Electronic supplementary information

Mechanistic study of the ceria supported, Re-catalyzed deoxydehydration of

vicinal OH groups

Yongjie Xi[#], Wenqiang Yang[#], Salai Cheettu Ammal[#], Jochen Lauterbach[#], Yomaira Pagan-

Torres^{\$} and Andreas Heyden^{#,*}

[#]Department of Chemical Engineering, University of South Carolina, 301 South Main Street, Columbia, South Carolina 29208, United States

^{\$}Department of Chemical Engineering, University of Puerto Rico-Mayaguez Campus, Mayaguez, Puerto Rico

006814-9000, United States

Corresponding Author *E-mail for A.H.: heyden@cec.sc.edu

S1. Slab Model	2
S2. Gibbs free energies of ReO _x (OH) _y species relative to ReO ₃	4
S3. Partial pressure estimation of anhydroerythritol and dihydrofuran	5
S4. Labelling of selected lengths	6
S5. Formulation of harmonic transition state theory	7
S6. Rate constants and free energies of all elementary steps	9
S7. Chemical formulas of reaction intermidates	11
S8. Apparent activation energies	
S9. Effect of pre-adsorbed hydrogen on the property of Re.	
S10. Effect of the size of Pd cluster and Au ₄ on the property of Re	14

S1. Slab Model

Figure S1. a. Top view of the $(3 \times 2\sqrt{3})$ CeO₂(111) surface model. **a** equals to 3.871 Å, which is the optimized lattice constant of CeO₂. The topmost layer has 12 oxygen atoms; b. Side view of the CeO₂(111) surface model; c. Gibbs free energy of hydrogen adsorption on CeO₂(111) at 413 K, calculated as $\Delta G = [G(CeO_2H_x) - G(CeO_2) - x/2 \cdot G(H_2)]/(x/2)$, x is the number of hydrogen atoms; d. Top view of the fully hydroxylated CeO₂, e.g. CeO₂-H₁₂.

Figure S2. Adsorption configuration and relative energies of Re (**a** and **b**) and Pd₄ (**c** and **d**) on CeO₂(111). In the initial configurations, Re and Pd₄ of **a** and **c** are placed on top of a surface ceria O, while Re and Pd₄ of **b** and **d** are placed on top of a surface Ce. **e.** Adsorption configuration of ReO on Pd₄.

S2. Gibbs free energies of ReO_x(OH)_y species relative to ReO₃

Figure S3. The Gibbs free energies of $\text{ReO}_x(\text{OH})_y$ species relative to ReO_3 at a hydrogen partial pressure of 80 bar and a water partial pressure of 3.56 bar (corresponding to the chemical potential of liquid water at 413 K), respectively.

S3. Partial pressure estimation of anhydroerythritol and dihydrofuran

In the experiments, 1 g of anhydroerythritol and 4 g of 1,4-dioxane solvent were used. This ratio was adopted in our calculation of the partial pressure (fugacity) of anhydroerythritol (AE) and dihydrofuran (DHF). We used the modified Raoult's law to calculate the partial pressure/fugacity of anhydroerythritol,

$$f_{AE} = P_{AE} = x_{AE} \times \gamma_{AE} \times P_{AE}^{sat}$$

where f_{AE} , P_{AE} , x_{AE} , γ_{AE} and P_{AE}^{sat} denote fugacity, partial pressure, mole fraction, activity coefficient and saturation pressure of AE. The activity coefficient and saturation pressure of AE at 413 K were calculated with COSMOtherm,¹ being 2.79 and 6.03x10⁻³ bar, respectively. The mole fraction of AE in 1,4-dioxane is 0.175, therefore, the partial pressure of AE is 2.95x10⁻³ bar. The activity coefficient and the saturation pressure of DHF were calculated to be 2.77 and 4.98 bar, respectively. With the mole fraction of AE in 1,4-dioxane in 1,4-dioxane and the experimental conversion of AE to DHF (0.4), the partial pressure of DHF was estimated to be 0.965 bar. While the partial pressure of DHF might be overestimated at the initial stage of the reaction, we found that the reaction rate is essentially independent with the partial pressure/fugacity of DHF.

S4. Labelling of selected lengths

Figure S4. The structures of IM1-IM3 in Figure 5 with selected length labelled.

Figure S5. The structures of IM1_Pd-IM4_Pd in Figure 7 with selected length labelled.

