Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supplementary information

<u>**Title:</u>** Rational Selection of $Fe_2V_4O_{13}$ over $FeVO_4$ as a Preferred Active Site on Sb-Promoted TiO_2 for Catalytic NO_x Reduction with NH_3 </u>

Author(s): Jongsik Kim,* Dong Ho Kim, Dong Wook Kwon, and Heon Phil Ha*

Table of Contents

Table S1	
Eia \$1 \$7	c2 c0
rig, 31-37	

Table S1 Locations and relative abundance of surface Fe, V, and O species for Fe_1/TiO_2 and Fe_2/TiO_2 . Values with *italic* indicate location of surface species (eV), whereas values in parentheses indicate relative abundance of surface species (mol. %).

	Fe 2p _{3/2}		V 2p _{3/2}		O 1s		
	Fe ^{3+ a}	$Fe^{\delta + a}$	V ^{5+ a}	V ^{4+ a}	Ο΄ _α ^{<i>a</i>}	$O_{\alpha}{}^{a}$	$O_{\beta}{}^{a}$
Fe ₁ /TiO ₂	710.9	713.3	517.3	516.2	532.6	531.2	530.0
	(49.7)	(50.3)	(73.1)	(26.9)	(5.0)	(12.6)	(82.4)
Fe ₂ /TiO ₂	711.4	713.7	517.1	516.0	532.6	531.0	530.0
	(42.2)	(57.8)	(68.6)	(31.4)	(0.1)	(20.0)	(79.9)

^{*a*} via deconvolution of XP spectra.

Fig. S1 (a) XRD patterns of Fe_x/TiO_2 catalysts. (b) XP spectra of Fe_x/TiO_2 catalysts in Ti 2p $_{3/2}$ regime. (c) Background-subtracted *in situ* DRIFT spectra of Fe_x/TiO_2 catalysts after saturating the surfaces with NO (1000 ppm) and O₂ (3 vol. %) at 220 °C for 30 minutes. Prior to DRIFT runs, the surfaces are initially purged with O₂ and N₂ at 400 °C for an hour. Grey-shaded regimes are assigned to N-O vibrations of multiple NO/O₂-driven species chemisorbed on the surfaces.

Fig. S2 Profiles of NO-TPD (a for NO desorbed; b for NO₂ evolved), H_2 -TPR (c), and NH_3 -TPD (d) for Fe_x/TiO_2 catalysts.

Fig. S3 (a) XRD patterns of Fe_2 -Sb_Y/TiO₂ catalysts. (b) Background-subtracted *in situ* DRIFT spectra of Fe_2 -Sb_Y/TiO₂ catalysts after saturating the surfaces with NO (1000 ppm) and O₂ (3 vol. %) at 220 °C for 30 minutes. Prior to DRIFT runs, the surfaces are initially purged with O₂ and N₂ at 400 °C for an hour. Grey-shaded regimes are assigned to N-O vibrations of multiple NO/O₂-driven species chemisorbed on the surfaces.

Fig. S4 XP spectra of Fe₂-Sb_y/TiO₂ catalysts in (a) Fe 2p, (b) V 2p $_{3/2}$, (c) O 1s, (d) Ti 2p $_{3/2}$, and (e) Sb 3d $_{3/2}$ regimes. In (a), solid and empty symbols indicate surface Fe species in Fe 2p $_{3/2}$ and Fe2p $_{1/2}$ regimes, respectively.

Fig. S5 Profiles of NO-TPD (a for NO desorbed; b for NO₂ evolved), H_2 -TPR (c), and NH_3 -TPD (d) for Fe_2 -Sb_Y/TiO₂ catalysts.

Fig. S6 (a) XRD patterns of Fe_2 -Sb_Y/TiO₂ (S) catalysts. (b) XP spectra of Fe_2 -Sb_Y/TiO₂ (S) catalysts in S 2p regime. (c) Background-subtracted *in situ* DRIFT spectra of Fe_2 -Sb_Y/TiO₂ (S) catalysts after saturating the surfaces with NO (1000 ppm) and O₂ (3 vol. %) at 220 °C for 30 minutes. Prior to DRIFT runs, the surfaces are initially purged with O₂ and N₂ at 400 °C for an hour. Grey-shaded regimes are assigned to N-O vibrations of multiple NO/O₂-driven species chemisorbed on the surfaces.

Fig. S7 Profiles of NO-TPD (a for NO desorbed), H₂-TPR (b), and NH₃-TPD (c) for Fe₂-Sb_Y/TiO₂ (S) catalysts.