Electronic Supplementary Information (ESI)

A luminescent supramolecular adduct Cu₂I₂(NH₃)₂-sandwiched Cu₃(pyrazolate)₃ as a temperature sensor

Shun-Ze Zhan,^{*a} Xia Jiang,^a Ji Zheng,^b Xin-Da Huang,^a Guang-Hui Chen^a and Dan Li^{*b}

^a Department of Chemistry and Key Laboratory for Preparation and Application of Ordered

Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China

^b College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China

*E-mail: <u>szzhan@stu.edu.cn</u>; <u>danli@jnu.edu.cn</u>

Table of Contents

SECTION 1: EXPERIMENTAL SECTION	S2
MATERIALS AND PHYSICAL MEASUREMENTS	52
	52 52
	35
SECTION 2: CRYSTAL DATA AND ADDITIONAL STRUCTURAL DESCRIPTION	S4
Crystal Structure Determination	S4
Crystal Data	S5
Additional Structural Description	S7
SECTION 3: HIRSHFELD SURFACE ANALYSIS	S9
SECTION 4: DIFFUSE REFLECTANCE AND PHOTOLUMINESCENCE PROPERTIES	S16
SECTION 5: ADDITIONAL THEORETICAL CALCULATION DETAILS	S19
DENSITY FUNCTIONAL THEORY (DFT) CALCULATIONS	S19
TIME-DEPENDENT DENSITY FUNCTIONAL THEORY (TDDFT) CALCULATIONS	S19
REFERENCES	S29

Section 1: Experimental Section

Materials and Physical Measurements

Commercially available chemicals were purchased and used without further purification. Infrared spectrum (IR) was obtained in KBr disk on a Nicolet Avatar 360 FTIR spectrometer in the range of 4000–400 cm⁻¹; abbreviations used for the IR bands are: w = weak, m = medium, b = broad, s = strong, vs = very strong. Elemental analysis (EA) of C, H, N and S was determined with an Elementar Vario EL III CHNS analyzer. Thermogravimetric analysis (TGA) was performed on a TA Instruments Q50 Thermogravimetric Analyzer under a nitrogen flow of 40 mL·min⁻¹ at a heating rate of 10 °C·min⁻¹. Powder X-ray diffraction (PXRD) experiment was performed on a D8 Advance X-ray diffractometer. ¹H NMR spectroscopy was performed on a Bruker DPX 400 spectrometer using Si(CH₃)₄ (TMS) as the internal standard, and all δ values are given in ppm.

The diffuse reflectance solid-state UV-Vis spectrum was recorded on a Lambda950 UV/Vis/NIR spectrophotometer of Perkin Elmer using pure powder sample. Steady-state photoluminescence spectra and lifetime were measured with an Edinburgh FLS920 single photon counting spectrometer equipped with a continuous Xe900 xenon lamp, a µF900 µs flash lamp, a red-sensitive Peltier-cooled Hamamatsu R928P photomultiplier tube (PMT), and a closed-cycle cryostat using liquid helium as cooling medium (Advanced Research Systems). The corrections of excitation and emission for the detector response were performed ranging from 200 to 900 nm. The data were analyzed by iterative convolution of the luminescence decay profile with the instrument response function using the software package provided by Edinburgh Instruments. Lifetime data were fitted with biexponential decay functions. The goodness of the nonlinear least-squares fit was judged by the reduced χ^2 value (< 1.5 in most cases). PL QY values was collected by an absolute PL quantum yield spectrometer, Quantaurus-QY C11347-11 (Hamamatsu Photovics K. K., Japan) using a Xenon light source (150 W). In all cases, the crystalline sample was selected under a microscope with 40-time amplification after being washed with ethanol then dried. The phase purity of the sample is assured by elemental analysis and PXRD measurement (Fig. S2).

Synthesis

Ligand: The ligand 4-(1-methyl-tetrazol-5-ylthio)-3,5-dimethyl-1*H*-pyrazole (HL) was synthesized according to the literatures ^{S1} with modification.