S5. Formulation of harmonic transition state theory

Harmonic transition state theory was used to calculate elementary surface rate constants, k_f (forward rate) and k_b (backward rate)

$$\mathbf{k}_f = \frac{k_B T}{h} e^{-\Delta G^{TS}/k_B T} \tag{1},$$

where k_B is the Boltzmann constant, T is the reaction temperature, h is the Planck constant, and $\Delta G^{TS}=G^{TS}-G^r$ is the free energy of activation. k_b was calculated with $\Delta G^{TS}=G^{TS}-G^p$, where ΔG^{TS} is the activation energy of the backward reaction.

Free energies of each species were calculated as

$$G = E_{DFT} + E_{ZPE} - k_B T lnq_{vib}$$
(2).

Here, E_{DFT} and $E_{ZPE} = \frac{1}{2} \sum_{i} h v_i$ are the DFT energy and zero point energy (ZPE), respectively. q_{vib} is the vibrational partial function. Each vibrational mode is lablled by i.

The vibrational partion function was calculated as

$$q_{vib} = \prod_i \frac{1}{1 - e^{\frac{hv_i}{k_B T}}}$$
(3).

To reduce the error of small vibrational frequencies, we shifted all frequencies below 100 cm⁻¹ to 100 cm⁻¹.²⁻³ The free energies of reaction, ΔG_{rxn} , are calculated in a similar way to ΔG^{TS} . Thus, the equilibrium constant K_{eq} can be obtained as the ratio of forward and reverse rate constant.

The forward rate constant of an adsorption process was calculated using collision theory,

$$\mathbf{k}_f = \frac{10^5}{\sqrt{2\pi m_A k_B T}} S_{unit}(s^{-1} a t m^{-1})$$
(4).

Here, m_A is the molecular weight of adsorbed species A, S_{unit} is the adsorption area of the active site which we approximated to be $2.18 \times 10^{-19} \text{ m}^2$ in the present study. The desorption rate constant is obtained from the equilibrium constant, adsorption rate constant, and the relation $K_{eq} = k_f/k_b$.

The Gibbs free energies of the gas molecules were calculated using

$$G_{gas} = E_{DFT} + E_{ZPE} + \Delta \mu(T, P^{\theta}) + k_B T \ln(P/P^{\theta})$$
(5),

where $\Delta \mu$ can be calculated from the rotational, translational, and vibrational partition functions of the gas molecules, while P and P^{θ} represent the pressure of the gas molecule and 1 atm, respectively. The free

energies of the gas molecules were used to calculate the free energy of adsorption. The calculated rate constants of elementary steps for ReO/CeO₂ and ReO-Pd/CeO₂ are tabulated in Table S1 and Table S2.

S6. Rate constants and free energies of all elementary steps

Table S1. Forward (k_f) and backward (k_b) reaction rate constant, free energy of activation (ΔG^{\ddagger}) and reaction free energy (ΔG_{rxn}) of each elementary step over ReO/CeO₂ at experimental conditions (413 K, 80 bar hydrogen pressure, etc.). For adsorption/desorption steps, only ΔG_{rxn} are provided. R1 \rightarrow R14 and R19 \rightarrow R21 represent **Path-a** and **Path-b**, respectively. R1 \rightarrow R6, followed by R15 \rightarrow R18 which represents **Path-c**. The initial state (IS) and the final state (FS) are the same species, although they are represented differently in the elementary steps for clarity. NA denotes not-applicable. The matrix for solving the master equation is provided in supplementary datasheet, where f(n) and b(n) denote the forward and backward rate constant of nth elementary step.

