Supporting Information

Synthesis, In vitro Cytotoxicity, and Structure–activity Relationship (SAR) studies of Multidentate Oxidovanadium(IV) Complexes as Anticancer Agents

Lubin Ni,^{‡a} Hongxia Zhao,^{‡a} Li Tao,^b Xing Li,^c Zhaohui Zhou,^{*c} Yun Sun,^b Chong Chen,^d Duo Wei,^d

Yanqing Liu,*^b Guowang Diao,*^a

^a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, People's Republic of China.

^b College of Medicine, Yangzhou University, Yangzhou 225001, People's Republic of China.

^c State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical

Engineering, Xiamen University, Xiamen 361005, People's Republic of China.

^d Testing Center, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China.

[‡] These authors contributed equally.

Contents

Experimental Section

 Table S1. Crystallographic data and structural refinement details for compound 1

$[VO(ox)(bpy)(H_2O)]$ and compound 2 $[VO(ox)(phen)(H_2O)]$.	S5
---	----

 Table S2. Crystallographic data and structural refinement details for compound 3

 $[VO(ida)(bpy)] \cdot 2H_2O$ and compound 4 (phen) $[VO(ida)(phen)] \cdot 4H_2O$. S6

Table S3. Crystallographic data and structural refinement details for compound 5

$(Hphen)[VO(nta)(phen)] \cdot 2H_2O.$	S7
Table S4. Selected bond distances (Å) and angles (°) for compound 1 and 2	S8
Table S5. Selected bond distances (Å) and angles (°) for compound 3 [VO(ida)(bpy)]·2H	I_2O and
compound 4 (phen)[VO(ida)(phen)] \cdot 4H ₂ O.	S9
Table S6. Selected bond distances (Å) and angles (°) for compound 5 (Hphen)[VO(H ₂ O)	$(nta)]\cdot 2H_2O.$
	S 10
Table S7. Hydrogen bonds observed in compound 3 [VO(ida)(bpy)]·2H ₂ O.	S10
Table S8. Hydrogen bonds observed in compound 4 (phen)[VO(ida)(phen)] \cdot 4H ₂ O.	S11
Table S9. Hydrogen bonds observed in compound 5 (Hphen)[VO(H ₂ O)(nta)]·2H ₂ O.	S11
Table S10. The comparison of anti-proliferation activity for compound 2 , the marketed p	olatinum-
based drugs and other vanadium(IV) on hepatoma cells.	S12
Figure S1. Calculated and experimental PXRD patterns of compound 1.	S13
Figure S2. Calculated and experimental PXRD patterns of compound 2.	S 13
Figure S3. Calculated and experimental PXRD patterns of compound 3 .	S14
Figure S4. Calculated and experimental PXRD patterns of compound 4.	S14
Figure S5. Calculated and experimental PXRD patterns of compound 5.	S15
Figure S6. Solid state ¹³ C NMR spectrum of compound 2 .	S15
Figure S7. The FT-IR spectrum of vanadyl compound 1.	S16

Figure S8. The FT-IR spectrum of vanadyl compound 2 .	S16
Figure S9. The FT-IR spectrum of vanadyl compound 3 .	S17
Figure S10. The FT-IR spectrum of vanadyl compound 4 .	S17
Figure S11. The FT-IR spectrum of vanadyl compound 5.	S18
Figure S12. The solid diffuse UV-Vis spectrum of vanadyl compound 1 .	S18
Figure S13. The solid diffuse UV-Vis spectrum of vanadyl compound 2 .	S19
Figure S14. The solid diffuse UV-Vis spectrum of vanadyl compound 3 .	S19
Figure S15. The solid diffuse UV-Vis spectrum of vanadyl compound 4 .	S20
Figure S16. The solid diffuse UV-Vis spectrum of vanadyl compound 5 .	S20
Figure S17. The thermal gravimetric analysis of compound 2 .	S21
Figure S18. The thermal gravimetric analysis of compound 5 .	S21
Figure S19. EPR spectra of compounds 1-5 in DMSO at 130 K ($t = 0 h$)	S22
Figure S20. X-band EPR spectra in solid state of (a) compound 3 , (b) compound 5 at various	
temperatures.	S22
Figure S21. ESI-MS spectrum of compound 5 in the positive ion mode.	S23
Figure S22. SMMC-7721 and HepG2 cells were incubated with various concentrations of com	pound
2, and ligands for 48 h, respectively.	S23

Figure S23. Inhibitory effect of compound **2** on SMMC-7721, HepG2 and 293T cells after 48 h (n =

3, error bar = S.D.).

