trans-1,2-Diaminocyclohexane-based sulfonamides as effective hydrogen-bonding organocatalysts for asymmetric Michael-hemiacetalization reaction

Maciej Dajek, Rafał Kowalczyk,* and Przemysław J. Boratyński*
Department of organic Chemistry, Wrocław University of Technology, Wyspiańskiego 27, Wrocław, 50-370 Poland
tel. +4871-3203058, e-mail: Rafal.kowalczyk@pwr.edu.pl; and Przemyslaw.boratynski@pwr.wroc.pl

Table of Contents
Additional catalytic experiments S2
NMR titration experiments S4
DFT computations for catalysts S7
Determination of relative stereochemistry of end product $\mathbf{1 3}$ S11
Experimental S14
General S14
Catalysts S14
Synthesis of primary-tertiary amines S14
General procedure for the synthesis of sulfonamides 1-5. S15
Piperidine catalysts 2 S15
Catalysts 1 and 3-5 S27
Catalysts 6-8 S33
General procedure for Michael-hemiacetalization reaction S35
Note on NMR and HPLC chromatograms of hemiacetal products 11 S36
Catalytic products: S36
Plots of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra S41
Chiral HPLC chromatograms S116
DFT computations listings. S130

Additional catalytic experiments

Table S1. Summary of results for the reaction of dimedone $\mathbf{1 0}$ and benzylidenepyruvate $\mathbf{9 a}$ catalyzed by 2a and ent-2a

Entry	Source data label	catalyst	Loading, \% mol	solvent	$\begin{array}{\|l} \hline \text { Time, } \\ \mathrm{h} \\ \hline \end{array}$	Temp, ${ }^{\circ} \mathrm{C}$	Scale, mmol	Ee, \%	Yield, $\%{ }^{\text {a) }}$
1	RK	2a	10	toluene	20	RT	0.1	93.2	
2	MD180	2 a	10	toluene	18	RT	0.1	95.4	
3	MD139	ent-2a	10	toluene	17	RT	0.1	$89.6{ }^{\text {b) }}$	
4	MD140A	2a	10	DCM	20	RT	0.1	95.6	
5	MD179A	2 a	1.0	DCM	72	-20	0.1	94.7	
6	MD140C	2 a	10	trifluorotoluene	20	RT	0.1	92.7	
7	MD140B	2a	10	chlorobenzene	20	RT	0.1	95.8	
8	MD158	crude 29a ${ }^{\text {c }}$	10	chlorobenzene	19	RT	0.1	88.8	
9	MD186	crude $\mathbf{2 a}{ }^{\text {d) }}$	10	chlorobenzene	19	RT	0.1	94.3	
10	MD145A	2a	5.0	chlorobenzene	23	RT	0.1	96.8	
11	MD145B	2 a	2.5	chlorobenzene	23	RT	0.1	95.3	
12	MD145C	2 a	1.0	chlorobenzene	23	RT	0.1	95.4	
13	MD150	2a	1.0	chlorobenzene	46	RT	3.0	$\begin{array}{r} 87.8 \\ (99.3)^{\mathrm{e})} \end{array}$	$\begin{array}{r} 90 \\ (43)^{\mathrm{e}} \end{array}$
14	MD152	2a	1.0	chlorobenzene	336	-20	0.1	99.4	
15	MD159	2 a	1.0	chlorobenzene	120	-20	3.0	99.3	98
16	MD145D	2a	0.5	chlorobenzene	23	RT	0.1	93.7	
17	MD147A	2a	0.5	chlorobenzene	96	RT	0.1	91.6	
18	MD157	ent-2a	0.5	chlorobenzene	44	RT	0.1	$91.4{ }^{\text {b) }}$	
19	MD147B	2a	0.25	chlorobenzene	96	RT	0.1	93.5	
20	MD147C	2a	0.10	chlorobenzene	96	RT	0.1	86.8	
21	MD147D	2a	0.05	chlorobenzene	96	RT	0.1	66.7	

a) Given yields are preparative, observed conversions for all reactions were high; b) Different major enantiomer was obtained; c) using catalyst sample that was neither washed in EtOAc with NaHCO_{3} soln. nor previously recrystallized and contained ca. $13 \% \mathrm{~mol}$ sulfonic acid triethylamine salt by NMR integration; d) using catalyst sample that was washed in EtOAc with NaHCO_{3} soln. but not recrystallized; e) Values in parentheses were obtained after single recrystallization from tert-butyl methyl ether

Table S2. Summary of results for the reaction of dimedone 10 and benzylidenepyruvate 9 a catalyzed by 2 c

Entry	Source data label	Loading, $\%$ mol	solvent	Time, h	Temp, ${ }^{\circ} \mathrm{C}$	Scale, mmol	Ee, \%
1	MD133	10	toluene	26	RT	0.1	83.9
2	MD138A	10	DCM	24	RT	0.1	90.6
3	MD138B	10	chlorobenzene	24	RT	0.1	93.6
4	MD138C	10	trifluorotoluene	24	RT	0.1	89.1
5	MD149A	1.0	chlorobenzene	22	RT	0.1	86.4
6	MD149B	0.5	chlorobenzene	22	RT	0.1	88.1

Table S3. Enantioselectivities obtained using matrix of catalysts $\mathbf{1 - 4} \times \mathbf{c}, \mathbf{m}, \mathbf{p}, \mathbf{t}$ in the reaction of dimedone $\mathbf{1 0}$ and benzylidenepyruvate $9 \mathbf{a}^{\text {a) }}$

	 c	 m		 t
	Enantioselectivities, \% ${ }^{\text {a }}$)			
	$n{ }^{\text {c) }}$	54.2	$n{ }^{\text {c) }}$	76.4
	$93.6{ }^{\text {b) }}$	55.6	39.2	77.6
	nd ${ }^{\text {c) }}$	33.4	21.8	66.8
	$88.7{ }^{\text {b }}$	29.6	9.6	46.6

a) Reaction conditions: $10 \% \mathrm{~mol}$ catalyst in toluene at room temperature for 20 h ; The experiments were run in parallel; b) Reactions run separately, and in chlorobenzene; c) Not determined, and the
synthesis of appropriate catalyst was not attempted. Note: the values shown here and those in Table 1 entries 15,18 , and 22 from the main text for $\mathbf{2 m}, \mathbf{2 p}$, and $\mathbf{2 t}$ originate from different experiments

Figure S1. Effect of catalyst 2a loading on the yield of product 11a for reactions performed at room temperature in chlorobenzene for $24 \mathrm{~h}(\bullet)$ and $96 \mathrm{~h}(\circ)$. The corresponding enantioselectivity values are shown in Figure 6 from the main text.

NMR titration experiments

Samples of compound $\mathbf{2 a}(12.7 \mathrm{mg}, 28 \mu \mathrm{~mol})$ were disssolved in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL}, 56 \mathrm{mM})$ and titrated separately with CDCl_{3} solutions of dimedone $(\mathbf{1 0}, 111 \mathrm{mM})$ and methyl benzylidenepyruvate $(\mathbf{9 a}, 278$ $\mathrm{mM})$. Consecutive spectra taken after addition of 0.2 equiv aliquots of the reactants are shown in the following Figures S2-S4.

The titration experiment was expected to show interactions between the catalyst $\mathbf{2 a}$, which was supposed to act as an H -bond donor, and 1,2-dicarbonyl compound 9a. Unfortunately this experiment failed to demonstrate such an interaction while it revealed no spectral changes (Figure S4). An additional part of this experiment was the titration with dimedone 10. It again did not change any of the observed signals (Figure S3) apart from the single rather broad resonance (Figure S2). The $\mathrm{SO}_{2} \mathrm{~N}$ H signal gradually shifted and merged with the OH signal corresponding to dimedone tautomer.
The observed spectral change is likely a consequence of acid-mediated exchange with dimedone as an acid source (pKa 5.2). The resonance attributed to NH increases in integration from the initial 0.51 H
to nearly 1.35 H after addition of 1 equiv of dimedone. This indicates a combined $\mathrm{OH} / \mathrm{NH}$ signal of a dynamic system. Substantial protonation of the amine group in 2a was not observed, since the adjacent $\mathrm{NCH} / \mathrm{CH}_{2}$ signals remained at their position throughout the titration.

Figure S2. Plots of ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ in range of 8 to 3 ppm for titration of $\mathbf{2 a}$ with dimedone (10): from bottom: a) no dimedone, b) 0.2 equiv c) 0.4 equiv, d) 0.6 equiv, e) 0.8 equiv, f) 1.0 equiv, and g) 2.0 equiv dimedone. In spectrum a) broad signal was assigned to sulfonamide NH . For full range spectra see the following Figure S3.

Figure S3. Plots of ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for titration of 2a with dimedone (10): from bottom: a) no dimedone, b) $20 \% \mathrm{~mol}$ dimedone, c) $40 \% \mathrm{~mol}$ dimedone, d) $60 \% \mathrm{~mol}$ dimedone, e) 80 $\%$ mol dimedone, f) 100% mol dimedone, g) 150% mol dimedone. For a magnified view of the broad signal at $4.5-6.5 \mathrm{ppm}$, see the preceeding Figure S 2 .

Figure S4. Plots of ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for titration of $\mathbf{2 a}$ with methyl benzylidenepyruvate (acceptor 9a) from bottom: a) no acceptor, b) $20 \% \mathrm{~mol}$ acceptor, c) $40 \% \mathrm{~mol}$ acceptor, d) $60 \% \mathrm{~mol}$ acceptor, e) $80 \% \mathrm{~mol}$ acceptor, f) $100 \% \mathrm{~mol}$ acceptor.

DFT computations for catalysts ${ }^{\text {s1 }}$

For N-(1R,2R)-(2-pyrrolidin-1-yl)-cyclohexyl-benzenesulfonamide $\mathbf{1 i}$ geometry was optimized at the DFT/B3LYP/CC-pVDZ level of theory ${ }^{\text {S2 }}$ in vacuum starting from initial geometries corresponding to rotations along major degrees of freedom, as well as different configurations of pyramidal N1 nitrogen atom. Selected geometries and their energies were listed in Table S4.

Table S4. Lowest energy conformations for $\mathbf{2 i}$, and their energies determined at the DFT/B3LYP/ CC-pVDZ level of theory

| Conformation | N1
 configuration | Dihedral angle, ${ }^{\circ}$ | | E, hartree |
| :---: | :---: | :---: | :---: | :---: | | Relative |
| :---: |
| energy, |

1	R	138.8	95.4	-1282.2759054	0.000
2	R	157.4	-62.7	-1282.2739087	1.253
3	S	133.8	69.9	-1282.2680098	4.955
4	S	140.9	74.5	-1282.2674033	5.335
5	S	81.0	139.4	-1282.2666547	5.805
6	S	-75.7	-98.2	-1282.2665644	5.862

Figure S5. Projections of the lowest energy conformation (Conformation 1, Table S4) for $\mathbf{1 i}$.

Structures of different sulfonamine derivatives 1, were optimized using the Conformation 1 Table S4 of $\mathbf{1 i}$ as the initial input. All the geometries were optimized to local minima as confirmed by no imaginary frequencies. Table S 5 lists some of molecular properties calculated for these conformations as well as highest vibration frequency corresponding mostly to N-H stretching IR band. These values were then taken to construct Figure 5 from the main text. Small experimental difference between compounds of type $\mathbf{1}$ and $\mathbf{2}$ justifies using simplified model.

[^0]Table S5. DFT calculated dipole moment, highest oscillation frequency and N-H bond length for sulfonamide structures $\mathbf{1 a - y}$.

Entry	label	$\mathrm{R}=$	Dipole moment, Debye	$v_{(\mathrm{N}-\mathrm{H}), \mathrm{cm}^{-1}}$	$\mathrm{~d}_{(\mathrm{N}-\mathrm{H})}, \AA$
1	$\mathbf{1 a}$	$3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	4.48	3313.34	1.03484
$2^{\text {a) }}$	$\mathbf{1 b}$	$3-\mathrm{FC}_{6} \mathrm{H}_{4}$	4.01	3327.99	1.03395
3	$\mathbf{1 c}$	$3,5-\left(\mathrm{MeSO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	11.09	3329.46	1.03388
4	$\mathbf{1 d}$	$3,5-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	3.99	3311.99	1.03502
5	$\mathbf{1 e}$	$3,5-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	4.13	3324.56	1.03413
6	$\mathbf{1 f}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	4.15	3320.39	1.03439
7	$\mathbf{1 g}$	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	5.11	3339.90	1.03327
9	$\mathbf{1 h}$	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	5.52	3315.89	1.03456
9	$\mathbf{1 i}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	3.92	3316.71	1.03471
10	$\mathbf{1 j}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	3.76	3335.08	1.03365
11	$\mathbf{1 k}$	$3,5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	4.01	3332.47	1.03377
12	$\mathbf{1 1}$	$2-\mathrm{Naphthyl}$	4.00	3337.32	1.03319
13	$\mathbf{1 m}$	$2-\mathrm{FC}_{6} \mathrm{H}_{4}$	3.82	3332.32	1.03342
14	$\mathbf{1 n}$	$2,3,4-\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	3.94	3353.21	1.03208
15	$\mathbf{1 0}$	$2,4-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	3.66	3343.25	1.03287
16	$\mathbf{1 p}$	$\mathrm{C}_{6} \mathrm{~F}_{5}$	3369.27	1.03119	
17	$\mathbf{1 q}$	$8-q u i n o l i n y l$	5.19	3326.86	1.03435
18	$\mathbf{1 r}$	$2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	4.14	3372.33	1.03067
19	$\mathbf{1 s}$	$2,4,6-(i \operatorname{Pr})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	3.76	3319.23	1.03462
20	$\mathbf{1 t}$	CH	3332.96	1.03334	
21	$\mathbf{1 u}$	CF_{3}	3345.90	1.03253	
22	$\mathbf{1 v}$	cyclohexyl	3.57	3344.14	1.03273
23	$\mathbf{1 w}$	benzene-1,3-diyl	0.06	3328.37	1.03409
24	$\mathbf{1 x}$	biphenyl-4,4'-diyl	3.21	3352.88	1.03249
25	$\mathbf{1 y}$	sulfamide	2.58	1.03365	

a) Two orientations of 3-fluorophenyl ring were considered giving almost equal energy

Figure S6. Correlation of experimental enantioselectivities for 11a obtained in reaction of dimedone (10) with methyl benzylidenepyruvate (9a) (in toluene at room temperature, 10% mol catalyst) with DFT calculated $\mathrm{N}-\mathrm{H}$ distance in the catalysts. Pearson correlation coefficient was 0.863 . Points corresponding to experiments where nearly racemic samples were obtained were excluded from the fit (red).

Figure S7. Correlation between enantiomeric excess for reaction of dimedone (10) with methyl benzylidenepyruvate (9a) (in toluene at room temperature, $10 \% \mathrm{~mol}$ catalyst) and DFT calculated unscaled frequency of the $\mathrm{N}-\mathrm{H}$ stretching band. The Pearson coefficient for the fitted line is -0.83 . Results for 2,6 -disubstituted benzenesulfonates and quinoline sulfonamide providing nearly racemic products were excluded from the fit (marked in red). This is a magnified version of Figure 5 from the main text with points associated with catalyst labels.

Figure S8. Lowest energy diastereomer of $\mathbf{1 3}$ determined at the DFT/B3LYP/CC-pVDZ level of theory. Dashed lines indicate contacts of less than $2.58 \AA$ within the tetrahydropyridine unit and observed NOESY interactions. For plot of NOESY experiment see the following Figure S9.

Figure S9. NOESY experiment $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for 13. For interpretation refer to the preceding Figure S8.