5-Mercapto-1-methyltetrazole (2.32 g, 20.0 mmol) was dissolved in methanol (100 mL), then 1.8 mL (about 21.6 mmol) pyridine was added. The solution was stirred at ambient temperature while 3-chloro-2,4-pentanedione (2.68 g, 20.0 mmol) in methanol (10 mL) was slowly added. The mixture was stirred for 25 h, then solvent was evaporated under reduced pressure on the rotary evaporator. The obtained solid product was washed three times with water (20 mL), and was dried on vacuum to give white intermediate product 3-(1-methyl-tetrazol-5-ylthio)-pentane-2,4-dione. Yield, 3.51 g (82%).

3-(1-methyl-tetrazol-5-ylthio)-pentane-2,4-dione (2.14 g, 10.0 mmol) was added in 80 mL ethanol and the mixture was heated until the solid was dissolved completely. Hydrazine hydrate (80%, 2.50 mL) was added with stirring. The mixture was refluxed for 10 h and then cooled and filtered to remove a small amount of white precipitate. The solvent was removed under reduced pressure on the rotary evaporator to give white solid product. The solid was washed three times with water (20 mL), then dissolved in 50 mL hot ethanol for recrystallization. Several days later, colorless single crystal was obtained to give pure ligand *H*L as crystalline. Yield, 1.60 g (76%). IR data (KBr pellet, cm⁻¹): 3415 s, 3204 s, 3122 s, 2974 s, 1620 w, 1590 m, 1492 s, 1400 s, 1295 s, 1020 s, 888 m, 775 m, 710 s, 571 m. ¹H NMR (400 MHz, CDCl₃, 300K): 2.46 (s, 2CH₃, 6H), 4.06 (s, CH₃, 3H).

Complex [Cu₃L₃][Cu₂I₂(NH₃)₂][Cu₃L₃] (C₄₂H₆₀Cu₈I₂N₃₈S₆): A mixture of *H*L (6.3 mg, 0.03 mmol), CuI (11.4 mg, 0.06 mmol), cyclohexane (1.5 mL), benzene (0.5 mL), *i*-propanol (0.5 mL) and NH₃·H₂O (25% water solution, 0.2 mL) was sealed in a 6 mL Pyrex tube, heated in an oven at 140 °C for 72 h, and then slowly cooled to room temperature at a rate of -3 °C·h⁻¹. Colorless block crystals were obtained (15 % yield based on ligand). Anal. Calcd. for C₄₂H₆₀Cu₈I₂N₃₈S₆: C, 27.18; H, 3.26; N, 18.12; S, 10.37 %. Found: C, 27.00; H, 3.49; N, 18.01; S, 10.11 %. IR data (KBr

pellet, cm⁻¹): 3420 vs, 3255 s, 2905 w, 1620 m, 1572 m, 1506 s, 1410 s, 1275 m, 722 s, 571 s.

Section 2: Crystal Data and Additional Structural Description

Crystal Structure Determination

Single crystal X-ray data collection for the ligand and complex at 293 K was performed on an Oxford Diffraction Gemini E (Enhance Mo X-Ray source, K α , λ = 0.71073 Å) equipped with a graphite monochromator and ATLAS CCD detector (CrysAlis CCD, Oxford Diffraction Ltd). The data were processed using CrysAlis RED, Oxford Diffraction Ltd (CrysAlisPro 1.171.36.28, release 01-02-2013 CrysAlis171.NET).

Single crystal X-ray data collection for the complex at 100 K was performed on a Rigaku OD (Enhance Cu X-ray Source, K α , $\lambda = 1.54184$ Å) with CCD Plate (XtaLAB Pro: Kappa single) equipped with a Rigaku low temperature N₂ gas spray cooler. Data were processed with the CrysAlisPro 1.171.39.7e (Rigaku Oxford Diffraction, 2015).