S24

	1	2
Empirical formula	$C_{12}H_{10}N_2O_6V$	$C_{14}H_{10}N_2O_6V$
Formula weight	329.16	353.18
Temperature, K	173(2)	173(2)
Wavelength, Å	Mo <i>K</i> α (0.71073)	Mo <i>Kα</i> (0.71073)
Crystal system	Monoclinic	Triclinic
Space group	<i>P</i> 2 ₁ /n	$P \bar{1}$
Unit cell dimensions		
a, Å	12.532(1)	7.615 (1)
b, Å	7.554(1)	9.752(1)
c, Å	14.088 (1)	9.767(1)
α, °		89.827(6)
β, °	96.707(4)	74.344(7)
γ, ⁰		81.007(6)
V, Å ³	1324.47(2)	689.26(9)
Ζ	4	2
D (calculated), g/cm ³	1.651	1.702
Abs. coeff., mm ⁻¹	0.779	0.755
<i>F</i> (000)	668	358
Crystal size, mm	0.20×0.18×0.10	0.15×0.15×0.10
θ range for data collection, $^{\rm o}$	3.08 ~ 27.00	2.97 ~ 27.00
Reflections collected / unique / R _{int}	5817/28460.0458	4840/2962/0.0280
Data / restraints / parameters	2846 / 3 / 198	2962 / 3 / 216
GOF on F^2	1.073	1.053
Final R indices R_1 , $\omega R_2 [I > 2\sigma(I)]$	0.0561, 0.1097	0.0351, 0.0845
<i>R</i> indices R_1 , ωR_2 [all data]	0.0820, 0.1197	0.0417, 0.0889
Largest diff. peak and hole, e. Å ⁻³	0.366/-0.451	0.434/-0.341

 Table S1. Crystallographic data and structural refinement details for compound 1 and compound 2.

	3	4
Empirical formula	$C_{14}H_{17}N_3O_7V$	$C_{28}H_{29}N_5O_9V$
Formula weight	390.25	630.50
Temperature, K	173(2)	173(2)
Wavelength, Å	Mo <i>K</i> α (0.71073)	Μο Κα (0.71073)
Crystal system	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ /c	<i>P</i> 2 ₁ /c
Unit cell dimensions		
a, Å	9.024(1)	7.156(1)
b, Å	15.584(1)	19.676(2)
c, Å	11.820(1)	19.862(2)
α, ⁰		
β, ^o	100.912(3)	95.826(7)
γ, ⁰		
V, Å ³	1632.26(9)	2781.9(3)
Ζ	4	4
D (calculated), g/cm ³	1.588	1.505
Abs. coeff., mm ⁻¹	0.651	0.421
<i>F</i> (000)	804	1308
Crystal size, mm	0.18×0.15×0.08	0.20×0.10×0.10
θ range for data collection, °	3.15 ~ 27.00	2.92 ~ 26.00
Reflections collected / unique / R _{int}	6328/3469/0.0501	12451/5452/0.0584
Data / restraints / parameters	3469/6/238	5452/12/412
GOF on F^2	1.050	1.037
Final R indices R_1 , $\omega R_2 [I > 2\sigma(I)]$	0.0499, 0.1062	0.0584, 0.1049
<i>R</i> indices R_1 , ωR_2 [all data]	0.0658, 0.1152	0.0888, 0.1171
Largest diff. peak and hole, e. Å-3	0.378/-0.360	0.307/-0.464

 Table S2. Crystallographic data and structural refinement details for compound 3 and compound 4.