	· .				
Reaction label	Elementary Steps	k _f (s ⁻¹)	k _b (s ⁻¹)	$\Delta G^{*}(eV)$	$\Delta G_{rxn}(eV)$
R1	AE(g)+IS→IM1	8.165x10 ⁵	3.615x10 ¹¹	NA	0.46
R2	IM1→IM2	1.440x10 ⁴	2.531x10 ⁶	0.72	0.18
R3	IM2→IM3	8.606x10 ¹²	1.775x10 ⁶	0	-0.55
R4	IM3 \rightarrow IM4+H ₂ O(g)	4.049x10 ⁹	5.326x10 ⁷	NA	-0.15
R5	IM4→IM5	2.407x10 ¹²	1.480x10 ⁻⁶	0.045	-1.49
R6	IM5 \rightarrow IM6+DHF(g)	8.606x10 ¹²	3.980x10 ⁵	NA	-1.15
R7	IM6→IM7	6.282x10 ⁷	3.482x10 ⁷	0.42	0.02
R8	IM7→IM10	6.143x10 ⁻²⁵	2.798x10 ⁻²⁴	3.04	0.05
R9	IM10→IM11	3.627x10 ³	1.807x10 ¹²	0.77	0.71
R10	IM11 \rightarrow IM12+H ₂ O(g)	1.557x10 ³	5.326x10 ⁷	NA	0.37
R11	IM7+H ₂ O(g) \rightarrow IM8	5.326x10 ⁷	8.606x10 ¹²	NA	0.50
R12	IM8→IM9	4.450x10 ¹⁰	8.606x10 ¹²	0.19	0.19
R13	IM11 \rightarrow IM12+H ₂ O(g)	8.606x10 ¹²	5.326x10 ⁷	NA	0.63
R14	IM12+H ₂ (g) \rightarrow IM13	1.592x10 ¹¹	8.606x10 ¹²	NA	0.29
R15	IM13→FS	1.153x10 ³	2.047x10 ⁻¹⁸	0.81	-1.70
R16	$IM7+1/2H_2 \rightarrow IM16$	4.450x10 ¹⁰	1.573x10 ⁸	0.19	-0.20
R17	IM16→IM17	2.352x10 ¹⁰	8.606x10 ¹²	0.21	0.21
R18	IM17 \rightarrow IM18+H ₂ O(g)	1.983x10 ⁷	5.326x10 ⁷	NA	0.04
R19	IM18+1/2H ₂ \rightarrow FS	4.450x10 ¹⁰	5.975x10 ⁶	0.19	-0.32
R20	$IM6+H_2 \rightarrow IM14$	1.592x10 ¹¹	4.692x10 ⁶	NA	-0.37
R21	IM14→IM15	2.532x10 ⁻¹⁰	2.057x10 ⁻⁷	1.85	0.24
R22	IM15 \rightarrow FS+H ₂ O(g)	4.932x10 ⁹	5.326x10 ⁷	NA	-0.16

Table S2. Forward (k_f) and backward (k_b) reaction rate constant, free energy of activation (ΔG^{\dagger}) and reaction free energy (ΔG_{rxn}) of each elementary step over ReO-Pd/CeO₂ at experimental conditions (413 K, 80 bar hydrogen pressure, etc.). R1 \rightarrow R15, R16 \rightarrow R23, R24-R27 and R28-R30 represent **Path-d**, **f**, **g** and **e**, respectively. The matrix for solving the master equation is provided in supplementary datasheet, where f(n) and b(n) denote the forward and backward rate constant of nth elementary step.