Structures were solved by direct methods (SHELXTL-97) and refined on F^2 using full-matrix last-squares (SHELXTL-97) ^{S2}. All non-hydrogen atoms were refined with anisotropic thermal parameters, and all hydrogen atoms were included in calculated positions and refined with isotropic thermal parameters riding on those of the parent atoms. Crystal data and structure refinements for the ligand and complex are summarized in Table S1 in the Supporting Information. Selected bond lengths and angles are given in Tables S2-S3 in the Supporting Information. CCDC nos. 1556796-1556798 contain the supplementary crystallographic data for this paper.

Crystal Data

Table S1	Crystal d	ata and struct	ure refinements	s for the ligand	and complex.

Parameter	HL	Complex (293 K)	Complex (100 K)
Chemical formula	$C_7H_{10}N_6S$	$C_{42}H_{60}Cu_8I_2N_{38}S_6$	$C_{42}H_{60}Cu_8I_2N_{38}S_6$
Formula weight	210.27	2051.76	2051.76
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	$P2_1/c$	<i>P</i> -1	<i>P</i> -1
Temperature (K)	293	293	100
<i>a</i> (Å)	8.9716(4)	10.4769(4)	10.33551(13)
<i>b</i> (Å)	6.9908(4)	11.0875(4)	10.98757(11)
<i>c</i> (Å)	16.3989(6)	15.7405(6)	15.67208(18)
α (deg)	90	93.946(3)	93.96941(9)
β (deg)	97.259(4)	95.294(3)	95.8876(10)
γ (deg)	90	91.410(3)	90.6089(9)
$V(\text{\AA}^3)$	1020.27(8)	1815.46(12)	1766.42(3)
Z	4	1	1
$D_{Calcd}(g \cdot cm^{-3})$	1.369	1.877	1.929
μ (mm ⁻¹)	0.289	3.380	11.626
Reflections collected	4575	11217	18706
Unique reflections	1797	6349	6928
R _{int}	0.0234	0.0298	0.0237
Goodness-of-fit on F ²	1.087	1.033	1.420
$R_1 = [I > 2\sigma(I)]$	0.0432	0.0492	0.0441
$wR_2^{b} [I > 2\sigma(I)]$	0.1359	0.1252	0.1517
R ₁ ^a [all refl.]	0.0549	0.0699	0.0443
wR ₂ ^b [all refl.]	0.1502	0.1419	0.1520

^a $R_1 = \sum(||F_o| - |F_c||) / \sum |F_o|$. ^b $wR2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$.

Parameter	293 K	100 K				
	Bond lengths					
Cu(1)-N(1)	1.874(5)	1.877(3)				
Cu(2)-N(2)	1.866(5)	1.880(3)				
Cu(2)-N(7)	1.880(5)	1.879(3)				
Cu(3)-N(8)	1.871(5)	1.874(3)				
Cu(3)-N(13)	1.874(5)	1.872(3)				
Cu(1)-N(14)	1.872(5)	1.879(3)				
Cu(4)-N(19)	1.933(5)	1.949(3)				
Cu(4)-I(1)	2.5339(14)	2.5298(8)				
Cu(4)-I(1) #1	2.5768(13)	2.5899(9)				
	Bond angles	<u> </u>				
N(1)-Cu(1)-N(14)	168.3(2)	168.10(14)				
N(2)-Cu(2)-N(7)	168.3(2)	167.92(14)				
N(8)-Cu(3)-N(13)	172.3(2)	172.96(14)				
N(19)-Cu(4)-I(1)	120.06(18)	121.18(11)				
N(19)-Cu(4)-I(1)#1	115.49(18)	113.59(11)				
I(1)-Cu(4)-I(1)#1	124.45(5)	125.17(3)				
	Weak interactions	<u> </u>				
Cu(1)-I(1)	3.4760(1)	3.4312(3)				
Cu(2)-I(1)	3.1972(1)	3.1504(3)				
Cu(3)-I(1)	3.3034(1)	3.3072(3)				
Cu(1)-Cu(4)	3.0848(1)	3.0229(3)				
Cu(1)-Cu(4)#1	3.1653(1)	3.1121(3)				
Cu(1)-S(3)#2	3.5840(1)	3.5391(3)				
Cu(2)-S(3)#2	3.7748(1)	3.7457(3)				
Cu(3)-S(3)#2	3.8699(4)					
Symmetry code: #1 -x, -y+1, -z; #2 -x, -y, -z						

Table S2 Selected bond lengths and angles in the complex.