Table S6. Comparison of DFT computed and scaled chemical shifts for two possible diastereomers of $\mathbf{1 3}$ and experimental data ${ }^{\text {a) }}$

Atom, signal	DFT chemi	al shift, $\mathrm{ppm}^{\text {a }}$	Experiment, $\mathrm{ppm}^{\mathrm{b}}{ }^{\text {) }}$
	Like ($2 S, 4 S$)	Unlike ($2 R, 4 S$)	
Carbon, ${ }^{13} \mathrm{C}$			
C-2	51.68	55.32	49.82
C-3	34.34	37.78	32.53
C-4a	107.53	111.37	105.76
C-4	38.78	40.65	34.40
C-5	189.66	190.70	193.31
C-6	50.48	52.36	50.54
C-7	36.50	38.45	32.57
C-8	43.05	44.73	43.07
C-8a	157.22	158.95	155.84
$7-\mathrm{CH}_{3}(\mathrm{a})$	25.28	25.01	28.44
7-CH3 (b)	31.18	31.11	28.78
CO_{2}	175.93	174.94	172.76
OMe	53.37	53.27	52.59
C-ipso	148.42	150.31	145.08
C-ortho	128.95	127.78	128.40
C-meta	128.52	128.41	127.80
C-para	126.39	125.32	126.28
RMSD ${ }^{\text {c }}$	2.40	3.73	
Proton			
H-2	4.054	4.159	3.755
H-3a	2.250	2.763	2.291
H-3b	1.889	1.943	1.862
H-4	4.356	3.791	4.275
H-6a	2.186	2.021	2.16-2.38
H-6b	2.384	2.375	2.16-2.38
H-8a	2.806	2.973	2.356
H-8b	2.314	2.105	2.356
$7-\mathrm{CH}_{3}(\mathrm{a})$	1.327	1.199	1.094
$7-\mathrm{CH}_{3}(\mathrm{~b})$	1.318	1.288	1.151
OMe	3.765	3.795	3.723
ortho	6.562	6.408	7.135
meta	6.184	6.139	7.268
para	7.306	7.205	7.163
NH	5.056	4.708	5.145
RMSD ${ }^{\text {c }}$	0.384	0.488	

Atom numbering scheme for 13
${ }^{\text {a) }}$ Geometries were optimized at the DFT/B3LYP/CC-pVDZ level of theory in vacuum, ${ }^{\mathrm{S} 2}$ two conformers were considered for each diastereomer ($2 S, 4 S$ and $2 S, 4 R$) and their contribution was Boltzmann averaged. Isotropic shieldings were calculated at the mPW1PW91/6$311+\mathrm{G}(2 \mathrm{~d}, \mathrm{p})$ level of theory using chloroform universal solvent model (SMD) and following
scaling factors were taken from http://cheshirenmr.info/ScalingFactors.htm: ${ }^{1} \mathrm{H}$ slope: -1.0933 , intercept: 31.9088 ; ${ }^{13} \mathrm{C}$ slope: -1.0449 , intercept: 187.1018 as reported by Tantillo et al. ${ }^{\mathrm{S} 3}$
b) The assignment of NMR signals was made based on HSQC and NOESY experiments (Figures S9 and S10)
${ }^{\text {c) }}$ Root mean square deviation between the experimental and theoretical data (ppm). Lower value indicates better agreement of data. Unresolved signals of $6-\mathrm{CH}_{2}$ were not included in calculation of RMSD. For comparison, RMSD values obtained by Tantilo et al. on a probe set were 0.160 and 2.60 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} .{ }^{\text {S3 }}$

Figure S10. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC experiment $(400,101 \mathrm{MHz})$ for 13.

[^1]
Experimental

General

Enantiomeric 1,2-trans-diaminocyclohexanes (DACH) were obtained by crystallization of tartaric acid salts with L-tartaric acid and D-tartaric acid for $1 R, 2 R$ and $1 S, 2 S$ isomers, respectively according to the literature procedure. ${ }^{\mathrm{S} 4}$ The salts were triple recrystallized from water, and liberated diamines were distilled before use. Mono Boc-DACH was obtained according to a literature procedure. ${ }^{\text {S5 }}$ 2-Oxo-butenoates were prepared according to literature procedures. ${ }^{\text {S6 }}$

Sulfonyl chlorides and triflic anhydride were purchased from commercial suppliers and used as received.

Catalysts

Synthesis of primary-tertiary amines

Mono Boc protected enantiomeric 1,2-trans-diaminocyclohexane ($22.66 \mathrm{~g}, 106 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeCN}(220 \mathrm{~mL})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(74.5 \mathrm{~g}, 539 \mathrm{mmol}, 5.1$ equiv) and dihalide ($36.84 \mathrm{~g}, 160$ $\mathrm{mmol}, 1.5$ equiv) were added. The suspension was stirred at rt for 24 h then at $80^{\circ} \mathrm{C}$ for $24-48 \mathrm{~h}$, and cooled to room temperature. The mixture was filtered and the solids were washed with MeCN and combined filtrates were concentrated in vacuo. The residue was suspended in 6.5 M aqueous HCl $(117 \mathrm{~mL})$ with vigorous stirring while evolution of gas was observed. After 12 h , the mixture was washed with diethyl ether $(2 \times 70 \mathrm{~mL})$ to remove excess of dihalide. The aqueous phase was cooled to $0^{\circ} \mathrm{C}$ and carefully alkalized with solid NaOH . The product was extracted with dichloromethane (4 $\times 30 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and vacuum distilled in kugelrohr to produce clear colorless liquids / low-melting solids. See Table S 7 below.

[^2]Table S7.

Entry	Product	Distillation conditions: oven temp / pressure	Reaction scale	Yield, \%
$1{ }^{\text {a) }}$		$100^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$	65 mmol	70
$2^{\text {b) }}$		$110^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$	$\begin{aligned} & 65 \mathrm{mmol} \\ & 106 \mathrm{mmol} \end{aligned}$	$\begin{aligned} & 86 \\ & 86 \\ & \left(\mathrm{mp} .19-21^{\circ} \mathrm{C}\right) \end{aligned}$
$3{ }^{\text {c) }}$		$125^{\circ} \mathrm{C} / 0.07 \mathrm{mmHg}$	1.4 mmol 20 mmol	$\begin{aligned} & 50 \\ & 44 \end{aligned}$
$4^{\text {d) }}$		$130{ }^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$	40 mmol	70

Dihalide used: ${ }^{\text {a) }} 1,4$-dibromobutane, ${ }^{\text {b) }} 1,5$-dibromopentane, ${ }^{\text {c) }} 1,6$-diiodohexane, ${ }^{\text {d) }}$ di(2-bromoethyl) ether

General procedure for the synthesis of sulfonamides 1-5

Primary-tertiary diamine ($2.00 \mathrm{mmol}, 1.0$ equiv, 0.365 g for 2-piperidine-cyclohexylamine) was dissolved in dichloromethane (20 mL), and triethylamine ($3.00 \mathrm{mmol}, 0.42 \mathrm{~mL}, 1.5$ equiv) was added followed by the respective sulfonyl chloride ($2.20 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at room temperature for 12 h . Then aqueous $\mathrm{NaHCO}_{3}(10 \%, 10 \mathrm{~mL})$ was added and the mixture extracted with dichloromethane $(2 \times 10 \mathrm{~mL})$. The extracts were evaporated, redissolved in ethyl acetate (20 mL), and washed with aqueous $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$. The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo giving products in nearly quantitative yields. Solid products were then recrystallized usually from 2-propanol in various yields.

Piperidine catalysts 2

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-3,5-

bis(trifloromethyl)benzenesulfonamide, 2a. According to the general procedure using $0.575 \mathrm{~g}(3.15 \mathrm{mmol}, 1.0$ equiv) of $(1 R, 2 R)-2-(1-$ piperidinyl)cyclohexylamine and $1.08 \mathrm{~g}(3.46 \mathrm{mmol}, 1.1$ equiv) of $3,5-$ bis(trifluoromethyl)benzenesulfonyl chloride, 1.40 g of product was obtained as pale solid (97\%). After recrystallization from 2-propanol 1.04 g of white solid was received (72\% yield).

Mp 111.5-112 ${ }^{\circ} \mathrm{C}$ (2-propanol) (for ent-2a lit. ${ }^{\mathrm{S7}} \mathrm{mp} .110-111^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{22}=-71.6\left(c \mathrm{l}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, (for ent-2a lit. $\left.[\alpha]_{\mathrm{D}}{ }^{22}+60.1\left(c 1.39, \mathrm{CHCl}_{3}\right)^{\mathrm{S} 7}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 8.34(\mathrm{~s}, 2 \mathrm{H}), 8.06(\mathrm{~s}$, $1 \mathrm{H}), 6.3(\mathrm{br} ., 1 \mathrm{H}), 2.79(\mathrm{td}, J=10.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.26(\mathrm{~m}, 5 \mathrm{H}), 1.79-$ $1.84(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{br} .4 \mathrm{H}), 1.13-$ $1.24(\mathrm{~m}, 3 \mathrm{H}), 1.03-1.11(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.4,132.8\left(\mathrm{q}, J_{C-F}=34.4 \mathrm{~Hz}\right)$, $127.4\left(\mathrm{q}, J_{C-F}=7.7 \mathrm{~Hz}\right), 126.0\left(\mathrm{sept} ., J_{C-F}=3.4 \mathrm{~Hz}\right), 122.5\left(\mathrm{q}, J_{C-F}=273.2 \mathrm{~Hz}\right), 67.3,53.8,49.0,32.5$, 26.4, 25.2, 24.5, 24.1, 22.8; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.82(\mathrm{~s}, 6 \mathrm{H})$;

N-((1S,2S)-2-(Piperidin-1-yl)cyclohexyl)-3,5-

 bis(trifloromethyl)benzenesulfonamide, ent-2a. ${ }^{\text {S7 }}$

According to the general procedure using 0.174 g ($0.956 \mathrm{mmol}, 1.0$ equiv) of ($1 S, 2 S$)-2-(1-piperidinyl)cyclohexylamine and 0.329 g ($1.05 \mathrm{mmol}, 1.1$ equiv) of 3,5 -bis(trifluoromethyl)benzenesulfonyl chloride, 0.247 g of product was obtained after recrystallization from 2-propanol as white solid (56\% yield).

Mp 110.5-112 ${ }^{\circ} \mathrm{C}$ (2-propanol). (lit. $\left.{ }^{\mathrm{S} 7} \mathrm{mp} 110-111{ }^{\circ} \mathrm{C}\right) ; \quad[\alpha]_{\mathrm{D}}{ }^{21}=+72.9$ (c 1 , $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\right.$ lit. ${ }^{\mathrm{S} 7}[\alpha]_{\mathrm{D}}{ }^{22}+60.1\left(c 1.39, \mathrm{CHCl}_{3}\right)$).

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-3-fluorobenzenesulfonamide, 2b

According to the general procedure using $0.364 \mathrm{~g}(2.00 \mathrm{mmol}, 1.0$ equiv) of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and $0.290 \mathrm{~mL}(2.18 \mathrm{mmol}, 1.1$ equiv) of 3-fluorobenzenesulfonyl chloride, 0.435 g of product was obtained after recrystallization from 2-propanol as pale orange solid (64% yield).
mp $78.5-80.5^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{21}=-109\left(c 0.996, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.68-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{dt}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J$ $=8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=8.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{br} ., 1 \mathrm{H}), 2.68(\mathrm{td}, J=10.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-$ $2.46(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.19(\mathrm{~m}, 5 \mathrm{H}), 1.73-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.43$ (br., 2H), 1.35 (br., $4 \mathrm{H}), 1.10-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.00-1.06(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4\left(\mathrm{~d}, J_{C-F}=252\right.$ $\mathrm{Hz}), 141.9\left(\mathrm{~d}, J_{C-F}=6.6 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 123.0\left(\mathrm{~d}, J_{C-F}=3.3 \mathrm{~Hz}\right), 119.6\left(\mathrm{~d}, J_{C-F}=21.2\right.$ $\mathrm{Hz}), 114.6\left(\mathrm{~d}, J_{C-F}=24.1 \mathrm{~Hz}\right), 67.4,53.5,49.1,32.7,26.5,25.3,24.5,24.2,22.7$; ${ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-109.71\left(\mathrm{td}, J_{F-H}=8.2,5.3 \mathrm{~Hz}\right.$); FT-IR (ATR) v 3162, 2937, 1347, 1217, 1155 $(\mathrm{S}=\mathrm{O}), 712,586 \mathrm{~cm}^{-1} ;$ HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 341.1694$ found 341.1698

[^3]
N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-3,5-

 di(methylsulfonyl)benzenesulfonamide, 2c

According to the general procedure using $0.182 \mathrm{~g}(0.998 \mathrm{mmol}, 1.0$ equiv $)$ of ($1 R, 2 R$)-2-(1-piperidinyl)cyclohexylamine and $0.366 \mathrm{~g}(1.10 \mathrm{mmol}, 1.1$ equiv) of 3,5 -bis(methylsulfonyl)benzenesulfonyl chloride, 0.331 g of product was obtained after recrystallization from 2-propanol as pale orange solid (69% yield).
mp $206.5-209.0^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{21}=-66.7\left(c 0.384, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 8.69-8.70(\mathrm{~m}, 2 \mathrm{H}), 8.67(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{br} ., 1 \mathrm{H}), 3.18(\mathrm{~s}, 6 \mathrm{H}), 2.95-3.00(\mathrm{~m}$, $1 \mathrm{H}), 2.30-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.27(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-$ $1.67(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{br} ., 4 \mathrm{H}), 1.09-1.21(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.2,143.6,130.6,129.8,67.3,54.0,49.1,44.3,32.5,26.5,25.2,24.5,24.1,22.8 ;$ FT-IR (ATR) v 3133, 3063, 2928, $1310(\mathrm{~S}=\mathrm{O})$, $1144(\mathrm{~S}=\mathrm{O}), 964,812 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{3}+\mathrm{H}\right]^{+} 479.1339$ found 479.1344
N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-3,5-difluorobenzenesulfonamide,
 2d

According to the general procedure using $0.364 \mathrm{~g}(2.00 \mathrm{mmol}, 1.0$ equiv $)$ of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and 0.469 g ($2.21 \mathrm{mmol}, 1.1$ equiv) of 3,5-difluorobenzenesulfonyl chloride, 0.279 g of product was obtained after recrystallization from 2-propanol as white solid (39\% yield).
mp $72.0-74.0^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{20}=-103.6\left(c 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.02$ (tt, $J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.26 (br., 1H), 2.72 (td, $J=10.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.22(\mathrm{~m}, 5 \mathrm{H}), 1.74-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.43-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{br} ., 4 \mathrm{H}), 1.12-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.03-1.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8\left(\mathrm{dd}, J_{C-F}=255,11 \mathrm{~Hz}\right), 143.4\left(\mathrm{t}, J_{C-F}=8.1 \mathrm{~Hz}\right), 110.8(\mathrm{dd}, J=21.6,6.3 \mathrm{~Hz})$, $108.0\left(\mathrm{t}, J_{C-F}=25 \mathrm{~Hz}\right), 67.4,53.6,48.9,32.7,26.4,25.3,24.5,24.1,22.7 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-105.71-(-105.64)(\mathrm{m}, 2 \mathrm{~F}) ;$ FT-IR (ATR) v $3132(\mathrm{~N}-\mathrm{H}), 2933,1602(\mathrm{~N}-\mathrm{H}), 1351(\mathrm{~S}=\mathrm{O})$, $1160(\mathrm{~S}=\mathrm{O})$, $986 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 359.1599$ found 359.1609

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-3,5-dichlorobenzenesulfonamide,

