, the Nb₂O₅-NiO/Ni-foam catalyst achieves higher ethylene productivity than the powdered counterpart (Table S4). Besides, the structured catalyst bed shows much lower temperature-rising (i.e., temperature difference between catalyst bed and reactor wall) than the powdered catalyst bed (Fig. S8). On the one hand, Ni-foam with enhanced thermal conductivity is essential to rapidly dissipate the great release of reaction heat, which favors a big reduction of "hotspot" temperature (Fig. S8). In our previous studies concerning the CO and/or CO₂ methanation reactions that are strongly exothermic, both experimental and CFD calculation results revealed that the Ni-foam structured catalysts also deliver much lower temperature-rising and more homogeneous temperature distribution than the powdered catalysts.^{S1-S3} On the other hand, the unique flow pattern and enhanced mass transfer in the Ni-foam-structured catalyst bed are also central to the notion of increasing the activity, selectivity and productivity. Thus, it is not surprising that our Ni-foam-structured catalyst yields better ODE performance than the powdered counterpart.S1-S5

References

- S1 Y. K. Li, Q. F. Zhang, R. J. Chai, G. F. Zhao, F. H. Cao, Y. Liu and Y. Lu, *Appl. Catal.* A, 2016, **510**, 216.
- S2 Y. K. Li, Q. F. Zhang, R. J. Chai, G. F. Zhao, Y. Liu and Y. Lu, *ChemCatChem.*, 2015, 7, 1427.
- S3 Y. K. Li, Q. F. Zhang, R.J. Chai, G.F. Zhao, F.H. Cao and Y. Lu, *AIChE J.*, 2015, 61, 4323.
- S4 Z. Q. Zhang, J. Ding, R. J. Chai, G. F. Zhao, Y. Liu and Y. Lu, *Appl. Catal. A*, 2018, 550, 151.
- S5 Z. Q. Zhang, L. P. Han, Q. F. Zhang, R. J. Chai, Y. K. Li, G. F. Zhao, Y. Liu and Y. Lu, *Catal. Commun.*, 2017, 88, 90.