D H4	Dist	Angles				
D-II…A	Н…А	D····A	Angles			
N19-H19f…N18	2.20799(7)	3.0645(1)	161.6			
N19-H19e…N6A	2.57743(8)	3.0531(1)	114.3			
N19-H19d…N6A	2.75084(9)	3.0531(1)	101.3			
C15-H15c…N5A	2.74020(1)	3.6621(1)	161.2			
C5A-H5aA…N17	3.1040(1)	3.9852(1)	153.3			
Symmetry code: A -x, -y+1, -z;						

Table S3 Selected hydrogen bond lengths (Å) and angles (°) in the complex measured at 293 K.

Additional Structural Description

Fig. S1 The perspective views of HL molecule (a) and the ternary adduct $[Cu_3L_3][Cu_2I_2(NH_3)_2][Cu_3L_3]$ (b, H atoms are omitted for clarity) with 50% thermal ellipsoid. Color codes: red, Cu; blue, N; black, C; yellow, S; purple, I; white cycle, H.

Fig. S2 Comparison of the simulated and experimental X-ray powder diffraction patterns of the complex.

Fig. S4 Thermogravimetric plot of the complex showing weight loss less than 2 % for NH₃ molecules (calculated 1.66 %) below 250 °C.

Fig. S5 Schematic illustration of the inclined stacking modes showing planar distance a (2.773 Å), horizontal distance b (2.140 Å), centroid distance c (3.503 Å) and inclination angle α (52.34 °).

(a) N···H and π - π interactions (highlighted in cycle) through 1-methyl-tetrazole groups between these adducts. The centroid distances between tetrazole rings are about 3.4411(1) Å.

(b) Cu₃...S weak interactions showing Cu...S distances 3.58-3.94 Å, much larger than the sum of van der Waals radii of Cu and S atoms (1.40 + 1.80 = 3.20 Å).

(c) Extended chains supported by Cu₃...S π acid-base interactions between the ternary adducts.

Fig. S6 Weak interactions between the ternary adduct showing N···H, π - π (a), Cu₃···S (b c) interactions.

Section 3: Hirshfeld Surface Analysis

Hirshfeld Surface Calculations. Hirshfeld surfaces,^{S3} fingerprint plots were calculated using CrystalExplorer (version 3.1) software^{S4} from the crystal structure coordinates supplied as CIF files (293 K). Hirshfeld surfaces with d_{norm} (isovalue =

0.5) over the range -0.15 to 1.50 were mapped on Cu₃L₃ and Cu₂I₂(NH₃)₂ molecules. d_{norm} is the function of distance defined as follow:

$$d_{norm} = \frac{d_t - r_t^{vdW}}{r_t^{vdW}} + \frac{d_{\theta} - r_{\theta}^{vdW}}{r_{\theta}^{vdW}}$$

where d_i and d_e refer to the distances from a point on the surface to the nearest nucleus inside and outside the surface, respectively, while r_i^{vdW} and r_e^{vdW} refer to the van der Waals radii of the atoms. The d_{norm} surface map allows visualization of intermolecular interactions by displaying a surface with a red-white-blue color code. The red, white, as well as blue color regions in the surface mapped with d_{norm} refer to the contact with the distance shorter than, equals to, and longer than sum of van der Waals radii, respectively. Each point on the Hirshfeld surfaces with d_{norm} could be found on the corresponding 2D fingerprint with the coordinate of (d_i, d_e) .

(b)

Fig. S7 Hirshfeld surfaces mapped with d_{norm} for Cu₃L₃ molecule showing close contact with one Cu₂I₂(NH₃)₂ molecule viewing from two sides (a) and the Fingerprint plot analysis results showing 99.1% contribution of close contact for the total surface (b).