2e

According to the general procedure using $0.364 \mathrm{~g}(2.00 \mathrm{mmol}, 1.0$ equiv $)$ of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and $0.559 \mathrm{~g}(2.28 \mathrm{mmol}, 1.1$ equiv)
of 3,5-dichlorobenzenesulfonyl chloride, 0.744 g of product was obtained after recrystallization from 2-propanol as pale yellow solid (95% yield).
mp $147.7-149.2^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{21}=-110.8\left(c \quad 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.76-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.55(\mathrm{~m}, 1 \mathrm{H}), 6.31$ (br., 1 H), $2.68(\mathrm{td}, J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ - $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.23(\mathrm{~m}, 5 \mathrm{H}), 1.74-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.53(\mathrm{~m}, 2 \mathrm{H})$, 1.39 (br., 4H), $1.12-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.03-1.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.9,135.9$, 132.4, 125.6, 67.4, 53.6, 48.4, 32.6, 26.5, 25.3, 24.6, 24.1, 22.7; FT-IR (ATR) v $3110(\mathrm{~N}-\mathrm{H}), 2930$, $1567(\mathrm{~N}-\mathrm{H}), 1346,1171(\mathrm{~S}=\mathrm{O}), 801,721 \mathrm{~cm}^{-1} ;$ HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}$ 391.1008 found 391.1003

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-4-toluenesulfonamide, $\mathbf{2 f}^{\text {s8 }}$

According to the general procedure using 0.424 g ($2.33 \mathrm{mmol}, 1.0$ equiv) of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and $0.460 \mathrm{~g}(2.42 \mathrm{mmol}, 1.04$ equiv) of tosyl chloride, 0.670 g of product was obtained after recrystallization from 2-propanol as white solid (86% yield). The spectra were in accordance with literature data. ${ }^{58}$

Mp $98-99.5^{\circ} \mathrm{C}$ (2-propanol) (lit. ${ }^{\mathrm{S} 8} \mathrm{Mp} 82-84^{\circ} \mathrm{C}$), FT-IR (ATR) $\tilde{v} 3195$ ($\mathrm{N}-\mathrm{H}$), 2919, 1401, 1319, 1163 (S=O), $810,690 \mathrm{~cm}^{-1}$ (lit. ${ }^{\text {S8 }}$ IR: 3195, 2919, 1401, 1319, 1163, 810, $689 \mathrm{~cm}^{-1}$)

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-3-nitrobenzenesulfonamide, 2g

According to the general procedure using $0.364 \mathrm{~g}(2.00 \mathrm{mmol}, 1.0$ equiv $)$ of $(1 R, 2 R)$ -2-(1-piperidinyl)cyclohexylamine and 0.489 g ($2.21 \mathrm{mmol}, 1.1 \mathrm{equiv}$) of 3 nitrobenzenesulfonyl chloride, 0.695 g of product was obtained after recrystallization from 2-propanol as white solid (95% yield).
$\mathrm{R}_{\mathrm{f}}=0.457\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1 \mathrm{v}: \mathrm{v}\right) ; \quad[\alpha]_{\mathrm{D}}{ }^{21}=-94.9\left(c 0.990, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 8.74(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.43$ (ddd, $J=8.2,2.2,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.22-8.24$ (m, 1H), 7.75 (t, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.18 (br., 1H), 2.77 (td, $J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-$ $2.39(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.22(\mathrm{~m} 5 \mathrm{H}), 1.78-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.40$ -1.47 (m, 2H), 1.36 (br., 4H), $1.14-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.01-1.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.3,142.5,132.8,130.3,126.9,122.4,67.4,53.7,49.1,32.6,26.5,25.2,24.5,24.1,22.7$; FT-IR (ATR) v 3137 (N-H), 2933, 1532 (NO), 1349, 1172 (S=O), 906, $877 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}+\mathrm{H}\right]^{+} 368.1639$ found 368.1629

[^4]N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-4-nitrobenzenesulfonamide, 2h

According to the general procedure using 0.364 g ($2.00 \mathrm{mmol}, 1.0$ equiv) of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and $0.484 \mathrm{~g}(2.21 \mathrm{mmol}, 1.1$ equiv) of 4-nitrobenzenesulfonyl chloride, 0.652 g of product was obtained after recrystallization from 2-propanol as white solid (89% yield).
mp $156.6-157.5^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{21}=-101.6\left(c 1.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \quad{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 8.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.28$ (br., 1 H), $2.76(\mathrm{td}, J=10.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.20(\mathrm{~m}, 5 \mathrm{H}), 1.78-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.73-$ $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.37($ br., 4 H$), 1.11-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.02-$ $1.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,146.1,128.5,124.2,67.4,53.6,48.9,32.6,26.5$, 25.2, 24.5, 24.1, 22.7; FT-IR (ATR) v 3157 (N-H), 2919, 1532 (NO), 1344, 1159 (S=O), 854, 736 cm^{-1}; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}+\mathrm{H}\right]^{+} 368.1639$ found 368.1628

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-benzenesulfonamide, 2i

According to the general procedure using $0.571 \mathrm{~g}(3.14 \mathrm{mmol}, 1.0$ equiv) of ($1 R, 2 R$)-2-(1-piperidinyl)cyclohexylamine and 0.42 mL ($3.29 \mathrm{mmol}, 1.05$ equiv) of benzenesulfonyl chloride, 0.707 g of product was obtained after recrystallization from 2-propanol as white solid (70\% yield).

Mp 123.5-125 ${ }^{\circ} \mathrm{C}\left(2\right.$-propanol); $[\alpha]_{\mathrm{D}}{ }^{24}=-117\left(c \quad 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.87-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{br} ., 1 \mathrm{H}), 2.60-$ $2.66(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.25(\mathrm{~m}, 5 \mathrm{H}), 1.71-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.67(\mathrm{~m}, 1 \mathrm{H})$, $1.22-1.44(\mathrm{~m}, 7 \mathrm{H}), 1.11-1.18(\mathrm{~m}, 2 \mathrm{H}), 0.96-1.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6$, $132.5,128.9,127.2,67.4,53.4,49.0,32.8,26.6,25.4,24.5,24.2,22.7$; FT-IR (ATR) v $3195(\mathrm{~N}-\mathrm{H})$, 2919, 1401, 1319, $1163(\mathrm{~S}=\mathrm{O}), 810,690 \mathrm{~cm}^{-1}$;

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-4-fluorobenzenesulfonamide, $\mathbf{2 j}$

According to the general procedure using $0.364 \mathrm{~g}(2.00 \mathrm{mmol}, 1.0$ equiv) of ($1 R, 2 R$)-2-(1-piperidinyl)cyclohexylamine and $0.427 \mathrm{~g}(2.19 \mathrm{mmol}, 1.1$ equiv) of 4-fluorobenzenesulfonyl chloride, 0.580 g of product was obtained after recrystallization from 2-propanol as white solid (85\% yield).
mp $125.0-127.5^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{19}=-109.3\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.91(\mathrm{dd}, J=8.8,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=8.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), \sim 6.2(\mathrm{br} ., 1 \mathrm{H}), 2.66(\mathrm{td}, J=$ $10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.17(\mathrm{~m}, 5 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.67(\mathrm{~m}, 1 \mathrm{H})$, $1.39-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.35$ (br., 4 H$), 1.11-1.28(\mathrm{~m}, 3 \mathrm{H}), 0.99-1.06(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(151 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 165.0\left(\mathrm{~d}, J_{C-F}=255 \mathrm{~Hz}\right), 136.0\left(\mathrm{~d}, J_{C-F}=2.8 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J_{C-F}=9.2 \mathrm{~Hz}\right), 116.1\left(\mathrm{~d}, J_{C-F}=\right.$ 22.4 Hz), $\left.67.4,53.5,49.1,32.7,26.5,25.3,24.5,24.2,22.7 ;{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(376} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-105.67$ $\left(\mathrm{tt}, J_{F-H}=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{~F}\right)$; FT-IR (ATR) v $3128(\mathrm{~N}-\mathrm{H}), 2929,1591(\mathrm{~N}-\mathrm{H}), 1311,1156(\mathrm{~S}=\mathrm{O}), 728$ $\mathrm{cm}^{-1} ;$ HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 341.1694$ found 341.1699

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-3,5-

 dimethylbenzenesulfonamide, 2 k

According to the general procedure using $0.364 \mathrm{~g}(2.00 \mathrm{mmol}, 1.0$ equiv) of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and $0.448 \mathrm{~g}(2.21 \mathrm{mmol}, 1.1$ equiv) of 3,5-dimethylbenzenesulfonyl chloride, 0.606 g of product was obtained after recrystallization from 2-propanol as white solid (86% yield).
mp $142.0-143.6{ }^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{21}=-118.3\left(c 0.994, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.49$ (s, 2H), 7.18 (s, 1H), 6.18 (br., 1 H), 2.59 (td, $J=10.6,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 2.03-2.18(\mathrm{~m}, 5 \mathrm{H}), 1.71-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.67(\mathrm{~m}, 1 \mathrm{H})$, 1.41 (br., 2H), 1.36 (br., 4H), $1.23-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.09-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{dq}, J=12.2,3.2 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.1,138.9,134.2,124.8,67.4,53.3,48.9,32.7,26.6,25.4$, 24.6, 24.2, 22.7, 21.3; FT-IR (ATR) v 3127 ($\mathrm{N}-\mathrm{H}$), 2930, 1454, 1342 ($\mathrm{S}=\mathrm{O}$), 1159 (S=O), 857, 734 $\mathrm{cm}^{-1} ;$ HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 351.2101$ found 351.2099

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-2-naphthalenesulfonamide, 21

According to the general procedure using $0.364 \mathrm{~g}(2.00 \mathrm{mmol}, 1.0$ equiv) of ($1 R, 2 R$)-2-(1-piperidinyl)cyclohexylamine and 0.500 g ($2.21 \mathrm{mmol}, 1.1$ equiv) of 2-naphthalenesulfonyl chloride, 0.642 g of product was obtained after recrystallization from 2-propanol as white solid (86% yield).
mp $105.0-106.3{ }^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{21}=-69.7\left(c \quad 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 8.45(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{ddd}, J=8.0,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (ddd, $J=8.0,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}) 6.33$ (br., 1 H), $2.66(\mathrm{td}, J=10.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.52(\mathrm{~m}, 1 \mathrm{H})$, $2.14(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{br} ., 4 \mathrm{H}), 1.69-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.40(\mathrm{~m}$,
$7 \mathrm{H}), 1.07-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.92-0.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.6,134.8,132.2$, $129.25,129.15,128.7,128.4,127.9,127.5,122.8,67.4,53.4,48.8,32.7,26.5,25.3,24.5,24.2,22.7$; FT-IR (ATR) v $3183(\mathrm{~N}-\mathrm{H}), 2917,1332(\mathrm{~S}=\mathrm{O}), 1316,1160(\mathrm{~S}=\mathrm{O}), 830,753 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 373.1944$ found 373.1954

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-2-fluorobenzenesulfonamide, 2m

According to the general procedure using $0.600 \mathrm{~g}(3.29 \mathrm{mmol}, 1.0$ equiv) of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and $0.707 \mathrm{~g}(3.63 \mathrm{mmol}, 1.1$ equiv) of 2fluorobenzenesulfonyl chloride, 1.01 g of product was obtained as orange oil that crystallized over 12 months of storage (90% yield).
$R_{\mathrm{f}}=0.839\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1 \mathrm{v}: \mathrm{v}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}=-93.4\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.91(\mathrm{td}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.4$ (br., 1 H$), 2.70(\mathrm{td}, J=10.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.14-$ $2.26(\mathrm{~m}, 5 \mathrm{H}), 1.78-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.49(\mathrm{~m}, 4 \mathrm{H}) 1.37$ (br., 2H), $1.23-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.07-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.01-1.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.1\left(\mathrm{~d}, J_{C-F}=255 \mathrm{~Hz}\right), 134.9\left(\mathrm{~d}, J_{C-F}=8.2 \mathrm{~Hz}\right), 130.8,127.7\left(\mathrm{~d}, J_{C-F}=13.9 \mathrm{~Hz}\right), 124.4(\mathrm{~d}$, $\left.J_{C-F}=3.8 \mathrm{~Hz}\right), 117.0\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right) ; 67.6,53.6,49.4,32.9,26.3,25.4,24.7,24.2,22.8 ; \quad ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.22$ ($\mathrm{s}, 1 \mathrm{~F}$); FT-IR (ATR) v $3198(\mathrm{~N}-\mathrm{H}), 2933,1599(\mathrm{~N}-\mathrm{H}), 1345$ $(\mathrm{S}=\mathrm{O}), 1165(\mathrm{~S}=\mathrm{O}), 763 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 341.1694$ found 341.1685

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-2,3,4-trifluorobenzenesulfonamide,

 2n

According to the general procedure using $0.364 \mathrm{~g}(2.00 \mathrm{mmol}, 1.0$ equiv) of (1R,2R)-2-(1-piperidinyl)cyclohexylamine and $0.504 \mathrm{~g}(2.19 \mathrm{mmol}, 1.1$ equiv) of 2,3,4-trifluorobenzenesulfonyl chloride, 0.635 g of product was obtained after recrystallization from 2-propanol as white solid (84% yield).
mp $158.0-160.0{ }^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{20}=-91.1\left(c 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS; label: MD-110A-solid1) $\delta 7.67-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.48$ (br., 1H), 2.75 (dd, $J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.26(\mathrm{~m}$, $2 \mathrm{H}), 2.15-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.52$ $(\mathrm{m}, 2 \mathrm{H}), 1.43-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.40($ br., $2 \mathrm{H}), 1.05-1.28(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) sp ${ }^{2}$ region not interpreted due to complicated C-F couplings, $\delta \mathrm{sp}^{3}: 67.6,53.7,49.5,32.7,26.3,25.4,24.7$,
24.2, 22.9; ${ }^{13} \mathrm{C}\left\{{ }^{19} \mathrm{~F}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{sp}^{2}: 154.1\left(\mathrm{dd}, J_{C-H}=13.3,5.2 \mathrm{~Hz}\right), 148.7\left(\mathrm{dd}, J_{C-H}=\right.$ $11.5,1.7 \mathrm{~Hz}), 140.4\left(\mathrm{dd}, J_{C-H}=8.1,1.9 \mathrm{~Hz}\right), 126.1(\mathrm{~m}), 124.3\left(\mathrm{~d}, J_{C-H}=172 \mathrm{~Hz}\right), 112.4\left(\mathrm{~d}, J_{C-H}=170\right.$ Hz) ; sp ${ }^{3}$ uninterpretable due to complicated $\mathrm{C}-\mathrm{H}$ coupling; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-124.94-$ $(-125.06)(\mathrm{m}, 1 \mathrm{~F}),-128.35-(-128.46)(\mathrm{m}, 1 \mathrm{~F}),-156.57-(-156.71)(\mathrm{m}, 1 \mathrm{~F}) ;$ FT-IR (ATR) $v 3171$ (N-H), 2927, $1607(\mathrm{~N}-\mathrm{H}), 1348(\mathrm{~S}=\mathrm{O}), 1161(\mathrm{~S}=\mathrm{O}), 1033 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 377.1505$ found 377.1504

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-2,4-difluorobenzenesulfonamide,