• • •			<i>v</i> 1		
	Elementary Steps	k _f (s ⁻¹)	k _b (s ⁻¹)	$\Delta G^{\dagger}(eV)$	$\Delta G_{rxn}(eV)$
R1	$AE(g)+IS_Pd\rightarrow IM1_Pd$	8.165x10 ⁵	5.078x10 ⁹	NA	0.31
R2	IM1_Pd→IM2_Pd	1.116x10 ⁸	8.606x10 ¹²	0.40	0.40
R3	IM2_Pd→IM3_Pd	1.239x10 ⁹	4.631x10 ²	0.31	-0.53
R4	IM3_Pd→IM4_Pd	2.083x10 ¹¹	1.296x10 ⁹	0.13	-0.18
R5	IM4_Pd \rightarrow IM5_Pd +H ₂ O(g)	1.055x10 ⁷	5.326x10 ⁷	NA	0.06
R6	IM5_Pd→IM6_Pd	1.205	3.204x10 ²	1.05	0.20
R7	IM6_Pd→IM7_Pd +DHF(g)	8.606x10 ⁷	3.980x10 ⁵	NA	-0.66
R8	IM7_Pd→IM8_Pd	1.036x10 ⁸	7.150x10 ¹²	0.40	0.40
R9	IM8_Pd +H ₂ O(g) \rightarrow IM9_Pd	5.326x10 ⁷	2.037x10 ⁶	NA	-0.12
R10	IM9_Pd→IM10_Pd	2.282x10 ¹⁰	8.606x10 ¹²	0.21	0.21
R11	IM10_Pd \rightarrow IM11_Pd +H2O(g)	1.238x10 ⁷	5.326x10 ⁷	NA	0.05
R12	IM11_Pd→IM12_Pd	5.747x10 ³	2.275x10 ¹⁰	0.75	0.54
R13	IM12_Pd \rightarrow IM13_Pd +H ₂ O(g)	9.633x10 ¹⁰	5.326x10 ⁷	NA	-0.27
R14	IM13_Pd +H ₂ (g) \rightarrow IM14_Pd	1.592x10 ¹¹	8.606x10 ¹²	NA	0.22
R15	IM14_Pd→FS_Pd	7.496x10 ⁸	7.114x10 ⁻¹⁸	0.33	-2.13
R16	IM13_Pd +H ₂ (g) \rightarrow IM17_Pd	1.592x10 ¹¹	9.915x10 ⁸	NA	-0.18
R17	IM17_Pd +H ₂ O(g) \rightarrow IM18_Pd	5.326x10 ⁷	1.586x10 ⁶	NA	-0.13
R18	IM18_Pd→IM19_Pd	1.419x10 ¹¹	2.274x10 ⁻²	0.15	-1.05
R19	IM19_Pd→IM20_Pd	8.606x10 ¹²	3.391x10 ¹²	0.00	-0.03
R20	IM20_Pd→IM21_Pd	3.098x10 ¹²	8.606x10 ¹²	0.04	0.04
R21	IM21_Pd→IM22_Pd	8.606x10 ¹²	3.645x10 ¹²	0.00	-0.03
R22	IM22_Pd→IM23_Pd	8.606x10 ¹²	2.957x10 ¹⁰	0.00	-0.20
R23	IM23_Pd \rightarrow FS_Pd +H ₂ O(g)	5.326x10 ⁷	4.643x10 ³	NA	-0.33
R24	IM8_Pd +1/2H ₂ \rightarrow IM24_Pd	2.282x10 ¹⁰	7.311x10 ⁻¹	0.21	-0.86
R25	IM24_Pd \rightarrow IM25_Pd +H ₂ O(g)	1.317x10 ⁹	8.606x10 ¹²	0.31	0.31
R26	IM25_Pd→IM26_Pd	1.266x10 ⁸	5.326x10 ⁷	0	-0.03
R27	IM26_Pd +1/2H ₂ (g) \rightarrow FS_Pd	2.282×10^{10}	1.454x10 ⁻¹	0.21	-0.92
R28	IM7_Pd +H ₂ (g) \rightarrow IM15_Pd	1.592x10 ¹¹	8.606x10 ¹²	NA	0.18
R29	IM15_Pd→IM16_Pd	4.142x10 ⁻⁵	2.986x10 ⁻¹²	1.42	-0.59
R30	IM16_Pd \rightarrow FS_Pd +H ₂ O(g)	8.606x10 ¹²	5.326x10 ⁷	NA	-0.70

