Supporting Information for

Mn doped CoP nanoparticle clusters: an efficient

electrocatalyst for hydrogen evolution reaction

Xiumin Li^{a,b}, Shasha Li^{c,d}, Akihiro Yoshida^{b,c}, Suchada Sirisomboonchai^b, Keyong Tang^a,

Zhijun Zuo^d, Xiaogang Hao^d, Abuliti Abudula^b, Guoqing Guan^{b,c*}

- ^{b.} Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560 (Japan)
- ^{c.} Energy Conversion Engineering Lab, Institute of Regional Innovation, Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813 (Japan).
- ^{d.} Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, (P. R. China)

^{a.} School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, (P. R. China)

Fig. S1 CVs of Mn-CoP and CoP catalysts (A, B) between the potential region of -0.5 V to -0.73 V (Ag/AgCl) with scan rates of 10, 20, 40, 60, 80 and 100 mV/s in a 1 M KOH solution. The anodic charging currents measured at -0.6 V vs Ag/AgCl plotted as a function of scan rate (C). The determined double-layer capacitance of the system is taken as the average of the absolute value of the slope of the linear fits to the data

Fig. S2 EDX spectra of Mn-CoP materials

All the spectra peaks of Mn, Co, P elements were revealed obviously. A strong peak of O element was due to that some phosphide species on the material surface were oxidized to phosphates in the air.

Fig. S3 SEM images of Mn-CoP catalysts prepared at the pulse cycles of 400, 600, and 800 times.

Fig. S4 Original and IR-corrected polarization curves of CoP and Mn-CoP catalysts

The influence of material type of counter electrode on the HER activity was presented in Fig. S1. It is found that there is only a slight difference in catalytic activity for Pt wire and carbon rod counter electrodes.

Fig. S5 Polarization curves of Mn-CoP measured in the 1 M KOH solution where Pt wire or carbon rod was used as the counter electrode.

Catalyst	Substrate	10 (mV)	Tafel slope (mV/dec)	Electrolyte	Citation Information
Ni ₁₂ P ₅ -Ni ₂ P	Ni foam	120	79.1	0.5 M H ₂ SO ₄	Angew. Chem. Int. Ed. 2015, 54, 8188 -8192
Mn-Ni ₂ P	Nickel foam	<103	135	1 M NaOH	Chem. Commun, 2017, 53(80): 11048-11051.
Ni ₂ P	Ti foil	117	46	0.50 M H ₂ SO ₄	J. Am. Chem. Soc. 2013, 135, 9267- 9270.
СоР	Carbon cloth	67	51	0.50 M H ₂ SO ₄	J. Am. Chem. Soc. 2014, 136, 7587- 7590.
CoP/CNTs	GCE	139	52	0.50 M H ₂ SO ₄	Small, 2017, 13, 1602873
CoP/CNTs	GCE	122	54	0.50 M H ₂ SO ₄	Angew. Chem. Int. Ed. 2014, 53, 6710- 6714.
Ni-Mo nanopowder	Ti foil	79		1 M NaOH	ACS Catal. 2013, 3, 166-169.
Bulk Mo ₂ C	Carbon paste	208	56	0.50 M H ₂ SO ₄	Angew. Chem. Int. Ed. 2012, 51, 12703-12706.
Bulk MoB	Carbon paste	212	55	0.50 M H ₂ SO ₄	
Mo ₂ N–MoC	GCE	157	68	1 M NaOH	Adv. Mater. 2018, 30, 1704156
		154	55	$0.50MH_2SO_4$	
Mo ₂ C/CNTs	Carbon paper	149	55.2	0.1 M HClO4	Energ. Environ. Sci. 2013, 6, 943- 951.
Mo ₁ Soy	Carbon paper	177	66.4	0.1 M HClO ₄	Energ. Environ. Sci. 2013, 6, 1818- 1826.
Mo ₁ Soy-RGO	Carbon paper	109	62.7	0.1 M HClO ₄	
Mo ₂ C/C	Carbon paper	311	87.6	0.1 M HClO ₄	
Co _{0.6} Mo _{1.4} N ₂	GCE	202		0.1M HClO4	J. Am. Chem. Soc. 2013, 135, 19186- 19192

Table S1. Summary of HER performance of representative catalysts*.