 20

According to the general procedure using $0.364 \mathrm{~g}(2.00 \mathrm{mmol}, 1.0$ equiv) of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and $0.469 \mathrm{~g}(2.21 \mathrm{mmol}, 1.1$ equiv) of 2,4-difluorobenzenesulfonyl chloride, 0.319 g of product was obtained after recrystallization from 2-propanol as white solid (44% yield).
mp $100.0-101.5^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{19}=-101.0\left(c 0.995, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta 7.93(\mathrm{td}, J=8.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{ddd}, J=10.7,8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46$ (br., 1H), 2.71 (td, $J=10.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.25(\mathrm{~m}$, $3 H), 1.80-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.38$ (br., $2 \mathrm{H}), 1.03-1.28(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6$ (dd, $\left.J_{C-F}=257,10.4 \mathrm{~Hz}\right), 159.7$ (dd, $\left.J_{C-F}=258,12.7 \mathrm{~Hz}\right), 132.4\left(\mathrm{dd}, J_{C-F}=10.3,1.3 \mathrm{~Hz}\right), 124.4\left(\mathrm{dd}, J_{C-F}=14.1,3.8 \mathrm{~Hz}\right), 111.7\left(\mathrm{dd}, J_{C-F}=\right.$ $21.8,3.8 \mathrm{~Hz}), 105.5\left(\mathrm{t}, J_{C-F}=25.4 \mathrm{~Hz}\right), 67.5,53.5,49.3,32.6,26.2,25.3,24.6,24.1,22.7 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-101.07-(-100.98)(\mathrm{m}, 1 \mathrm{~F}),-103.18-(-103.10)(\mathrm{m}, 1 \mathrm{~F}) ;$ FT-IR (ATR) v $3190(\mathrm{~N}-\mathrm{H}), 2920,1603(\mathrm{~N}-\mathrm{H}), 1166(\mathrm{~S}=\mathrm{O}), 967,845 \mathrm{~cm}^{-1} ; \quad$ HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 359.1599$ found 359.1608

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-pentafluorobenzenesulfonamide,

 2p

According to the general procedure using $0.359 \mathrm{~g}(1.96 \mathrm{mmol}, 1.0$ equiv) of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and $0.320 \mathrm{~mL}(2.15 \mathrm{mmol}, 1.1$ equiv) of pentafluorobenzenesulfonyl chloride, 0.524 g of product was obtained after recrystallization from 2-propanol as white solid (64% yield).
mp $182.0-183.4{ }^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{21}=-88.6\left(c \quad 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 6.54$ (br., 1 H), $2.89(\mathrm{td}, J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.29-$ $2.37(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{br} ., 2 \mathrm{H}), 2.16-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.66-$
$1.71(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.09-1.22(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) sp^{2} not interpreted due to complicated C-F coupling, $\delta \mathrm{sp}^{3}: 67.6,54.0,49.5$, 32.4, 26.2, 25.4, 24.6, 24.2, 22.9; ${ }^{13} \mathrm{C}\left\{{ }^{19} \mathrm{~F}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.7,143.8,137.9,116.3$; ${ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-135.48-(-135.35)(\mathrm{m}, 2 \mathrm{~F}),-105.67(\mathrm{tt}, J=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{~F})$, -158.71-(-158.55) (m, 2F); FT-IR (ATR) v 3133, 2941, 1648 (N-H), 1500, 1361, 1172, 1097, 990, $715 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 413.1317$ found 413.1317

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-8-quinolinesulfonamide, 2q

According to the general procedure using $0.674 \mathrm{~g}(3.70 \mathrm{mmol}, 1.0$ equiv $)$ of $(1 R, 2 R)-$ 2-(1-piperidinyl)cyclohexylamine and $0.923 \mathrm{~g}(4.06 \mathrm{mmol}, 1.1$ equiv $)$ of quinoline8 -sulfonyl chloride, 1.35 g of product was obtained after recrystallization from 2propanol as white solid (98% yield).
$\operatorname{mp} 242{ }^{\circ} \mathrm{C}$ (dec., 2-propanol); $[\alpha]_{\mathrm{D}}{ }^{21}=-272.7$ (c 0.902, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.12(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ $(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.3,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10$ (br., 1H), $2.90-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03$ (br., 3 H), 1.60-1.75 (m, 3H), $1.32-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.09-1.16(\mathrm{~m}, 2 \mathrm{H}), 0.94-1.09(\mathrm{~m}, 5 \mathrm{H}), 0.52$ (br., $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 151.3,143.8,137.4,136.6,132.8,130.3,129.0,125.5,122.1$; $67.5,54.2,49.2,34.7,25.4$ (2C overlapped), 24.5, 24.3, 22.9; FT-IR (ATR) v $3196(\mathrm{~N}-\mathrm{H}), 2932$, $1332(\mathrm{~S}=\mathrm{O}), 1165(\mathrm{~S}=\mathrm{O}), 838 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 374.1897$ found 374.1905
N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-2,6-dichlorobenzenesulfonamide, 2r

According to the general procedure using $0.364 \mathrm{~g}(2.00 \mathrm{mmol}, 1.0$ equiv) of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and $0.547 \mathrm{~g}(2.23 \mathrm{mmol}, 1.1$ equiv) of 2,6-dichlorobenzenesulfonyl chloride, 0.695 g of product was obtained after recrystallization from 2-propanol as pale yellow solid (89% yield).
mp $164.5-166.2{ }^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{20}=-108.5\left(c 1.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.73 (br., 1 H), 2.95 (td, $J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{br} ., 2 \mathrm{H}), 2.16(\mathrm{td}, J=11.0,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.80-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.36$ (br., 2H), $1.08-1.27(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1,135.1,132.1,131.4,67.7,53.8$,
49.4, 32.7, 26.1, 25.4, 24.6, 24.3, 22.8; FT-IR (ATR) v 3186 (N-H), 2940, 1558 (N-H), 1425, 1175 $(\mathrm{S}=\mathrm{O}), 736 \mathrm{~cm}^{-1} ;$ HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 391.1008$ found 391.1003

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-2,4,6-

 triisopropylbenzenesulfonamide, 2 s

According to the general procedure using $0.595 \mathrm{~g}(3.27 \mathrm{mmol}, 1.0$ equiv $)$ of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and $1.08 \mathrm{~g}(3.63 \mathrm{mmol}, 1.1$ equiv) of 2,4,6-triisopropylbenzenesulfonyl chloride, 1.30 g of product was obtained as orange oil (90% yield).
$R_{\mathrm{f}}=0.869\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1 \mathrm{v}: \mathrm{v}\right) ;[\alpha]_{\mathrm{D}}{ }^{21}=-48.5\left(c 0.957, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.14$ (s, 2H), 6.1 (br., 1H), 4.31 ($\mathrm{sep}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.36 (td, $J=$ $10.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.89 (sept., $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.62-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{td}, J=$ $10.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.60(\mathrm{~m}, 4 \mathrm{H})$, $1.46-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.10-$ $1.23(\mathrm{~m}, 4 \mathrm{H}), 0.97-1.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 152.6,150.1,134.6,123.8 ; 67.6$, $53.4,49.0,34.3,33.0,29.6,26.6,25.6,25.2,24.8,24.7,24.4,23.77,23.75,23.0 ;$ FT-IR (ATR) v 3154, 2931, $1600(\mathrm{~N}-\mathrm{H}), 1308(\mathrm{~S}=\mathrm{O}), 1149(\mathrm{~S}=\mathrm{O}) \mathrm{cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 449.3196$ found 449.3196

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-methanesulfonamide, 2 t

According to the general procedure using $0.555 \mathrm{~g}(3.05 \mathrm{mmol}, 1.0$ equiv $)$ of $(1 R, 2 R)$ -2-(1-piperidinyl)cyclohexylamine and 0.26 mL (3.36 mmol, 1.1 equiv) of methanesulfonyl chloride, 0.528 g of product was obtained after recrystallization from 2-propanol as white solid (67% yield).
mp $141.7-143.8^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{21}=-89.3\left(c 0.996, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 6.0$ (br., 1H), 3.14 (td, $J=10.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (s, 3H), $2.58-2.62$ (m, 2H), $2.39-2.42$ $(\mathrm{m}, 1 \mathrm{H}), 2.27-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{td}, J=10.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.68-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.54(\mathrm{~m}, 2 \mathrm{H}) 1.43$ (br., 2H), $1.17-1.31$ (m, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 67.5,53.7,49.4,41.7,33.1,26.7,25.5,24.8,24.3,23.0 ;$ FT-IR (ATR) v $3178(\mathrm{~N}-\mathrm{H}), 2934,1313(\mathrm{~S}=\mathrm{O}), 1143(\mathrm{~S}=\mathrm{O}), 779 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 261.1631$ found 261.1629

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)- trifloromethanesulfonamide, 2u

According to the general procedure using $0.369 \mathrm{~g}(2.02 \mathrm{mmol}, 1.0$ equiv $)$ of $(1 R, 2 R)$ -2-(1-piperidinyl)cyclohexylamine and 0.375 mL ($2.23 \mathrm{mmol}, 1.1$ equiv) of trifluoromethanesulfonyl anhydride, 0.497 g of product was obtained after crystallization by slow evaporation from MTBE and cyclohexane mixture as a yellow solid (59\% yield).
$R_{\mathrm{f}}=0.582\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1 \mathrm{v}: \mathrm{v}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 6.16(\mathrm{br} ., 1 \mathrm{H}), 3.30(\mathrm{td}, J=$ $10.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{br} ., 2 \mathrm{H}), 2.21-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.87$ $-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{br} ., 2 \mathrm{H}), 1.46$ (br., 2H), $1.27-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.26(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 119.9\left(\mathrm{q}, J_{C-F}=\right.$ $241 \mathrm{~Hz}), 68.4,54.7,49.3,32.6,26.1,25.2,24.3,24.1,22.9 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-76.95(\mathrm{~s}$, 3F); FT-IR (ATR) v 3220, 3107, 2936, 1361, 1182, 1148, 953, $901 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 315.1349$ found 315.1346

N-((1R,2R)-2-(Piperidin-1-yl)cyclohexyl)-cyclohexanesulfonamide, 2v

According to the general procedure using $0.181 \mathrm{~g}(1.00 \mathrm{mmol}, 1.0$ equiv $)$ of $(1 R, 2 R)$ -2-(1-piperidinyl)cyclohexylamine and $0.165 \mathrm{~mL}(1.15 \mathrm{mmol}, 1.1$ equiv) of cyclohexanesulfonyl chloride, 0.073 g of product was obtained after recrystallization from 2-propanol as pale yellow solid (22% yield).
mp $149.8-151.3{ }^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{21}=-64.9\left(c \quad 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \quad{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 5.76$ (br., 1 H), 3.21 (td, $J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (tt, $J=$ $12.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.32(\mathrm{~m}, 4 \mathrm{H}), 2.12-2.17(\mathrm{~m}, 1 \mathrm{H})$, $1.84-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{br} ., 2 \mathrm{H})$, 1.16 - $1.32(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 67.7,61.6,53.0,49.2$ (br., 2C), 33.4, 26.5 (3C), 26.3, 25.5, 25.33, 25.28, 25.25, 24.7, 24.3, 22.9; FT-IR (ATR) v 3216 (N-H), 2924, 1335, 1310, 1140, 892, $770 \mathrm{~cm}^{-1} ;$ HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 329.2257$ found 329.2265

$N^{\prime}, N-\operatorname{Bis}((1 R, 2 R)-2-(p i p e r i d i n-1-y l) c y c l o h e x y l)-1,3-$

benzenedisulfonamide, 2w

According to the general procedure using $0.309 \mathrm{~g}(1.70 \mathrm{mmol}$, 1.0 equiv) of ($1 R, 2 R$)-2-(1-piperidinyl)cyclohexylamine and 0.199 g ($0.723 \mathrm{mmol}, 0.43$ equiv) of benzene-1,3-disulfonyl
chloride, 0.377 g of product was obtained as white solid sparingly soluble in 2-propanol (92% yield). The compound melts in very broad temperature range $75-108^{\circ} \mathrm{C}$.
$\mathrm{R}_{\mathrm{f}}=0.234\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1 \mathrm{v}: \mathrm{v}\right) ;[\alpha]_{\mathrm{D}}{ }^{21}=-91.5\left(c 1.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.40(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ (br., 2H), 2.76 (td, $J=10.4,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.22(\mathrm{~m}, 10 \mathrm{H}), 1.76-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.76$ (m, 2H), $1.61-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.36$ (br., 8H), $1.12-1.23(\mathrm{~m}, 6 \mathrm{H}), 1.01-1.09$ (m,2H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.7,130.7,129.8,126.0,67.4,53.6,49.1,32.6,26.5,25.3$, 24.6, 24.1, 22.7; FT-IR (ATR) v $3176(\mathrm{~N}-\mathrm{H}), 2931,1343(\mathrm{~S}=\mathrm{O}), 1155(\mathrm{~S}=\mathrm{O}), 959,905,794 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}+\mathrm{H}\right]^{+} 567.3033$, found 567.3020

N^{\prime}, N-Bis((1R,2R)-2-(piperidin-1-yl)cyclohexyl)-

 4,4’-biphenyldisulfonamide, 2 x

According to the general procedure using 0.309 g (1.70 mmol, 1.0 equiv) of $(1 R, 2 R)-2-(1-$ piperidinyl)cyclohexylamine and 0.248 g (0.706 mmol, 0.42 equiv) of biphenyl-4, 4 '-disulfonyl chloride, 0.435 g of product was obtained after recrystallization from 2-propanol as white solid (80% yield).
mp $207.7-209.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21}=-109.9\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 8.00(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.25$ (br., 2H), 2.74 (td, $J=10.5,3.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.45-2.50$ $(\mathrm{m}, 2 \mathrm{H}), 2.05-2.19(\mathrm{~m}, 10 \mathrm{H}), 1.79(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.69(\mathrm{~m}, 2 \mathrm{H})$, $1.32-1.44(\mathrm{~m}, 12 \mathrm{H}), 1.24-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.01-1.07(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.4,139.7,128.0,127.8,67.4,53.5,49.0,32.9,26.6,25.3,24.5,24.2,22.7$; FT-IR $(A T R) ~ v 3169(\mathrm{~N}-\mathrm{H}), 2929,1594(\mathrm{~N}-\mathrm{H}), 1337(\mathrm{~S}=\mathrm{O}), 1165(\mathrm{~S}=\mathrm{O}), 827,713 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}+\mathrm{H}\right]^{+} 643.3346$ found 643.3353

N^{\prime}, N-Bis((1R,2R)-2-(piperidin-1-yl)cyclohexyl)-sulfamide, 2y

According to the general procedure using 0.308 g ($1.69 \mathrm{mmol}, 1.0$ equiv) of $(1 R, 2 R)$-2-(1-piperidinyl)cyclohexylamine and $0.057 \mathrm{~mL}(0.705 \mathrm{mmol}, 0.42$ equiv) of sulfuryl chloride, 0.062 g of product was obtained after recrystallization from 2-propanol as pale yellow solid (21\% yield).
mp 179.5-181 ${ }^{\circ} \mathrm{C}$ (dec., 2-propanol); $[\alpha]_{\mathrm{D}}{ }^{21}=-96.1\left(c 1.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 5.93$ (br., 2H), 3.17 (td, $J=10.2,3.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.63-2.68$ (m, 4H), $2.47-2.52$ (m, 2H), 2.26 (br., 4H), 2.12 (td, $J=10.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.70(\mathrm{~m}$,
$2 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 8 \mathrm{H}), 1.42(\mathrm{br} ., 4 \mathrm{H}), 1.15-1.26(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 67.8$, 53.9, 49.3, 33.0, 26.7, 25.7, 24.9, 24.5, 23.0; FT-IR (ATR) v 3183, 3161, 2927, 1308, 1153, 1147, $960,771 \mathrm{~cm}^{-1} ;$ HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 427.3101$ found 427.3100 .