(c) H-N 14.7%

Fig. S8 Decomposed fingerprint plots (left) and Hirshfeld surfaces distribution (middle and right, d_{norm} surface, highlight in color) displaying various intermolecular close contacts from one Cu₃L₃ molecule (inside) to other adjacent molecules (outside, Cu₃L₃ and Cu₂I₂(NH₃)₂) showing their percentage contributions to the Hirshfeld surface area. The full fingerprint and Hirshfeld surfaces appears beneath as a grey shadow.

Fig. S9 Hirshfeld surfaces (d_{norm} surface) of Cu₂I₂(NH₃)₂ molecule showing close contact with one Cu₃L₃ molecule (a) and the Fingerprint plot analysis results showing 98.1% contribution of close contact for the total surface (b).

Fig. S10 Decomposed fingerprint plots (left) displaying various intermolecular close contacts from one $Cu_2I_2(NH_3)_2$ molecule (inside) to other adjacent Cu_3L_3 molecules (outside) showing their percentage contributions to the Hirshfeld surface area. The full fingerprint and Hirshfeld surfaces appear beneath each decomposed plot as a grey shadow.

Cu ₃ L ₃	Other molecules	Percentage Contribution (%)		
	Н	63.5		
all	Ν	19.1		
	Ι	4.0		
N	all	26.6		
IN	Н	21.3		
	all	56.4		
Н	Ν	14.7		
	Н	35.2		
	all	5.0		
	Ι	1.6		
Cu	Cu	0.7		
	S	0.8		
	Н	1.9		

Table S4 Various intermolecular close contacts and their percentage contribution to the Hirshfeld surface area from elements of one Cu_3L_3 molecule to other molecules.

Table S5 Various intermolecular close contacts and their percentage contribution to the Hirshfeld surface area from elements of one $Cu_2I_2(NH_3)_2$ molecule to other molecules

Cu ₂ I ₂ (NH ₃) ₃	Other molecules	Percentage Contribution (%)		
	Н	33.6		
a11	Ν	33.3		
all	Cu	18.9		
	С	10.7		
	all	47.3		
П	Ν	24.3		
п	Н	13.2		
	С	8.6		
	all	39.5		
Ι	Cu	12.5		
	Н	19.3		
Cu	all	11.2		
Cu	Cu	5.2		

Additional Descriptions for the Table S4 and Table S5:

For Cu₃L₃ molecules, H···H (35.2 %), H···N (21.3%) and N···H (14.7%) contacts dominate its interactions with other Cu₃L₃ and [Cu₂I₂(NH₃)₂], in which H···N (N···H) hydrogen interactions contribute 36.0 %. The shortest interactions, highlighted in black cycle in Fig. 2, is H(NH₃)···N(tetrazole) contacts (2.20799 Å), as stated above. For [Cu₂I₂(NH₃)₂] molecules, the most contribution is H (47.3%) and I (39.5 %) atoms, in which the total of H(NH₃)···N(tetrazole) (24.3%), I···Cu (12.5%), I···H (19.3%) is 56.1%.

Fig. S11 Excitation (monitored at 590 nm) and emission (excited at 345 nm) spectra from 10 K to 340 K (a) and linear fit plot of intensity-temperature showing good fitting result from 50 K to 340 K interval (b).

Fig. S12 The normalized emission spectra showing no shifting of emission maxima and slightly increasing of full width at half maximum (FWHM) under higher temperature

Fig. S13 Diffuse reflectance solid-state UV-Vis spectrum of the complex.

Table S6 Luminescence decay lifetimes $(\tau, \mu s)$ and corresponding fractional contributions (%) of the solid-state sample from 10 K to 300 K monitored at 590 nm with excitation of 345 nm (χ^2 : fitting parameter).