S7. Chemical formulas of reaction intermediates

ReO/CeO ₂		ReO-Pd/CeO ₂			
Reaction			Reaction	Chemical	
intermidate	Chemical Formula	OS of Re	intermidate	Formula	OS of Re
IS/FS	H ₉ ORe	6	IS_Pd/FS_Pd	H ₆ OPd ₄ Re	7
IM1	C ₄ H ₁₇ O ₄ Re	6	IM1_Pd	$C_4H_{14}O_4Pd_4Re$	7
IM2	C ₄ H ₁₇ O ₄ Re	5	IM2_Pd	$C_4H_{14}O_4Pd_4Re$	6
IM3	C ₄ H ₁₇ O ₄ Re	5	IM3_Pd	$C_4H_{14}O_4Pd_4Re$	6
IM4	$C_4H_{15}O_3Re$	5	IM4_Pd	$C_4H_{14}O_4Pd_4Re$	6
IM5	$C_4H_{15}O_3Re$	7	IM5_Pd	$C_4H_{12}O_3Pd_4Re$	6
IM6	H ₉ O ₂ Re	7	IM6_Pd	$C_4H_{12}O_3Pd_4Re$	7
IM7	H ₉ O ₂ Re	7	IM7_Pd	H ₆ O ₂ Pd ₄ Re	7
IM8	H ₁₁ O ₃ Re	7	IM8_Pd	H ₆ O ₂ Pd ₄ Re	7
IM9	H ₁₁ O ₃ Re	7	IM9_Pd	H ₈ O ₃ Pd ₄ Re	7
IM10	H ₉ O ₂ Re	7	IM10_Pd	H ₈ O ₃ Pd ₄ Re	7
IM11	H ₉ O ₂ Re	7	IM11_Pd	H ₆ O ₂ Pd ₄ Re	7
IM12	H ₇ O ₁ Re	7	IM12_Pd	H ₆ O ₂ Pd ₄ Re	7
IM13	H ₉ ORe	7	IM13_Pd	H ₄ O ₁ Pd ₄ Re	7
IM14	H ₁₁ O ₂ Re	7	IM14_Pd	H ₆ O ₁ Pd ₄ Re	7
IM15	H ₁₁ O ₂ Re	6	IM15_Pd	H ₈ O ₂ Pd ₄ Re	7
IM16	H ₁₀ O ₂ Re	6	IM16_Pd	H ₈ O ₂ Pd ₄ Re	7
IM17	H ₁₀ O ₂ Re	6	IM17_Pd	H ₆ O ₁ Pd ₄ Re	7
IM18	H ₈ O ₁ Re	6	IM18_Pd	$H_8O_2Pd_4Re$	7
			IM19_Pd	$H_8O_2Pd_4Re$	7
			IM20_Pd	$H_8O_2Pd_4Re$	7
			IM21_Pd	H ₈ O ₂ Pd ₄ Re	7
			IM22_Pd	H ₈ O ₂ Pd ₄ Re	7
			IM23_Pd	H ₈ O ₂ Pd ₄ Re	7
			IM24_Pd	H ₇ O ₂ Pd ₄ Re	7
			IM25_Pd	H ₇ O ₂ Pd ₄ Re	7
			IM26_Pd	H ₅ O ₁ Pd ₄ Re	7

Table S3. Chemical formulas of reaction intermediates on ReO/CeO₂ and ReO-Pd/CeO₂. In all cases, the ceria substrate with a formula of $Ce_{48}O_{96}$ is omitted for brevity. The oxidation states of Re are also provided.

S8. Apparent activation energies

Figure S6. Arrhenius plot for **Path-c** (a) and the overall process of **Path-d**, **e**, **f** and **g** (b) in the temperature range 383–443 K.

S9. Effect of pre-adsorbed hydrogen on the property of Re.

Figure S7. Adsorption free energies of hydrogen on CeO₂-supported Pd₄ cluster, calculated as $\Delta G = G(PdH_x)$ -G(Pd₄) - x/2 [G(H₂)], x is the number of hydrogen atoms. The adsorption energies suggest that Pd₄ can accommodate up to 5 hydrogen atoms.

Table S4. Bader charge and d-orbital magnetic moment(μ_B) of Re for ReO species. Free energies G (in eV)
of ReO_2 and $ReOOH$ species relative to ReO under various hydrogen coverages are also provided. These values
suggest that upon the adsorption of hydrogen on Pd ₄ , the properties of Re are essentially unchanged.

	Pd ₄ no-H	Pd ₄ 3H	Pd ₄ 4H	Pd ₄ 5H
Bader(Re)	2.378	2.363	2.368	2.505
d-electron magnetic moment(μ_B) of Re	0.165	0.167	0.131	0.014
G(ReO ₂)	1.10	0.97	0.86	1.09
G(ReOOH)	0.64	0.46	0.41	0.38

S10. Effect of the size of Pd cluster and Au₄ on the property of Re.

Figure S8. Spin density of ReO and Pd₁₀ adsorbed on pristine CeO₂(111).

Figure S9. (a) Spin density of Au₄ adsorbed on pristine $CeO_2(111)$; (b) Au₄ and ReO co-adsorbed on a surface hydroxylated $CeO_2(111)$. Gold atoms in blue.

Reference

- 1. Schafer, A.; Klamt, A.; Sattel, D.; Lohrenz, J. C. W.; Eckert, F., Phys. Chem. Chem. Phys. 2000, 2 (10), 2187-2193.
- 2. Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., J. Phys. Chem. B **2011**, *115* (49), 14556-14562.
- 3. Ulissi, Z. W.; Medford, A. J.; Bligaard, T.; Norskov, J. K., Nat Commun 2017, 8, 14621.