Catalysts 1 and 3-5

N-((1R,2R)-2-(Pyrrolidin-1-yl)cyclohexyl)-3,5-bis(trifloromethyl)benzenesulfonamide, 1a

$=10.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{td}, J=10.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.18-$ $2.23(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.24(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.5,132.8\left(\mathrm{q}, J_{C-F}=34.5 \mathrm{~Hz}\right), 127.4(\mathrm{~m}), 125.9(\mathrm{~m}), 122.5\left(\mathrm{q}, J_{C-F}=273\right.$ Hz), 61.5, 55.8, 46.6, 32.5, 24.9, 24.1, 23.5, 21.7; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.84$ (s, 6F); HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 445.1379$ found 445.1384

N-((1R,2R)-2-(Azepan-1-yl)cyclohexyl)-3,5-bis(trifloromethyl)benzenesulfonamide, 3a

According to the general procedure using $0.203 \mathrm{~g}(1.04 \mathrm{mmol})$ of $(1 R, 2 R)-2-$ (1-azepanyl)cyclohexylamine and 0.356 g ($1.14 \mathrm{mmol}, 1.1$ equiv) of $3,5-$ bis(trifluoromethyl)benzenesulfonyl chloride, 0.374 g of product was obtained after recrystallization from 2-propanol as white solid (76\% yield).
mp $116.6-119.0^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{23}=-55.6\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 8.35(\mathrm{~s}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 5.6$ (br., 1H), 2.88 (td, $J=10.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.52(\mathrm{~m}, 4 \mathrm{H}), 2.21-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.48-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.44$ (br., 2 H), $1.11-1.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.0$, $132.9\left(\mathrm{q}, J_{C-F}=34.6 \mathrm{~Hz}\right), 127.5(\mathrm{~m}), 126.0$ (quin., $J_{C-F}=3.5 \mathrm{~Hz}$), $122.7\left(\mathrm{q}, J_{C-F}=273 \mathrm{~Hz}\right), 68.7,54.8$, ~ 50 (br.), 32.5, 29.4, 26.9, 25.4, 24.2, 23.5; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.81$ (s, 6F); HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 473.1692$ found 473.1702

N-((1R,2R)-2-(Morpholin-4-yl)cyclohexyl)-3,5-bis(trifloromethyl)benzenesulfonamide, 3a

According to the general procedure using $0.402 \mathrm{~g}(2.18 \mathrm{mmol})$ of $(1 R, 2 R)-2-$ (4-morpholinyl)cyclohexylamine and 0.750 g ($2.40 \mathrm{mmol}, 1.1$ equiv) of 3,5bis(trifluoromethyl)benzenesulfonyl chloride, 0.786 g of product was obtained after recrystallization from 2-propanol as white solid (78\% yield).
mp $103.6-106.4{ }^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{23}=-71.9\left(c 0.997, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 8.34$ (s, 2H), 8.07 (s, 1H), 6.29 (br., 1H), 3.62 $3.66(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{br} ., 2 \mathrm{H}), 2.94(\mathrm{td}, J=10.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.42(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.28(\mathrm{~m}, 2 \mathrm{H})$, $1.85-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.9,133.0\left(\mathrm{q}, J_{C-F}=34.5 \mathrm{~Hz}\right), 127.4(\mathrm{~m}), 126.2\left(\mathrm{quin}, J_{C-F}=3.4 \mathrm{~Hz}\right), 122.6\left(\mathrm{q}, J_{C-F}\right.$ $=274 \mathrm{~Hz}), 67.2,66.9,53.7,48.2,32.6,25.1,24.1,22.9 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.80(\mathrm{~s}$, $6 \mathrm{~F})$.

N-((1R,2R)-2-(dimethylamino)cyclohexyl)-3,5-

 bis(trifloromethyl)benzenesulfonamide, 5a ${ }^{\mathrm{S7}}$

According to the general procedure using $0.303 \mathrm{~g}(2.13 \mathrm{mmol})$ of $(1 R, 2 R)-2-$ (N, N-dimethylamino)cyclohexylamine ${ }^{59}$ and 0.733 g ($2.34 \mathrm{mmol}, 1.1$ equiv) of 3,5-bis(trifluoromethyl)benzenesulfonyl chloride, 0.923 g of product was obtained as crude solid (quantitative yield). Spectra were in accordance with literature data. ${ }^{\text {S7 }}$
${ }^{19}$ F NMR (376 MHz, CDCl_{3}; label: MD-160A-cr) $\delta-62.86(\mathrm{~s}, 6 \mathrm{H})$.
N-((1R,2R)-2-(Morpholin-4-yl)cyclohexyl)-3,5-
 di(methylsulfonyl)benzenesulfonamide, 4 c

According to the general procedure using $0.178 \mathrm{~g}(0.968 \mathrm{mmol}, 1.0$ equiv) of $(1 R, 2 R)$-2-(morpholin-4-yl)cyclohexylamine and $0.354 \mathrm{~g}(1.07$ mmol, 1.1 equiv) of 3,5-3,5-bis(methylsulfonyl)benzenesulfonyl chloride, 0.323 g of product was obtained after recrystallization from sec-butanol as white solid (69% yield).
mp $168-171^{\circ} \mathrm{C}$ (sec-butanol); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 8.69(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.67$ $(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{br} ., 1 \mathrm{H}), 3.65-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 6 \mathrm{H}), 3.09(\mathrm{td}, J=$

[^5]$10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (br., 2H), $2.33-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{td}, J=10.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.19(\mathrm{~m}$, $1 \mathrm{H}), 1.86-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}; label) $\delta 145.5,143.8,130.6,129.9,67.3,66.8,53.8,48.3,44.3,32.5,25.1,24.0$, 22.9;

N-((1R,2R)-2-(Pyrrolidin-1-yl)cyclohexyl)-2-fluorobenzenesulfonamide, 1m

According to the general procedure using $0.542 \mathrm{~g}(3.22 \mathrm{mmol})$ of $(1 R, 2 R)-2-(1-$ pyrrolidinyl)cyclohexylamine and $0.718 \mathrm{~g}(3.69 \mathrm{mmol}, 1.1 \mathrm{equiv})$ of $2-$ fluorobenzenesulfonyl chloride, 0.737 g of product was obtained after recrystallization from 2-propanol as yellow solid (70\% yield).
$\operatorname{mp} 89.3-92.3{ }^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{23}=-117.3\left(c\right.$ 1.00, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.92(\mathrm{td}, J=7.5, .1 .8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.4$ (br., 1H), $2.65(\mathrm{td}, J=10.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.35-$ $2.40(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.31(\mathrm{~m}, 1 \mathrm{H})$, $1.07-1.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2\left(\mathrm{~d}, J_{C-F}=256 \mathrm{~Hz}\right), 134.9\left(\mathrm{~d}, J_{C-F}=8.2 \mathrm{~Hz}\right)$, $130.8,127.8\left(\mathrm{~d}, J_{C-F}=13.8 \mathrm{~Hz}\right), 124.4\left(\mathrm{~d}, J_{C-F}=3.8 \mathrm{~Hz}\right), 116.8\left(\mathrm{~d}, J_{C-F}=21.2 \mathrm{~Hz}\right), 61.5,55.5,46.9$, 32.9, 25.0, 24.2, 23.4, 22.0; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-109.49-(-108.80)(\mathrm{m}, 1 \mathrm{~F}) ;$ HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 327.1537$ found 327.1545

N-((1R,2R)-2-(Azepan-1-yl)cyclohexyl)-2-fluorobenzenesulfonamide, 3m

According to the general procedure using $0.190 \mathrm{~g}(0.965 \mathrm{mmol})$ of $(1 R, 2 R)-2-(1-$ azepanyl)cyclohexylamine and $0.211 \mathrm{~g}(1.08 \mathrm{mmol}, 1.1$ equiv) of $2-$ fluorobenzenesulfonyl chloride, 0.320 g of product was obtained as orange oil (94\% yield).
$R_{\mathrm{f}}=0.413\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1 \mathrm{v}: \mathrm{v}\right) ;[\alpha]_{\mathrm{D}}{ }^{24}=-65.6\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.92(\mathrm{td}, \mathrm{J}=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.8,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19$ (ddd, $J=9.6,8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37$ (br., 1H), $2.84(\mathrm{td}, J=10.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-$ $2.51(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.79(\mathrm{~m}, 11 \mathrm{H}), 1.09-1.25(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$; label: MD-091A-cr) $\delta 159.2\left(\mathrm{~d}, J_{C-F}=255 \mathrm{~Hz}\right), 134.8\left(\mathrm{~d}, J_{C-F}=8 \mathrm{~Hz}\right)$, $130.5,128.6,124.4\left(J_{C-F}=3 \mathrm{~Hz}\right), 117.1\left(J_{C-F}=21 \mathrm{~Hz}\right), 69.0,54.3,51.1$ (br.), 32.6, 29.0, 27.0, 25.5, 24.3, 23.6; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$; label: MD-091A-cr) $\delta-108.35-(-108.27$) (m, 1F); HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 355.1850$ found 327. 355.1855

N-((1R,2R)-2-(Morpholin-4-yl)cyclohexyl)-2-fluorobenzenesulfonamide 4m

According to the general procedure using $0.402 \mathrm{~g}(2.18 \mathrm{mmol})$ of $(1 R, 2 R)-2-(4-$ morpholinyl)cyclohexylamine and $0.478 \mathrm{~g}(2.46 \mathrm{mmol}, 1.1$ equiv) of $2-$ fluorobenzenesulfonyl chloride, 0.582 g of product was obtained as white solid after recrystallization from 2-propanol (78\% yield).
mp 115.5-118.0 ${ }^{\circ} \mathrm{C}\left(2\right.$-propanol); $[\alpha]_{\mathrm{D}}{ }^{24}=-126.0\left(c 0.997, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.92(\mathrm{td}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.6,0.6 \mathrm{~Hz}$, 1H), 7.18 - 7.22 (m, 1H), 6.30 (br., 1H), 3.58 - 3.65 (m, 4H), 2.73 (td, $J=10.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 $2.49(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.18-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.79(\mathrm{~m}, 1 \mathrm{H})$, $1.63-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.05-1.23(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9$ $\left(\mathrm{d}, J_{C-F}=255 \mathrm{~Hz}\right), 135.1\left(\mathrm{~d}, J_{C-F}=8.2 \mathrm{~Hz}\right), 130.8,127.7\left(\mathrm{~d}, J_{C-F}=13.8 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, J_{C-F}=3.8 \mathrm{~Hz}\right)$, $116.9\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 67.07,67.06,53.3,48.5,32.9,25.2,24.1,22.9 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-108.75-(-108.67)(\mathrm{m}, 1 \mathrm{~F})$;

N-((1R,2R)-2-(Azepan-1-yl)cyclohexyl)-pentafluorobenzenesulfonamide,

3p
According to the general procedure using $0.199 \mathrm{~g}(1.01 \mathrm{mmol})$ of $(1 R, 2 R)-2-$ (1-azepanyl)cyclohexylamine and $0.165 \mathrm{~mL}(1.11 \mathrm{mmol}, 1.1$ equiv) of pentafluorobenzenesulfonyl chloride, 0.300 g of product was obtained after recrystallization from 2-propanol as white solid (70% yield).
mp $149.1-152.3^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{23}=-54.5\left(c \quad 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 5.2(\mathrm{br}, .1 \mathrm{H}), 2.99-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.51(\mathrm{~m}$, $3 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.63$ (m, 8H), $1.16-1.25(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 68.9,54.9,51.4,32.0,29.0,26.9,25.4$, 24.2, 23.6; ${ }^{13} \mathrm{C}\left\{{ }^{19} \mathrm{~F}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.6,143.7,137.9,117.2 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-135.70-(-135.58)(\mathrm{m}, 2 \mathrm{~F}),-146.59(\mathrm{tt}, J=21.0,6.1 \mathrm{~Hz}, 1 \mathrm{~F}),-158.89-(-158.73)(\mathrm{m}$, 2F); HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 427.1473$ found 427.1476 .

N-((1R,2R)-2-(Morpholin-4-yl)cyclohexyl)-

pentafluorobenzenesulfonamide, 4 p
According to the general procedure using $0.402 \mathrm{~g}(2.18 \mathrm{mmol})$ of $(1 R, 2 R)-2-$ (4-morpholinyl)cyclohexylamine and $0.356 \mathrm{~mL}(2.40 \mathrm{mmol}, 1.1$ equiv) of
pentafluorobenzenesulfonyl chloride, 0.701 g of product was obtained after recrystallization from 2propanol as white solid (78% yield).
mp $161.4-163.6^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{20}=-86.6\left(c 0.997, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 6.59$ (br., 1H), $3.61-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.00(\mathrm{td}, J=10.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.49(\mathrm{~m}, 3 \mathrm{H}), 2.36$ - $2.40(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{td}, J=10.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.72$ $(\mathrm{m}, 1 \mathrm{H}), 1.14-1.31(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 67.2,67.1,53.8,48.4,32.3,25.1,24.1$, 23.0; ${ }^{13} \mathrm{C}\left\{{ }^{19} \mathrm{~F}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 144.6, 143.8, 137.9, 117.2; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-135.98-(-135.85)(\mathrm{m}, 2 \mathrm{~F}),-145.80(\mathrm{tt}, J=21.0,6.2 \mathrm{~Hz}, 1 \mathrm{~F}),-158.54-(-158.37)(\mathrm{m}, 2 \mathrm{~F})$;

N-((1R,2R)-2-(Pyrrolidin-1-yl)cyclohexyl)-methanesulfonamide, 1t

According to the general procedure using $0.534 \mathrm{~g}(3.20 \mathrm{mmol})$ of $(1 R, 2 R)-2-(1-$ pyrrolidinyl)cyclohexylamine and $0.300 \mathrm{~mL}(3.88 \mathrm{mmol}, 1.1$ equiv) of methanesulfonyl chloride, 0.355 g of product was obtained after recrystallization from 2-propanol as white solid (45% yield).
mp $95.5-97.8^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{22}=-101.5\left(c 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 5.9(\mathrm{br}, .1 \mathrm{H}), 3.12(\mathrm{td}, J=10.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.55(\mathrm{~m}, 2 \mathrm{H})$, $2.43-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.77(\mathrm{~m}, 5 \mathrm{H}), 1.23-1.31(\mathrm{~m}$, 4 H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 61.5,55.6,46.8,41.9,32.8,25.0,24.2,23.7,21.7$; HRMS (ESITOF) calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 247.1474$ found 247.1482.

N-((1R,2R)-2-(Azepan-1-yl)cyclohexyl)-methanesulfonamide, 3t

According to the general procedure using $146 \mathrm{mg}(0.741 \mathrm{mmol})$ of $(1 R, 2 R)-2-(1-$ azepanyl)cyclohexylamine and $63 \mu \mathrm{~L}$ ($0.814 \mathrm{mmol}, 1.1$ equiv) of methanesulfonyl chloride, 83 mg of product was obtained after recrystallization from 2-propanol as white solid (41% yield).
mp 119.3 - $121.1^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{22}=-68.9\left(c \quad 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 6.05$ (br., 1H), 3.13 (td, $J=10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (s, 3H), $2.70-2.75$ (m, 2H), $2.43-2.51$ (m, 2H), 2.36-2.41(m, 1H), 2.21-2.26(m, 1H), $1.82-1.87(m, 1 H), 1.77-1.82(m, 1 H), 1.53-$ 1.72 (m, 9H), $1.20-1.30(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 68.6,54.5, \sim 50$ (br.), 42.4, 32.7, 29.6, 26.9, 25.5, 24.3, 23.5; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 275.1788$ found 275.1783.

N-((1R,2R)-2-(Morpholin-4-yl)cyclohexyl)-methanesulfonamide, 4t

According to the general procedure using $0.402 \mathrm{~g}(2.18 \mathrm{mmol})$ of $(1 R, 2 R)-2-(4-$ morpholinyl)cyclohexylamine and $0.186 \mathrm{~mL}(2.40 \mathrm{mmol}, 1.1$ equiv) of methanesulfonyl chloride, 0.483 g of product was obtained after recrystallization from 2-propanol as white solid (85% yield).
mp $141.7-143.8{ }^{\circ} \mathrm{C}$ (2-propanol); $[\alpha]_{\mathrm{D}}{ }^{23}=-85.4\left(c 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 5.79$ (br., 1H), $3.64-3.75$ (m, 4H), 3.22 (td, $J=10.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (s, 3H), $2.64-2.70$ (m, 2H), $2.36-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{td}, J=10.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.86(\mathrm{~m}$, $1 \mathrm{H}), 1.69-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.31(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 67.4,66.9,53.3,48.3$, 42.6, 32.9, 25.3, 24.1, 22.9.

