Supporting Information

Promoting Effect of Solvent on Cu/CoO Catalyst

for Selective Glycerol Oxidation under Alkaline Condition

Georgios Dodekatos, Jan Ternieden, Stefan Schünemann, Claudia Weidenthaler, Harun Tüysüz*

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,

45470 Mülheim an der Ruhr

Table S 1. Observed selectivities for glycerol oxidation experiments over reduced Cu/CoO catalysts with different solvent mixtures. The shown values correspond to the conversion profiles shown in Figure 2 in the manuscript.

Detected	Solvent	Solvent content X / vol%				
Product	(X/water)	0	5	20	50	
Glyceric acid	Methanol		20.5	19.5	12	
	Ethanol	10	19.5	15.5	9.5	
	<i>n</i> -Propanol	19	16.5	12.5	7.5	
	<i>tert</i> -Butanol		17	15	12	
	Methanol		0	3	0	
Oxalic	Ethanol	0.5	3.5	5.5	2.5	
acid	<i>n</i> -Propanol	2.5	3	5	11	
	<i>tert</i> -Butanol		3	4.5	9.5	
Glycolic acid	Methanol	47	46	41	39.5	
	Ethanol		48.5	47	37	
	<i>n</i> -Propanol		45	42.5	37	
	<i>tert</i> -Butanol		47	45.5	39.5	
	Methanol		0	0	0	
Tartronic	Ethanol	1 5	1.5	1.5	1	
acid	<i>n</i> -Propanol	1.5	1.5	1	0.5	
	<i>tert</i> -Butanol		0.5	1.5	0.5	
Lactic acid	Methanol		0	0	0	
	Ethanol	0	0	0	3	
	<i>n</i> -Propanol		4	9	7	
	<i>tert</i> -Butanol		0	0	0	
Formic acid	Methanol		33.5	36.5	48.5	
	Ethanol	20	27.5	30.5	45	
	<i>n</i> -Propanol		30.5	30	34.5	
	<i>tert</i> -Butanol		32.5	33.5	38.5	

Figure S1. XPS spectra of $Co(OH)_2$, CoO(OH), and Co_3O_4 . The presented spectra are in good accordance to the spectra reported in the literature.^[1-2]

Table S2. List of fitted XPS signals for the profiles shown in Figure 4 in the manuscript.

a)	Cu 2p _{3/2} I	Cu 2p _{3/2} II	Cu Sat I	Cu Sat II	Cu 2p _{1/2} I	Cu 2p _{1/2} II	Cu Sat III
water	932.7	934.5	940.1	943.2	952.7	954.6	962.0
ethanol	932.4	934.4	940.4	943.4	952.3	954.3	962.0
<i>n</i> -propanol	932.9	934.8	940.3	943.3	952.7	954.6	962.0

b)	Co 2p _{3/2} I	Co 2p _{3/2} II	Co Sat I	Co Sat II	Co 2p _{1/2} I	Co 2p _{1/2} II	Co Sat III	Co Sat IV
water	779.7	781.3	785.4	789.4	794.8	796.5	802.0	805.2
ethanol	779.7	781.3	785.1	789.4	794.9	796.5	802.1	805.4
<i>n</i> -propanol	779.6	780.8	784.4	789.2	794.7	796.2	802.4	805.2

c)	O 1s I	O 1s II	O 1s III	O 1s IV	O 1s V
water	529.7	-	531.1	531.8	532.9
ethanol	529.6	530.7	531.4	532.3	533.5
<i>n</i> -propanol	529.7	-	531.1	532.2	533.3

Figure S2. XRD patterns of Co(OH)₂, CoO(OH), and Co₃O₄. Black squares: Co(OH)₂ PDF 74-1057; black circles: CoO(OH) PDF 7-169; black diamonds: Co₃O₄ PDF 42-1467.

Figure S3. Conversions a) and selectivities b) for glycerol oxidation over Cu/CoO catalysts. The first recycling was conducted under the same reaction conditions performed for the first run. In a separate reaction, the first run was conducted in 50vol% ethanol (see Figure 2 for reaction conditions) and the recycling experiment was conducted in pure water as reaction solvent. It is clearly shown that the catalysts spent in water or ethanol/water reaction mixtures show decent stability for glycerol oxidation and that ethanol as co-solvent does not have a detrimental impact on the stability of the catalyst. Reaction conditions: 1 g L⁻¹ catalyst, 15 mL of 0.05 M aqueous glycerol solution, 4:1 NaOH to glycerol ratio, 90 °C, 10 bar pure O_2 , 1 h reaction time, 750 rpm stirring speed.

- [1] J. Yang, H. Liu, W. N. Martens, R. L. Frost, J. Phys. Chem. C 2010, 114, 111-119.
- [2] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. Smart, *Appl. Surf. Sci.* 2011, 257, 2717-2730.