T (K)	10	30	50	70	100	140	180	220	260	300
τ ₁	6.60	6.43	5.99	6.33	5.84	5.30	5.58	5.01	4.36	5.16
(%)	(79.31)	(75.13)	(62.12)	(69.42)	(61.59)	(45.20)	(58.94)	(38.65)	(31.57)	(49.89)
τ ₂	11.86	11.07	10.03	10.32	9.74	9.00	9.65	8.66	8.60	9.50
(%)	(20.69)	(24.87)	(37.88)	(30.58)	(38.41)	(54.80)	(41.06)	(61.35)	(68.43)	(50.11)
χ^2	1.294	1.140	1.155	1.261	1.131	1.086	1.141	1.544	1.362	1.092

10³

10²

10

Residuals

Counts

(d) 70 K

Time/us

dahadahar panakat firikalaripah bahasa da asa a

(e) 100 K

(f) 140 K

(i) 260 K

(j) 300 K

Fig. S14 Luminescence decay patterns of the complex monitored at corresponding excitation (345 nm) and emission (590 nm) in solid state under various temperatures (10~300 K).

Section 5: Additional Theoretical Calculation Details

Density Functional Theory (DFT) calculations

The geometrical structures of the singlet ground states (S₀) and the lowest-lying triplet excited states (T₁) of the complex were optimized by using restricted (RDFT) and unrestricted DFT (UDFT) methods without consideration of symmetry constrains. All the calculations were carried out with Gaussian 09 software package ^{S5}, and some of the output files were used as input files of Multiwfn software packages ^{S6} to perform wave function analysis. PBE0 functional ^{S7-S9} was used throughout, LANL2DZ basis set ^{S10} was used for Cu and I atoms while the 6-31G(d) basis set ^{S11} was employed for other atoms (C, N, S and H). Hirshfeld composition was analyzed by Multiwfn software packages.

Time-Dependent Density Functional Theory (TDDFT) Calculations

Based on the optimized geometries of S_0 and T_1 states, TDDFT method was used to calculate the phosphorescent spectra. Electron density difference (EDD) maps could be obtained to provide accurate assignments of excited states by calculating singlet-singlet spin-allowed and emission transition and then further treating the results by Multiwfn software packages ^{S12}.

сопрех.							
	singlet-sing	let spin-allov	ved transition	singlet-triplet spin-	forbidden transition		
No.	E(eV)	λ(nm)	f	E(eV)	λ(nm)		
1	3.930	315.5	0.0113	3.691	335.9		
2	4.188	296.1	0.0000	3.972	312.2		
3	4.236	292.7	0.0000	4.012	309.1		
4	4.307	287.8	0.0074	4.062	305.2		
5	4.426	280.2	0.0000	4.109	301.8		
6	4.459	278.0	0.0001	4.110	301.7		
7	4.464	277.8	0.0000	4.157	298.3		
8	4.498	275.7	0.0033	4.221	293.8		
9	4.498	275.6	0.0015	4.230	293.1		
10	4.519	274.4	0.1631	4.273	290.1		
11	4.562	271.8	0.0282	3.691	289.9		
12	4.567	271.5	0.0000	3.972	289.3		
13	4.657	266.2	0.0000	4.012	286.4		
14	4.673	265.3	0.0748	4.062	285.2		
15	4.713	263.1	0.0000	4.109	284.4		
16	4.741	261.5	0.0314	4.110	281.3		
17	4.745	261.3	0.0000	4.157	335.9		
18	4.773	259.8	0.0000	4.221	312.2		
19	4.778	259.5	0.1397	4.230	309.1		
20	4.784	259.2	0.0000	4.273	305.2		
21	4.798	258.4	0.0000	3.691	301.8		
22	4.799	258.4	0.0303	3.972	301.7		
23	4.828	256.8	0.0495	4.012	298.3		
24	4.853	255.5	0.0000	4.062	293.8		
25	4.864	254.9	0.0354	4.109	293.1		
26	4.869	254.7	0.0407	4.110	290.1		
27	4.874	254.4	0.0000	4.157	289.9		
28	4.899	253.1	0.0064	4.221	289.3		
29	4.920	252.0	0.0000	4.230	286.4		
30	4.926	251.7	0.0000	4.273	285.2		
31	4.932	251.4	0.0249	3.691	284.4		
32	4.938	251.1	0.0241	3.972	281.3		
33	4.942	250.9	0.0009	4.012	335.9		
34	4.943	250.8	0.0486	4.062	312.2		
35	4.947	250.6	0.0000	4.109	309.1		
36	4.953	250.3	0.0183	4.110	305.2		
37	4.962	249.9	0.0258	4.157	301.8		
38	4.966	249.7	0.0000	4.221	301.7		
39	4.979	249.0	0.0000	4.230	298.3		
40	4.992	248.4	0.0131	4.273	293.8		