Catalysts 6-8

Scheme S1. Synthesis of 6a and 7a

N-((1R,2R)-2-(tert-Butyloxycarbonylamino)cyclohexyl)-3,5-

 bis(trifloromethyl)benzenesulfonamide, 14

According to the general procedure using $0.437 \mathrm{~g}(2.04 \mathrm{mmol})$ of tert-butyl ($(1 R, 2 R)$-2-aminocyclohexyl)carbamate and 0.701 g ($2.24 \mathrm{mmol}, 1.1$ equiv) of 3,5-bis(trifluoromethyl)benzenesulfonyl chloride, 0.877 g (89% yield) of product was obtained and used further without purification.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 8.31(\mathrm{~s}, 2 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 4.52$ (br., 1H), $3.30-$ $3.41(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.10(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.77(\mathrm{~m}, 2 \mathrm{H}) .1 .40(\mathrm{~s}, 9 \mathrm{H}), 1.16-1.31$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.6,145.0,132.7\left(\mathrm{q}, J_{C-F}=34 \mathrm{~Hz}\right), 127.0-127.2(\mathrm{~m})$, 125.7 (quint. $J_{C-F}=3 \mathrm{~Hz}$), $122.6\left(\mathrm{q}, J_{C-F}=274 \mathrm{~Hz}\right.$), 80.8, 60.8, 53.4, 33.8, 32.4, 28.2, 24.6, 24.2; ${ }^{19} \mathrm{~F}$ NMR (376 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-62.72(\mathrm{~s}, 6 \mathrm{~F})$.

N-((1R,2R)-2-aminocyclohexyl)-3,5-bis(trifloromethyl)benzenesulfonamide,

6a ${ }^{\text {S10 }}$

Boc-sulfonamide $14(0.877 \mathrm{~g}, 1.79 \mathrm{mmol})$ was dissolved in 95% aqueous solution of trifluoroacetic acid $(10 \mathrm{~mL})$ and stirred at RT for 17 h . The solution was concentrated in vacuo, and the residue dissolved in a mixture of aqueous $\mathrm{NaHCO}_{3}(10 \%, 25 \mathrm{~mL})$ and DCM $(25 \mathrm{~mL})$. The mixture was alkalized with excess of NaOH and phases were separated. Aqueous phase was extracted with DCM ($2 \times 10 \mathrm{~mL}$) and combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to obtain 0.596 g of product as orange oil (85% yield). Spectra were in accordance to literature data. ${ }^{\text {S10 }}$
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$; label: MD-141A-cr) $\delta-62.94$ (s, 6F).

N-((1R,2R)-2-(N-cyclohexylamino)cyclohexyl)-3,5-

 bis(trifloromethyl)benzenesulfonamide, 7 a

Amine 6a ($0.201 \mathrm{~g}, 0.649 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(2.7 \mathrm{~mL})$ and cyclohexanone ($0.201 \mathrm{~mL}, 1.95 \mathrm{mmol}, 3.0$ equiv) was added followed by acetic acid $(0.606 \mathrm{~mL})$. The mixture was stirred at RT for 30 minutes and sodium cyanoborohydride was added portionwise ($102 \mathrm{mg}, 1.62 \mathrm{mmol}$, 2.5 equiv) and the solution was stirred at RT for 22 h . The mixture was concentrated in vacuo, residues were alkalized with 10 mL of saturated NaOH . The mixture was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated to obtain 0.199 g of white solid (85% yield).

Mp 134-138 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 8.37(\mathrm{~s}, 2 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 2.48-2.53(\mathrm{~m}, 2 \mathrm{H})$, $2.28(\mathrm{td}, J=10.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.66-$ $1.76(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.32(\mathrm{~m}, 7 \mathrm{H}), 1.02-1.08(\mathrm{~m}, 1 \mathrm{H})$, $0.92-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.84-0.90(\mathrm{~m}, 1 \mathrm{H})\left(1\right.$ signal for NH observed due to coalescence); ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3,132.7\left(\mathrm{q}, J_{C-F}=34.3 \mathrm{~Hz}\right), 127.6(\mathrm{~m}), 125.9(\mathrm{~m}), 122.6\left(\mathrm{q}, J_{C-F}=273 \mathrm{~Hz}\right)$, $58.7,57.2,53.1,34.9,33.5,32.5,32.4,25.9,25.0$ (overlapping 2 signals), 24.5, 24.2; ${ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.77(\mathrm{~s}, 6 \mathrm{~F})$.

[^6]Scheme S2. Synthesis of 8a.
tert-Butyl
((1R,2R)-2-(4-trimethylsilyl-1,2,3-triazol-1-

yl)cyclohexylcarbamate, 16
tert-Butyl (($1 R, 2 R$)-2-azidocyclohexyl)carbamate (15, $1.98 \mathrm{~g}, 8.24 \mathrm{mmol}$) was dissolved in EtOH (15 mL). Copper(I) thiophene-2-carboxylate ($79.4 \mathrm{mg}, 0.416$ $\mathrm{mmol}, 5 \% \mathrm{~mol}$) was added followed by the addition of trimethylsilylacetylene ($3.0 \mathrm{~mL}, 21.7 \mathrm{mmol}, 2.6$ equiv). The suspension was stirred at room temperature for 480 h . Then 20 mg of NaHS was added and mixture was stirred vigorously. The suspension was filtered through layer of silica gel and washed with a mixture of DCM/EtOH ($2: 1 \mathrm{v}: \mathrm{v}, 75 \mathrm{~mL}$), the solution was concentrated in vacuo. The residue was redissolved in ca. 10 mL of AcOEt and filtered through layer of silica gel and eluted with AcOEt $(110 \mathrm{~mL})$. After concentration in vacuo. 2.22 g of crude product 16 was obtained as white solid also containing product 17 without TMS group (approx. 80% yield).

(1R,2R)-2-(1,2,3-triazol-1-yl)cyclohexylamine, 17

Crude tert-Butyl $\quad((1 R, 2 R)$-2-(4-trimethylsilyl-1,2,3-triazol-1yl)cyclohexylcarbamate ($\mathbf{1 6}, 0.202 \mathrm{~g}, 0.598 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(3.7 \mathrm{~mL})$ in a polypropylene tube and 40% aqueous solution of $\mathrm{HF}(0.5 \mathrm{~mL})$ was added slowly, and the mixture was stored at room temperature for 2 h . The solution was alkalized by carefully adding saturated aqueous NaHCO_{3}, and extracted with dichloromethane $(3 \times 7$ mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. In the residue, TMS group was completely removed and approx. 5% of Boc groups were cleaved. The mixture was dissolved in 95% aqueous solution of trifluoroacetic acid $(10 \mathrm{~mL})$ and stirred at room temperature for 20 h and concentrated in vacuo. The residue was alkalized by saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and solid NaOH to $\mathrm{pH}>13$ and extracted with dichloromethane $(4 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The product was obtained as orange oil ($37.5 \mathrm{mg}, 38 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.73(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{ddd}, J=$ $12.2,10.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{ddd}, J=11.1,10.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.96(\mathrm{~m}$, $3 \mathrm{H}), 1.24-1.54(\mathrm{~m}, 5 \mathrm{H})$.

N-((1R,2R)-2-(1,2,3-triazol-1-yl)cyclohexyl)-3,5-

 bis(trifloromethyl)benzenesulfonamide, 8a,

According to the general procedure using $35.0 \mathrm{mg}(0.211 \mathrm{mmol})$ of $(1 R, 2 R)$-2-(1,2,3-triazol-1-yl)cyclohexylamine and 72.4 mg ($0.232 \mathrm{mmol}, 1.1$ equiv) of

3,5-bis(trifluoromethyl)benzenesulfonyl chloride, 62.1 mg of product was obtained as orange oil (67\% yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 8.09$ (s, 2H), $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{td}, J=11.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.95(\mathrm{~m}$, $3 \mathrm{H}), 1.57-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9,133.6$, 132.7 (q , $\left.J_{C-F}=34.3 \mathrm{~Hz}\right), 126.8(\mathrm{~m}), 126.0(\mathrm{~m}), 122.5\left(\mathrm{q}, J_{C-F}=274 \mathrm{~Hz}\right), 122.0,63.2,58.1,34.2,32.8,24.6$, 24.5; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.80(\mathrm{~s}, 6 \mathrm{~F})$.

General procedure for Michael-hemiacetalization reaction

Diketone 9 ($0.1 \mathrm{mmol}, 1$ equiv, 19 mg for methyl benzylidenepyruvate 9 a) and the catalyst (0.01 $\mathrm{mmol}, 10 \% \mathrm{~mol}, 4.5 \mathrm{mg}$ for 2a) were dissolved in 1 mL of solvent (chlorobenzene), and stirred at room temperature for 15 minutes. Then, the mixture was brought to the desired temperature (room temperature, $-20^{\circ} \mathrm{C}$, or $-40^{\circ} \mathrm{C}$) and nucleophile was added ($0.11 \mathrm{mmol}, 1.1$ equiv, 15.4 mg for dimedone, 10). The mixture was stirred at that temperature for 1 day (or up to 5 days for reactions performed at low temperatures). Then 1.5 mL of chloroform was added, and the mixture was passed through a pad of silica gel $(15 \mathrm{~g})$ and eluted with 100 mL ethyl acetate. The solution was evaporated to yield essentially pure product $\mathbf{1 1}$ for which enantiomeric composition was determined by chiral HPLC.

Analytically pure samples were obtained by chromatography on silica gel with hexane $/ \mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 7:3:1 (v/v/v). Column was loaded with a sample dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Chromatography did not change enantiomeric composition.

For reactions requiring less than 3 mg of catalyst, the required catalyst was added as a solution in the reaction solvent.

The reaction was repeated on a $3-\mathrm{mmol}$ scale by multiplying all the quantities by 30 . However, the workup included filtration through a pad of silica gel $(20 \mathrm{~g})$ and elution with 150 mL of ethyl acetate. Product was purified by chromatography as described above.

Note on NMR and HPLC chromatograms of hemiacetal products 11

The Michael addition end products $\mathbf{1 1}$ were all (as reported in the literature for known examples 11a, $\mathbf{1 1 c}, \mathbf{1 1 f}, \mathbf{1 1} \mathrm{g}$, and $\mathbf{1 1 h}$) mixtures of the cyclic and linear anomers in equilibrium. This process was slow on an NMR timescale and presented as separate compounds in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy (Figures S76-S85), but fast enough that they did not resolve by HPLC chromatography (Figures S88S99). (See ref. 11 from main text: Calter, P. A.; Wang, J. Org. Lett. 2009, 11, 2205-2208).

In some HPLC chromatograms partial resolution of epimeric hemiacetals was observed as peak asymmetry or partially overlapped peaks. The extent of resolution of anomers depended on the solvent from which the sample was dissolved prior to injection.. More symmetrical peaks were observed for samples dissolved in 2-propanol. The observed rartio of enantiomers was unaffected.

Catalytic products:
Methyl (4S)-2-hydroxy-7,7-dimethyl-5-oxo-4-phenyl-3,4,5,6,7,8-
 hexahydro-2H-chromene-2-carboxylate 11a
$[\alpha]_{\mathrm{D}}{ }^{22}=+14.8\left(c 0.85, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;>99\right.$ \%ee $) ;$
HPLC AD-H, 7:3, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ; \operatorname{tr}=6.5-7$ (minor), 10.5 (major);

Methyl (4S)-4-cyclohexyl-2-hydroxy-7,7-dimethyl-5-oxo-3,4,5,6,7,8-
 hexahydro-2H-chromene-2-carboxylate, 11b

Modification of the general procedure (increased time, 96h), product (45 \% yield) was obtained as a colorless oil. Product was found to decompose on standing and during purification on silica gel.
$[\alpha]_{D}{ }^{23}=0\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 78 \% \mathrm{ee}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 4.74$ (br., 0.3 H), 4.42 (br., $0.45 \mathrm{H}), 3.90-3.92(\mathrm{~m}, 1.7 \mathrm{H}), 3.83-3.84(\mathrm{~m}, 1.3 \mathrm{H}), 2.77-2.79(\mathrm{~m}, 0.4 \mathrm{H}), 2.58-2.71(\mathrm{~m}, 0.8 \mathrm{H})$, $2.19-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.05-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.73(\mathrm{~m}, 4 \mathrm{H}), 0.83-1.46(\mathrm{~m}$, 13 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7,170.5,170.1,166.7,114.7,114.5,96.7,95.3,53.7,51.5$, 51.1, 42.8, 42.5, 39.4, 36.8, 32.0, 31.8, 31.75, 31.34, 31.31, 31.1, 30.0, 29.9, 29.6, 29.0, 28.8, 28.0, 27.5, 27.0, 26.8, 26.79, 26.75, 26.6, 26.58; HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}+\mathrm{H}\right]^{+}$337.2010; found: 337.2029.

HPLC IC-3, 9:1, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ; \operatorname{tr}=15.39$ (minor), 22.76 (major); 89:11 e.r.

Methyl (4S)-4-(4-chlorophenyl)-2-hydroxy-7,7-dimethyl-5-oxo-

3,4,5,6,7,8-hexahydro-2H-chromene-2-carboxylate, 11c
The title compound is known and characterized in the literature. ${ }^{\text {S11 }}$

[^7]HPLC AD-H, 7:3, $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ; \mathrm{tr}=8.08$ (minor), 14.79 (major); 2:98 e.r.

Methyl (4S)-4-(4-fluorophenyl)-2-hydroxy-7,7-dimethyl-5-oxo-
 3,4,5,6,7,8-hexahydro-2H-chromene-2-carboxylate 11d
$[\alpha]_{\mathrm{D}}{ }^{22}=+18.6\left(c \quad 0.85, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 96 \% \mathrm{ee}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS, major/minor anomer, ca. 6:4 ratio) $\delta 7.08-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.89-$ 6.95 (m, 2H), 4.42 (br., 0.6 H), 4.23 (br., 0.4 H), 4.05 (d, $J=7.0 \mathrm{H}, 0.4 \mathrm{H}$), 3.88 (btt, $J=9.0,1.9 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.85$ (s, 1.1H), 3.78 (s, 1.9 H), 2.55 (d, J $=7.7 \mathrm{~Hz}, 0.2 \mathrm{H}), 2.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 0.2 \mathrm{H}), 2.47(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.24-2.43(\mathrm{~m}, 2.7 \mathrm{H}), 2.23$ (d, $J=8.8 \mathrm{~Hz}, 1.3 \mathrm{H}), 2.19(\mathrm{~s}, 1.2 \mathrm{H}), 1.18(\mathrm{~s}, 1.1 \mathrm{H}), 1.15(\mathrm{~s}, 1.9 \mathrm{H}), 1.10(\mathrm{~s}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major/minor anomer, ca. 6:4 ratio) $\delta 196.0 / 196.5$, $169.3 / 169.4,166.8 /$ 167.4, $161.30 / 161.33\left(\mathrm{~d}, J_{C-F}=244 \mathrm{~Hz}\right), 139.7 / 138.8\left(\mathrm{~d}, J_{C-F}=3 \mathrm{~Hz}\right), 128.4 / 128.9\left(\mathrm{~d}, J_{C-F}=8 \mathrm{~Hz}\right)$, $115.1 / 114.9\left(\mathrm{~d}, J_{C-F}=21.5 \mathrm{~Hz}\right), 114.0 / 112.2,94.9 / 95.7,53.48 / 53.56,50.94 / 50.92,42.53 /$ 42.47, 38.3/35.9, 32.7 / 32.0, 31.7 / 31.4, $29.1 / 28.8,27.7 / 28.2$; ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta$ $-117.13(\mathrm{tt}, J=8.6,5.2 \mathrm{~Hz}, 0.62 \mathrm{~F}),-117.17(\mathrm{tt}, J=8.6,5.2 \mathrm{~Hz}, 0.38 \mathrm{~F}$). HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FO}_{5}+\mathrm{H}\right]^{+} 349.1446$ found 349.1458.