MoS ₃ (33%)/MW CNT-NC	Silver electrode	206	40	1 M H ₂ SO ₄	Appl. Catal. B- Environ. 2013, 134- 135, 75-82.
Core-shell MoO ₃ - MoS ₂	FTO	254	50-60	0.5 M H ₂ SO ₄	Nano. Lett. 2011, 11, 4168-4175.
Defect-rich MoS ₂ nanosheets	GCE	190	50	0.5 M H ₂ SO ₄	Adv. Mater. 2013, 25, 5807-5813.
MoS_2	Carbon cloth	191	64	0.5 M H ₂ SO ₄	Adv. Mater. 2017, 29, 1703863
MoS2@Au	Au electrode	226	69	0.5 M H ₂ SO ₄	Energ. Environ. Sci. 2013, 6, 625- 633.
amorphous MoS ₃	GCE	211	40	1 M H ₂ SO ₄	Chem. Sci. 2011, 2, 1262-1267.
MoS ₂ /RGO hybrid	GCE	154	41	0.5M H ₂ SO ₄	J. Am. Chem. Soc. 2011, 133, 7296- 7299.
MoS ₂ /MGF	GCE	146	42	0.5 M H ₂ SO ₄	Adv. Funct. Mater. 2013, 23, 5326- 5333.
MoS ₂ /CNTs	Glass carbon	184	44.6	0.5 M H ₂ SO ₄	Nanoscale 2013, 5, 7768-7771.
Cu ₂ MoS ₄	GCE	321	95	pH 0 H ₂ SO ₄	Energ. Environ. Sci. 2012, 5, 8912- 8916.
WS ₂ /RGO	GCE	265	58	0.5M H ₂ SO ₄	Angew. Chem. Int. Ed. 2013, 52, 13751-13754
WS nanosheets	GCE	233	55	0.5 M H ₂ SO ₄	Nat. Mater. 2013, 12, 850-855.
WS ₂ nanosheets	GCE	151	72	1 M H ₂ SO ₄	Appl. Catal. B- Environ. 2012, 125, 59-66.
Cobalt-sulfide	FTO	165	93	1.0MpH7PBS	J. Am. Chem. Soc. 2013, 135, 17699- 17702
NiWS _x	FTO	373	96	pH 7 PBS	Energ. Environ.
CoWS _x	FTO	271	78	pH 7 PBS	2459.

CoMoS _x	FTO	241	85	pH 7 PBS	
FeS ₂	GCE	192.6	62.5	0.5 M H ₂ SO ₄	
FeSe ₂	GCE		65.3	0.5 M H ₂ SO ₄	Energ. Environ. Sci. 2013, 6, 3553- 3558
$Fe_{0.43}Co_{0.57}S_2$	GCE	264	55.9	0.5 M H ₂ SO ₄	
CoS_2	GCE	232	44.6	0.5 M H ₂ SO ₄	
CoSe ₂	GCE	231	42.4	0.5 M H ₂ SO ₄	
Co _{0.56} Ni _{0.44} Se ₂	GCE	250	49.7	0.5 M H ₂ SO ₄	
Co _{0.32} Ni _{0.68} S ₂	GCE		66.8	0.5 M H ₂ SO ₄	
NiS ₂	GCE		41.6	0.5 M H ₂ SO ₄	
NiSe ₂	GCE	250	56.9	0.5 M H ₂ SO ₄	

*Notes

CNT: carbon nanotube; RGO: reduced graphene oxide; NC: nanocomposite;

MGF: mesoporous graphene foams; FTO: fluorine-doped tin oxide;

GCE: glassy carbon electrode