Table S7 The calculated first 40 transitions based on the optimized S0 state for the
complex.

No.	E(eV)	λ(nm)	f	EDD	Major transitions and contributions (H = HOMO, L = LUMO)	Туре
1	3.930	315.5	0.0113	Top View Side View(1) Side View(2)	H→L+5 (84%)	¹ CC, ¹ XLCT, ¹ LLCT
10	4.519	274.4	0.1631	Top View Side View(1) Side View(2)	H-2→L+5 (56%) H-1→L+4 (13%)	¹ CC, ¹ XLCT, ¹ LLCT
19	4.778	259.5	0.1397	Top View Side View(1) Side View(2)	H-12→L+5 (7%) H-6→L+7 (8%) H-1→L+7 (40%)	¹ CC, ¹ XLCT, ¹ LLCT

Table S8 The calculated absorption spectra, the electron density difference (EDD) maps and the orbital transitions of the selected vertical singletexcited states for the complex (isovalue = 0.0004 a.u.).

Fragment	НОМО-12	НОМО-6	НОМО-2	HOMO-1	НОМО	LUMO	LUMO+4	LUMO+5	LUMO+7
Cu from Cu ₃ L ₃	52.64	26.58	5.39	40.14	8.58	2.73	49.50	17.63	18.73
Cu from Cu ₂ I ₂ (NH ₃) ₂	19.86	37.72	52.48	20.30	46.73	0.08	0.74	17.49	8.93
Ι	1.01	16.27	35.98	20.92	31.67	0.26	4.41	5.34	6.27
L	25.83	15.95	4.32	15.93	4.86	96.81	45.24	57.75	65.14
NH ₃	0.66	3.48	1.83	2.71	8.16	0.12	0.11	1.79	0.93

Table S9 The Hirshfeld compositions (%) of selected MOs in the ground state at the PBE0 level of theory for the complex.

Fig. S15 Selected molecular orbitals (MOs) at the PBE0 level of theory for the complex (isovalue = 0.02).

Fig. S16 Comparison of normalized calculated absorption spectrum (black) and experimental UV-Vis diffuse reflectance spectrum (red) in solid state.

Fig. S17 The optimized Cu₃···Cu₂I₂···Cu₃ structural geometries for S₀ state (a) and T₁ state (b), showing severely distorted geometry of T₁ state compared with S₀ state. Note that the labels are consistent with crystal structure descripted in Fig. 1, but the label symbol "A" does not mean any symmetrical relations because symmetry constrains were not taken into considerations for theoretical calculation.

Table S10 The selected bond lengths (Å) and bond angles (°) of optimized S_0 and T_1 geometrical structures for complex at the PBE0/(LANL2DZ+6-31G(d)) level of theory, together with the experimental value (The data in brackets are the deviation percentage (%) from the experimental values (293 K)).