HPLC AD-H, 7:3, $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ; \operatorname{tr}=7.29$ (minor), 12.79 (major); 2:98 e.r.

Benzyl (4S)-2-hydroxy-7,7-dimethyl-5-oxo-4-phenyl-3,4,5,6,7,8-

 hexahydro-2H-chromene-2-carboxylate, 11e

Applying the general procedure, product (93.5% yield) was obtained as an off-white foam.
$[\alpha]_{D}{ }^{23}=+14.5\left(c 0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 96.4 \% \mathrm{ee}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.26-7.39(\mathrm{~m}, 5 \mathrm{H})$, $7.22-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.25(\mathrm{~s}, 0.8 \mathrm{H}), 5.18(\mathrm{~d}, J=12.2,0.6 \mathrm{H}), 5.05(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, 0.6 H), 4.67 (br., 0.6 H), 4.36 (br., 0.3 H), 4.03 (m, 0.4 H), 3.89 (dd, $J=9.5,8.3 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.57$ (dd, $J=$ $14.2,7.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.39-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.22(\mathrm{~m}, 1.6 \mathrm{H}), 1.17(\mathrm{~s}, 1.2 \mathrm{H})$, 1.15 (s, 1.8H), 1.07 (s, 1.8H), 1.06 (s, 1.2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.7,196.3,168.8$, 168.6, 167.6, 167.0, 144.0, 143.0, 134.5, 134.4, 128.84, 128.78, 128.76, 128.7, 128.4, 128.38, 128.36, $128.3,127.3,127.1,126.2,126.1,114.0,112.2,95.9,95.0,68.5,68.4,50.8,50.7,42.4,42.3,38.1$, 36.1, 33.4, 32.2, 32.0, 31.7, 29.3, 28.6, 28.5, 27.7. HRMS (ESI-TOF) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{5}+\mathrm{H}\right]^{+}$ 407.1853 found 407.1854 .

HPLC AD-H, 7:3, $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ; \operatorname{tr}=9.75$ (minor), 15.37 (major); 98.2:1.78 e.r.

Methyl (4S)-3,4-dihydro-2-hydroxy-5-oxo-4-phenyl-2H,5H-pyrano[3,2-

c][1]benzopyran-2-carboxylic acid, 11f

The (R)-isomer of the title compound is known and characterized in the literature ${ }^{\mathrm{S} 12}$

Applying a modification of the general procedure $\left(-40^{\circ} \mathrm{C}, 48 \mathrm{~h}\right)$ the product was obtained in a 99% yield;

HPLC AD-H, 8:2, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ; \operatorname{tr}=12.75$ (minor), 22.03 (major); 97.5:2.5 e.r.

Methyl (4S)-2-hydroxy-7-methyl-5-oxo-4-phenyl-2,3,4,5-

tetrahydropyrano[4,3-b] pyran-2-carboxylate, 11 g
The title compound is known and characterized in the literature ${ }^{\mathrm{S} 13}$ and the (R)-isomer of the title compound is also known ${ }^{\text {S12 }}$

Applying a modification of the general procedure $\left(-40^{\circ} \mathrm{C}, 48 \mathrm{~h}\right)$ the product was obtained in a $>99 \%$ yield;

HPLC AD-H, 8:2, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ; \operatorname{tr}=11.97$ (minor), 17.96 (major); 98:2 e.r.

Methyl (4S)-2-hydroxy-5-oxo-4-phenyl-3,4,5,6,7,8-hexahydro-2H-chromene-2-carboxylate, 11 h
(R)-Isomer of the title compound is known and characterized in ref. ${ }^{\text {S }}$.

Applying a modification of the general procedure $\left(-40^{\circ} \mathrm{C}, 48 \mathrm{~h}\right)$ the product was obtained in a $>99 \%$ yield; HPLC AD-H, $8: 2,0.75 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm} ; \operatorname{tr}=10.55$ (minor), 14.43 (major); 99:1 e.r.

Methyl (4S) 1,4,5,6,7,8-hexahydro-7,7-dimethyl-5-oxo-4-phenyl-quinoline-2-carboxylate, 12

[^8]Ammonium acetate ($47 \mathrm{mg}, 6 \mathrm{mmol}, 10$ equiv) was added to the solution of chiral adduct 11a (199.5 $\mathrm{mg}, 0.6 \mathrm{mmol}$, 1.0 equiv; $99.65: 0.35$ e.r. $)$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ at rt and the resulted mixture was refluxed for 3 h . Then, next portion of ammonium acetate (50 mg) was added at once and the reaction was continued until the total consumption of the substrate (TLC, hexanes/AcOEt, 3:1, v/v). Then the greenish solution was cooled and the solvent was evaporated to give an oily residue. Further purification using silica gel chromatography (hexanes $/ \mathrm{Et}_{2} \mathrm{O}, 1: 1, \mathrm{v} / \mathrm{v}$) gave an off-white solid (110 mg , 59\% yield).
$[\alpha]_{\mathrm{D}}{ }^{23}=-473.0(c 0.40, \mathrm{MeOH} ; 96.1$ \%ee $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.24-7.29(\mathrm{~m}, 4 \mathrm{H})$, $7.14-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.46$ (br., 1H), $6.12(\mathrm{dd}, J=5.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 2.37(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=16.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=16.2, \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J$ $=16.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.3,163.4,150.1$, $146.1,128.5,127.8,126.6,125.7,117.5,107.2,52.6,50.7,41.7,37.8,32.6,29.2,27.5$, HRMS calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}$requires 312.1594; found: 312.1606.

HPLC AD-H, 9:1, $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \operatorname{tr}=31.0$ (major), 34.47 (minor), 98.05:1.95 e.r.

Methyl (2S,4S) 1,2,3,4,5,6,7,8-octahydro-7,7-dimethyl-5-oxo-4-phenyl-quinoline-2-carboxylate, 13

Solution of adduct 11a ($330 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) in dichloroethane $(3 \mathrm{~mL})$ and 4-chlorobenzylamone ($420 \mathrm{mg}, 3.0 \mathrm{mmol}, 3.0$ equiv) was stirred at $50^{\circ} \mathrm{C}$ (oil bath) for 16 h . Then DBU ($76 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.5$ equiv) was added at once at $50^{\circ} \mathrm{C}$ and reaction was performed for the next 20 h . Solvent was removed in vacuo and the residue was loaded onto silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone, $\left.15: 1, \mathrm{v} / \mathrm{v}\right)$. Elution in gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /Acetone, $10: 1$ to $5: 1, \mathrm{v} / \mathrm{v}$, gave 238 mg product (76% of yield) as an off-white solid.
$[\alpha]_{\mathrm{D}}{ }^{23}=+148.7(c 0.26, \mathrm{MeOH} ; 97.5 \% \mathrm{ee}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.23-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.11-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.23$ (br., 1 H), $4.27(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=12.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 2 \mathrm{H}), 2.17-2.30(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{ddd}, J=12.5,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$, $1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.2,172.5,156.2,144.8,128.2,127.6,126.1,105.0$, $52.5,50.2,49.5,42.6,34.1,32.4,32.1,28.5,28.3 ;$ HRMS calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3}+\mathrm{H}\right]^{+} 314.1751$; found: 314.1747 .

HPLC AD-H, 8:2, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \operatorname{tr}=8.36$ (minor), 14.60 (major), 98.74:1.26 e.r.

Plots of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra

Figure S11. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst 2a

Figure S 12 . ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 a}$

Figure S13. Overlay of ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) for catalysts $\mathbf{2 a}$ (positive phase) and ent-2a (negative phase)

Figure S14. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst 2b

Figure $\mathrm{S} 15 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst 2b

Figure S16. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 c}$

Figure S17. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2 d}$

Figure $\mathrm{S} 18 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst 2d

Figure S19. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst 2e

Figure S20. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 f}$

- $^{148.27}$
- $^{142.55}$
- $^{132.76}$
- $^{130.32}$
- 1262
122.38

$\stackrel{\bullet}{\stackrel{0}{\square}}$

Figure $\mathrm{S} 21 .{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2 g}$

Figure S22. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 h}$

\section*{| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Figure S23. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 i}$

Figure S24. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2} \mathbf{j}$

Figure S25. ${ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2} \mathbf{j}$

Figure S26. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 k}$

\qquad
\qquad

Figure S27. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 l}$

Figure $\mathrm{S} 28 .{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2 m}$

Figure S29. ${ }^{19}$ F NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2 m}$

Figure S30. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}\left\{{ }^{19} \mathrm{~F}\right\}$ NMR spectra ($151 \mathrm{MHz}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2 n}$

Figure S31. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectrum ($600 \mathrm{MHz}, 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2 n}$

Figure S32. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 o}$

Figure S33. ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 o}$

Figure S34. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}\left\{{ }^{\{9} \mathrm{F}\right\}$ NMR spectra ($151 \mathrm{MHz}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2 p}$ (note: incomplete ${ }^{19} \mathrm{~F}$ decoupling)

Figure S35. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra $\left(600 \mathrm{MHz}, 376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 p}$

 $\underbrace{\text { mova }}$

Figure S36. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 q}$

Figure S37. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2 r}$

Figure S38. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst 2s

Figure S39. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2 t}$

Figure S40. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) for catalyst $\mathbf{2 u}$

Figure $\mathrm{S} 41 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 u}$

Figure S42. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2 v}$

Figure S43. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 w}$

Figure S44. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{2 x}$

Figure $\mathrm{S} 45 .{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{2 y}$

Figure S46. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{1 a}$

Figure S47. ${ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{1 a}$

Figure S48. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst 3a

Figure $\mathrm{S} 49 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst 3a

Figure S50. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) for catalyst $\mathbf{4 a}$

Figure $\mathrm{S} 51 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{4 a}$

Figure $\mathrm{S} 52 .{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{5 a}$

Figure $\mathrm{S} 53 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{5 a}$

Figure S54. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{6 a}$

Figure $\mathrm{S} 55 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{6 a}$

Figure S56. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $7 \mathbf{a}$

Figure $\mathrm{S} 57 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $7 \mathbf{a}$
N.

Figure S58. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst 8a

Figure S59. ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst 8a

Figure S60. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{1 m}$

Figure $\mathrm{S} 61 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{1 m}$

$1111 /$

四

Figure S62. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{3 m}$

Figure S 63 . ${ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{3 m}$

Figure $\mathrm{S} 64 .{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{4 m}$

Figure $\mathrm{S} 65 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{4 m}$

Figure S66. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst 3p

Figure $\mathrm{S} 67 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{3 p}$

Figure S68. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{4 p}$

Figure $\mathrm{S} 69 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalyst $\mathbf{4 b}$

Figure S70. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{1 t}$

Figure S71. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst 3t

Figure $\mathrm{S} 72 .{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalyst $\mathbf{4 t}$

Figure S73. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(101 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for intermediate 14: $N-((1 R, 2 R)$ -2-(Boc-amino)cyclohexyl-3,5-bis(trifluoromethyl)benzenesulfonamide

Figure S74. ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for intermediate 14: $N-((1 R, 2 R)-2-(\mathrm{Boc}-$ amino)cyclohexyl-3,5-bis(trifluoromethyl)benzenesulfonamide

Figure S75. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for intermediate 17: $(1 R, 2 R)$-2-(1,2,3-triazol-1-yl)-cyclohexaneamine

Figure S76. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalytic product 11a (cf. Note on page S36)

Figure S77. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(101 \mathrm{MHz}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) for catalytic product $\mathbf{1 1 b}$ (cf. Note on page S36)

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	ppm

Figure S78. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(151 \mathrm{MHz}, 600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalytic product $11 \mathrm{c}(c f$. Note on page S36)

Figure S79. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{1 1 c}$

Figure S80. Overlay of experimental ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{1 1 c}$ (black) and NMR simulation assuming following parameters: -117.126 (tt, $\mathrm{J}=8.6,5.2 \mathrm{~Hz}, 1 \mathrm{~F}$, linewidth 1.1 Hz), $-117.176(\mathrm{tt}, \mathrm{J}=8.6,5.2 \mathrm{~Hz}, 0.66 \mathrm{~F}, 1.4 \mathrm{~Hz})$, corresponding to two anomers ($c f$. Note on page S 36)

Figure $\mathrm{S} 81 .{ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalytic product 11d (cf. Note on page S36)

\％	W\％mis mo mix	ず参	\％ั\％	¢욱	
¢ ¢		¢்	®\％		
V／I	$1 / \sim N \mid$	V	V	V	

Figure S 82 ．${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(101 \mathrm{MHz}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalytic product $11 \mathrm{e}(c f$ ． Note on page S36）

Figure S83. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra ($101 \mathrm{MHz}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for catalytic product $\mathbf{1 1 f}$ ($c f$. Note on page S36)

Figure $\mathrm{S} 84 .{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(101 \mathrm{MHz}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalytic product $\mathbf{1 1 g}(c f$. Note on page S36)

Figure $\mathrm{S} 85 .{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(101 \mathrm{MHz}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for catalytic product $\mathbf{1 1 h}(c f$. Note on page S36)

$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \underset{y}{\circ} \\ & \stackrel{1}{\circ} \\ & \stackrel{1}{2} \end{aligned}$					

Figure S86. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(101 \mathrm{MHz}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for end product 12

Figure S87. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra $\left(101 \mathrm{MHz}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for end product 13

Chiral HPLC chromatograms

UV2000-254nm
Results (System
(2018-06-08
15:38:49)
(Original)

Retention Time	Area	Area \%	Height	Height \%
7,960	13004919	96,20	778829	96,76
11,805	514200	3,80	26089	3,24
Totals	13519119	100,00	804918	,00

Figure S88. HPLC chromatograms (Chiralpak AD-H, 4.6 mm ID $\times 250 \mathrm{~mm}$, hexane $/ 2$-propanol $7: 3,0.7 \mathrm{~mL} / \mathrm{min}$) for adduct 11a obtained from methyl benzylidenepyruvate ($\mathbf{9 a}$) and dimedone (10) using $10 \% \mathrm{~mol}$ catalysts $\mathbf{2 a}$ (left) and ent-2a (right) in toluene. The results shown correspond to Table 1 entries 2 and 3. For HPLC chromatogram of a racemic sample, see Figure S91.

UV2000-254nm
Results (System
(2018-06-08
(Original))

(Original) Retention Time	Area	Area \%	Height	Height \%
7,893	11590892	94,44	698117	95,65
11,663	682432	5,56	31724	4,35
Totals	12273324	100,00	729841	100,00

Figure S89. HPLC chromatograms (Chiralpak AD-H, 4.6 mm ID $\times 250 \mathrm{~mm}$, hexane $/ 2$-propanol 7:3, $0.7 \mathrm{~mL} / \mathrm{min}$) for adduct 11a obtained from methyl benzylidenepyruvate ($\mathbf{9 a}$) and dimedone (10) using $0.5 \% \mathrm{~mol}$ catalysts $\mathbf{2 a}$ (left) and ent-2a (right) in chlorobenzene at room temperature. For HPLC chromatogram of a racemic sample, see Figure S91.

UV2000-254nm
Results (System (2017-12-22 11:14:57) (Reprocessed)) Retention Time
7,043 10,215
Totals

Figure S90. HPLC chromatograms (Chiralpak AD-H, $4.6 \mathrm{~mm} \mathrm{ID} \times 250 \mathrm{~mm}$, hexane $/ 2$-propanol 7:3, $0.7 \mathrm{~mL} / \mathrm{min}$) for adduct 11a obtained on a 3 - mmol scale from methyl benzylidenepyruvate ($\mathbf{9 a}$) and dimedone ($\mathbf{1 0}$) using 1% mol catalyst $\mathbf{2 a}$ in chlorobenzene at room temperature: crude sample (left) and after purification by column chromatography (right). For chromatogram of a recrystallized sample and racemic 11a see the following Figure S91.

Results (System (2018-01-19				
11:48:54) (Reprocessed))				
Retention Time	Area	Area \%	Height	Height \%
7,083	143096	0,35	4759	0,31
10,165	40733065	99,65	1518160	99,69
Totals				
	40876161	100,00	1522919	100,00

Figure S91. HPLC chromatograms (Chiralpak AD-H, 4.6 mm ID $\times 250 \mathrm{~mm}$, hexane $/ 2$-propanol 7:3, $0.7 \mathrm{~mL} / \mathrm{min}$) for adduct 11a: obtained on a 3 - mmol scale using 1 \%mol catalyst 2a in chlorobenzene after recrystallization from tert-butyl methyl ether (first crop; for uncrystallized sample see the preceeding Figure S90.) (left). Racemic product 11a (right).

UV2000-254nm

Results (System (2018-01-10 11:34:38) (Original)) Retention Time	Area	Area \%		
6,580	28693	0,32	982	0,34
10,282	8998898	99,68	286713	99,66
Totals	9027591	100,00	287695	100,00

UV2000-254nm
Results (System
Results (Syst
(2018-01-1
14:34:31)
(Reprocessed))

(Reprocessed))				
Retention Time	Area	Area \%	Height	Height \%
7,293	86656	0,37	2895	0,34
10,553	23494825	99,63	839923	99,66
Totals	23581481	100,00	842818	100,00

Figure S92. HPLC chromatograms (Chiralpak AD-H, 4.6 mm ID $\times 250 \mathrm{~mm}$, hexane $/ 2-$ propanol 7:3, $0.7 \mathrm{~mL} / \mathrm{min}$) for adduct 11a obtained from methyl benzylidenepyruvate ($\mathbf{9 a}$) and dimedone (10) using $1 \% \mathrm{~mol}$ catalyst $\mathbf{2 a}$ in chlorobenzene at $-20^{\circ} \mathrm{C}$: On a $0.1-\mathrm{mmol}$ scale (left), and on a 3-mmol scale after purification by column chromatography (right).

UV2000-254nm
Results (System
(2018-02-28
14:34:29)
(Original))

(Original))				
Retention Time	Area	Area \%	Height	Height \%
15,422	9039346	50,07	155004	58,80
22,958	9014745	49,93	108625	41,20
Totals				
	18054091	100,00	263629	100,00

Figure S93. HPLC chromatograms (Chiralpak IC-3, 4.6 mm ID $\times 250 \mathrm{~mm}$, hexane/2-propanol 9:1, $1 \mathrm{~mL} / \mathrm{min}$) for adduct 11b obtained from methyl 5-cyclohexyl-3-oxo-pent-4-enoate (9b) and dimedone (10) with $10 \% \mathrm{~mol}$ catalyst $\mathbf{2 a}$ in chlorobenzene at room temperature (left) and a racemic sample (right). The results shown correspond to Table 4 entry 1.

UV2000-254nm

UV2000-254nm Results (System (2017-12-07 12:58:44) (Original) Retention Time 7,287 12,785
Totals

UV2000-254nm
Results (System
Results (Sys
(2018-02-15
11:44:55)

(Reprocessed))				
Retention Time	Area	Area \%	Height	Height \%
7,762	14662165	50,27	625732	53,33
13,752	14504120	49,73	547485	46,67
Totals	29166285	100,00	1173217	100,00

Figure S94. HPLC chromatograms (Chiralpak AD-H, 4.6 mm ID $\times 250 \mathrm{~mm}$, hexane $/ 2$-propanol 7:3, $1 \mathrm{~mL} / \mathrm{min}$) for adduct 11c obtained from methyl 4(fluorobenzylidene)pyruvate (9c) and dimedone (10) using $10 \% \mathrm{~mol}$ catalyst $\mathbf{2 a}$ in chlorobenzene at room temperature (left) and a racemic sample (right). The results shown correspond to Table 4 entry 2.

UV2000-254nm
Results (System
(2018-02-15
12:49:00)

(Original)				
Retention Time	Area	Area \%	Height	Height \%
8,438	15703357	48,78	588641	51,24
14,878	16487775	51,22	560134	48,76
Totals				
	32191132	100,00	1148775	100,00

UV2000-254nm
Results (System
(2018-02-02
(Original))

(Original) Retention Time
9,747
15,367

UV2000-254nm
Results (System
(2018-02-02
09:36:48)

(Reprocessed) Retention Time	Area	Area \%	Height	Height \%
9,945	17335926	50,14	496252	53,11
15,910	17238716	49,86	438124	46,89
Totals	34574642	100,00	934376	100,00

Figure S96. HPLC chromatograms (Chiralpak AD-H, 4.6 mm ID $\times 250 \mathrm{~mm}$, hexane $/ 2$-propanol $7: 3,0.7 \mathrm{~mL} / \mathrm{min}$) for adduct 11e obtained from benzyl benzylidenepyruvate ($\mathbf{9 e}$) and dimedone ($\mathbf{1 0}$) using $10 \% \mathrm{~mol}$ catalyst $\mathbf{2 a}$ in chlorobenzene at room temperature (left) and a racemic sample (right). The results shown correspond to Table 4 entry 4.

UV2000-254nm
Results (System
(2018-04-2
12:40:01)
(Reprocessed)

UV2000-254nm
Results (System
(2017-12-19
13:17:44)

| (Original)
 Retention Time | Area | Area \% | Height | Height \% |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 12,425 | 12562809 | 50,45 | 241459 | 72,20 |
| 22,723 | 12338978 | 49,55 | 92983 | 27,80 |
| Totals | 24901787 | 100,00 | 334442 | 100,00 |

Figure S97. HPLC chromatograms (Chiralpak AD-H, $4.6 \mathrm{~mm} \mathrm{ID} \times 250 \mathrm{~mm}$, hexane $/ 2$-propanol $8: 2,0.75 \mathrm{~mL} / \mathrm{min}$) for adduct 11f obtained from methyl benzylidenepyruvate ($\mathbf{9 a}$) and 4-hydroxycoumarin with 10% mol catalyst $\mathbf{2 a}$ in chlorobenzene at $-40^{\circ} \mathrm{C}$ (left) and a racemic sample (right). The results correspond to values shown in Figure 7.

UV2000-254nm Results (System (2018-01-12 15:14:05) (Original))				
Retention Time	Area	Area \%	Height	Height \%
11,967	64725	2,04	2280	2,59
17,957	3102219	97,96	85878	97,41
Totals	3166944	100,00	88158	100,00

UV2000-254nm
Results (System (2017-12-20 10:58:10) (Original)) Retention Time
11,830 Area Area $\%$ Height Height \% 17,965 4046813 49,44 139966 58,93 Totals 4139080 50,56 97548 41,07 \begin{tabular}{\|rr
\hline
\end{tabular} 8185893 100,00 237514 100,00 |

Figure S98. HPLC chromatograms (Chiralpak AD-H, $4.6 \mathrm{~mm} \mathrm{ID} \times 250 \mathrm{~mm}$, hexane/2-propanol $8: 2,0.75 \mathrm{~mL} / \mathrm{min}$) for adduct 11 g obtained from methyl benzylidenepyruvate ($\mathbf{9 a}$) and triacetic acid lactone with $10 \% \mathrm{~mol}$ catalyst $\mathbf{2 a}$ in chlorobenzene at $-40^{\circ} \mathrm{C}$ (left) and a racemic sample (right). The results correspond to values shown in Figure 7.

UV2000-220nm Results (System (2018-01-12 13:15:54) (Original) Retention Time
 10,547 14,433
Totals

Figure S99. HPLC chromatograms (Chiralpak AD-H, $4.6 \mathrm{~mm} \mathrm{ID} \times 250 \mathrm{~mm}$, hexane $/ 2$-propanol $8: 2,0.75 \mathrm{~mL} / \mathrm{min}$) for adduct $\mathbf{1 1 h}$ obtained from methyl benzylidenepyruvate ($\mathbf{9 a}$) and 1,3 -cyclohexanedione with $10 \% \mathrm{~mol}$ catalyst $\mathbf{2 a}$ in chlorobenzene at $-40^{\circ} \mathrm{C}$ (left) and a racemic sample (right). The results correspond to values shown in Figure 7.

UV2000-254nm Results (System (2018-02-14 13:29:24) (Original)) Retention Time	Area	Area \%	Height	Height \%
29,327	124150899	98,11	2733805	98,15
32,858	2391824	1,89	51595	1,85
Totals	126542723	100,00	2785400	100,00

UV2000-254nm
Results (System
(2018-06:23)

(Original)				
Retention Time	Area	Area \%	Height	Height \%
30,660	11730254	50,22	242283	50,10
33,748	11628910	49,78	241282	49,90
Totals	23359164	10000	483565	100.00

Figure S100. HPLC chromatograms (Chiralpak AD-H, 4.6 mm ID $\times 250 \mathrm{~mm}$, hexane/2-propanol 9:1, $0.7 \mathrm{~mL} / \mathrm{min}$) for methyl ($2 S, 4 S$)-1,4,5,6,7,8-hexahydro-7,7-dimethyl-5-oxo-4-phenyl-quinoline-2-carboxylate (12) obtained starting from hemiacetal sample shown in Figure S92 (left) and a racemic sample (right). The results correspond to figures shown in Scheme 3.

UV2000-254nm Results (System (2018-03-05 12:54:10) (Original) Retention Time
8,360 14,600
Totals

UV2000-254nm
Results (System
(2018-03-0
13:33:47)
(Reprocessed))

| (Reprocessed))
 Retention Time | Area | Area \% | Height | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 8,298 | 575412 | 49,67 | 31545 | 60,92 |
| 14,547 | 583156 | 50,33 | 20240 | 39,08 |
| Totals | 1158568 | 100,00 | 51785 | 100,00 |

Figure S101. HPLC chromatograms (Chiralpak AD-H, 4.6 mm ID $\times 250 \mathrm{~mm}$, hexane/2-propanol $8: 2,1 \mathrm{~mL} / \mathrm{min}$) for methyl 1,2,3,4,5,6,7,8-octahydro-7,7-dimethyl-5-oxo-4-phenyl-quinoline-2-carboxylate (13) obtained starting from hemiacetal sample shown in Figure S 92 (left) and a racemic sample (right). The results correspond to figures shown in Scheme 3

DFT computations listings

Listing of DFT/B3LYP/CC-pVDZ energies and atomic coordinates for $\mathbf{1 i}$

```
Zero-point correction=
Thermal correction to Energy=
0.386279 (Hartree/Particle)
    0.406012
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
SCF: E(RB3LYP) =
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Fnthalpies=
868949
Sum of electronic and thermal Free Energies= -1281.940256
Lowest frequencies: 18.4, 25.7 cm-1
```

Atom	X	Y	Z
C	-2.73483	-0.57964	$0.0347 \overline{2}$
C	-3.44058	0.05428	1.05781
H	-2.9823	0.15477	2.04216
C	-4.72682	0.53548	0.79123
H	-5.29305	1.03384	1.58109
C	-5.28701	0.37246	-0.47873
H	-6.29211	0.74858	-0.68262
C	-4.56881	-0.27823	-1.49007
H	-5.01376	-0.4119	-2.47849
C	-3.28588	-0.76483	-1.23682
H	-2.71562	-1.28531	-2.00703
S	-1.09309	-1.24633	0.38291
0	-0.82893	-1.02346	1.83311
0	-0.99822	-2.60373	-0.20873
N	-0.0684	-0.2804	-0.58434
H	0.68589	-0.9335	-0.85437
C	0.576	0.88944	0.05067
H	0.59854	0.75091	1.14652
C	2.03615	0.95124	-0.46148
H	1.98767	1.15708	-1.54768
C	2.76393	2.13748	0.20305
H	3.80457	2.19062	-0.15676
H	2.81179	1.97869	1.2948
C	2.03524	3.45817	-0.08848
H	2.08097	3.66569	-1.17403
H	2.55348	4.29453	0.40957
C	0.56676	3.40063	0.3545
H	0.52302	3.32811	1.45728
H	0.04751	4.335	0.08421
C	-0.16198	2.19774	-0.26029
H	-0.23333	2.31127	-1.35692
H	-1.19535	2.14077	0.11784
N	2.66297	-0.36822	-0.35029
C	3.87308	-0.58964	-1.14546
C	2.9703	-0.89682	0.98504
C	4.34451	-1.99443	-0.71517
H	4.66188	0.16149	-0.92154
C	3.67092	-2.22824	0.66718
H	2.05421	-1.02866	1.57993
H	5.44238	-2.04386	-0.66144
H	4.39058	-2.5066	1.45111
H	3.64369	-0.51515	-2.2205

H	4.01874	-2.75559	-1.4395
H	2.92599	-3.03493	0.59947
H	3.65341	-0.22739	1.55149

[^0]: ${ }^{\text {Sl }}$ We thank Wrocław Center for Networking and Supercomputing for allotment of computer time (No. 362)
 ${ }^{52}$ Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[^1]: ${ }^{\text {S3 }}$ Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J. Chem. Rev. 2012, 112, 1839-1862

[^2]: S4 (a) Guo, C.; Qiu, J.; Zhang, X.; Verdugo, D.; Larter, M. L.; Christie, R.; Kenney, P.; Walsh, P. J.
 Tetrahedron, 1997, 53, 4145; (b) Jaeger, F. M.; Bijkerk, L. Z. Anorg. Allg. Chem. 1937, $233,97$.
 ${ }^{\text {s5 }}$ Darwish, M. O.; Wallace, A.; Clakrson, G. J.; Wills, M. Tetrahedron Lett. 2013, 54, 4250-4253.
 ${ }^{\text {s6 }}$ (a) Feng, J.; Fu, X.; Chen, Z.; Lin, L.; Liu, X.; Feng. X. Org. Lett. 2013, 15, 2640-2643; (b) Huw, Y.-Z.; Liu, M.-M.; Huang, P.-J.; Song, X.; Wang, M. C.; Chankg, J.-B. Chem. Eur. J. 2015, 21, 11994-11998.

[^3]: ${ }^{\text {S7 }}$ Schmitt, E.; Schiffers, I.; Bolm, C. Tetrahedron 2010, 66, 6349-6357. (Ref. 4b from the main text)

[^4]: ${ }^{\text {S8 }}$ Martins, J. E. D.; Wills, M. Tetrahedron: Asymmetry 2008, 19, 1250-1255.

[^5]: ${ }^{\text {s9 }}$ Kaik, K.; Gawroński, J. Tetrahedron: Asymmetry 2003, 14, 1559-1563.

[^6]: ${ }^{10}$ Feng, Y.; Zhichao, J.; Huicai, H.; Tingting, Y.; Jinxing, L. Xinmiao Y. Org. Biomol. Chem. 2010, 8, 47674774.

[^7]: ${ }^{\text {S11 }}$ Song, X.;Cliu, J.; Liu, M.-M.; Wang, X.; Zhang, Z.-F.; Wang, M. C. Tetrahedron 2014, 70, 5468-5474.

[^8]: S12 Chen, $2010,352,1648-167_{2}$ (Ryf. 13 from the main text)
 ${ }^{513}$ Halland, A.; Velgaard, T̛.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 5067-5074 (Ref. 10c from the main text)