Domoniatoria	Complex					
Parameters	S ₀	T1	Exp			
Cu1–Cu2	3.221	3.230	3.120			
Cu2–Cu3	3.208	3.222	3.172			
Cu3–Cu1	3.238	3.242	3.241			
Cu4–Cu4A	2.688 (+12.84)	2.531 (+6.25)	2.382			
Cu1A-Cu2A	3.221	2.879 (-7.72)	3.120			
Cu2A–Cu3A	3.208	2.981 (-6.02)	3.172			
Cu3A–Cu1A	3.238	3.036 (-6.33)	3.241			
Cu1–I1	3.475	3.469	3.476			
Cu2–I1	3.155	3.460 (+8.22)	3.197			
Cu3–I1	3.412	3.264	3.303			
Cu4–I1	2.655	2.874 (+13.42)	2.534			
Cu4–I1A	2.754	2.880 (+11.76)	2.577			
Cu4A–I1	2.754	3.469 (+34.61)	2.577			
Cu4A–I1A	2.655	2.811 (+10.93)	2.534			
Cu1A–I1A	3.476	4.911 (+41.28)	3.476			
Cu2A–I1A	3.155	2.983 (-6.69)	3.197			
Cu3A–I1A	3.411	5.049 (+52.81)	3.304			
Cu1–Cu4	2.789 (-9.59)	2.941	3.085			
Cu1–Cu4A	3.343	4.151 (+31.15)	3.165			
Cu1A–Cu4	3.343	2.779 (-12.20)	3.165			
Cu1A-Cu4A	2.789 (-9.59)	4.599 (+49.08)	3.085			
Cu2–I1–Cu3	58.3	57.2	58.4			
Cu4–I1–Cu4A	59.6	53.7	55.5			
Cu4–I1A–Cu4A	59.6	52.8	55.5			
Cu2A-I1A-Cu3A	58.3	32.1	58.4			
Cu1-Cu2-Cu3	60.0	60.0	58.2			
Cu1A-Cu2A-Cu3A	60.0	57.2	58.2			
Cu4–I1–Cu4A–I1A	0.0	50.8	0.0			
I1–Cu4–Cu4A–I1A	180.0	119.9	180.0			

Table S11 The calculated phosphorescent emission, the electron density difference (EDD) maps and the orbital transition for complex at the
TD-PBE0 level of theory (isovalue = 0.0004 a.u.).

Table S12 The Hirshfeld compositions (%) of selected MOs in the T₁ state at the PBE0 level of theory for complex.

Fragment	LSOMO	HSOMO
Cu from Cu ₃ L ₃	41.90	39.86
Cu from Cu ₂ I ₂	1.51	23.20
Ι	17.76	17.15
L	38.69	18.27
NH3	0.14	1.52

LSOMO(-5.804eV)

Fig. S18 Spatial plots of the selected molecular orbitals of the T_1 state optimized geometry at the PBE0 level of theory for the complex (isovalue = 0.02)

Fig. S19 Simplified Jablonski diagram depicting the photophysical processes of the vertical $S_0 \rightarrow S_{10}$ and $S_0 \rightarrow S_1$ excitation, the internal conversion (IC) and intersystem crossing (ISC), and $T_1 \rightarrow S_0$ emission decay.

References

- S1 (a) Z. Yoshida, H. Ogoshi, T. Tokumitsu, *Tetrahedron*, 1970, 246, 2987. (b) B. S. Zheng, X.-Y. Zhang, H.-W. Zhu, S.-X. Luo, L. F. Lindoy, J. C. McMurtrie, P. Turner, G. Wei, *Dalton Trans.*, 2005, 1349. (c) T.-J. Won, J. K. Clegg, L. F. Lindoy, J. C. McMurtrie, *Cryst. Growth Des.*, 2007, 7, 972.
- S2 G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
- S3 M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19.
- S4 S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, CrystalExplorer, version 3.1; University of Western Australia: Crawley, Australia, 2012.
- S5 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09 (Revision A.02), Gaussian, Inc., Wallingford, CT, 2009.
- S6 T. Lu, F. W. J. Chen, Comp. Chem. 2012, 33, 580.
- S7 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- S8 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
- S9 C. Adamo, V. Barone, Theor. Chem. Acc. 2000, 105(2), 169.
- S10 P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
- S11 J. E. Del Bene, Chem. Phys. Lett. 1983, 94(2), 213.
- S12 Multiwfn manual, version 3.3.8, http://multiwfn.codeplex.com/.