	5
Empirical formula	$C_{18}H_{21}N_3O_{10}V$
Formula weight	490.32
Temperature, K	173(2)
Wavelength, Å	Μο Κα (0.71073)
Crystal system	Monoclinic
Space group	<i>P</i> 2 ₁ /c
Unit cell dimensions	
a, Å	8.162(1)
b, Å	23.355(1)
c, Å	11.045(1)
α, °	
β, °	106.358(4)
γ, ⁰	
$V, Å^3$	2020.36(2)
Ζ	4
D (calculated), g/cm ³	1.612
Abs. coeff., mm ⁻¹	0.555
<i>F</i> (000)	1012
Crystal size, mm	0.20×0.20×0.20
θ range for data collection, $^{\rm o}$	2.90 ~ 26.00
Reflections collected / unique / R _{int}	8402/3960/0.0352
Data / restraints / parameters	3960/9/309
GOF on F^2	1.048
Final R indices R_1 , $\omega R_2 [I > 2\sigma(I)]$	0.0404, 0.0847
<i>R</i> indices R_1 , ωR_2 [all data]	0.0532, 0.0899
Largest diff. peak and hole, e. Å-3	0.301/-0.433

 Table S3. Crystallographic data and structural refinement details for compound 5.

1			
	1 501 (0)		
V(1) - O(5)	1.581(2)	V(1)-O(1w)	2.034(2)
V(1)–O(1)	1.996(2)	V(1) - N(1)	2.129(3)
V(1)–O(2)	1.999(2)	V(1)–N(2)	2.283(3)
O(5)–V(1)–O(1)	101.8(1)	O(2)–V(1)–N(1)	160.9(1)
O(5)–V(1)–O(2)	105.7(1)	O(1w)–V(1)–N(1)	95.9(1)
O(1)–V(1)–O(2)	80.8(1)	O(5)-V(1)-N(2)	164.5(1)
O(5)–V(1)–O(1w)	98.0(1)	O(1)–V(1)–N(2)	84.2(1)
O(1)–V(1)–O(1w)	159.1(1)	O(2)–V(1)–N(2)	89.3(1)
O(2)–V(1)–O(1w)	87.4(1)	O(1w)-V(1)-N(2)	78.4(1)
O(5)–V(1)–N(1)	92.5(1)	N(1)-V(1)-N(2)	73.0(1)
O(1)–V(1)–N(1)	90.0(1)		
2			
V(1)–O(5)	1.591(2)	V(1)–O(1w)	2.030(2)
V(1)–O(1)	2.002(1)	V(1)–N(1)	2.319(2)
V(1)–O(2)	1.994(1)	V(1)–N(2)	2.121(2)
O(5)–V(1)–O(1)	101.2(1)	O(2)–V(1)–N(1)	87.2(1)
O(5)–V(1)–O(2)	105.3(1)	O(1w)–V(1)–N(1)	80.2(1)
O(1)–V(1)–O(2)	81.0(1)	O(5)-V(1)-N(2)	93.8(1)
O(5)–V(1)–O(1w)	99.4(1)	O(1)–V(1)–N(2)	92.6(1)
O(1)–V(1)–O(1w)	158.6(1)	O(2)–V(1)–N(2)	160.7(1)
O(2)–V(1)–O(1w)	88.3(1)	O(1w)-V(1)-N(2)	91.5(1)
O(5)–V(1)–N(1)	167.4(1)	N(1)-V(1)-N(2)	73.7(1)
O(1)–V(1)–N(1)	80.9(1)		

Table S4. Selected bond distances (Å) and angles (°) for compound 1 $[VO(ox)(bpy)(H_2O)]$ and compound 2 $[VO(ox)(phen)(H_2O)]$.

3			
V(1)–O(1)	1.990(2)	V(1)–N(1)	2.331(2)
V(1)–O(3)	1.995(2)	V(1)–N(2)	2.103(2)
V(1)–O(5)	1.601(2)	V(1)–N(3)	2.116(2)
O(5)–V(1)–O(1)	98.3(1)	O(3)–V(1)–N(3)	90.3(1)
O(5)–V(1)–O(3)	101.0(1)	N(2)–V(1)–N(3)	76.9 (1)
O(1)–V(1)–O(3)	92.6 (1)	O(5)–V(1)–N(1)	174.1(1)
O(5)-V(1)-N(2)	100.8(1)	O(1)–V(1)–N(1)	76.6 (1)
O(1)-V(1)-N(2)	92.8(1)	O(3)–V(1)–N(1)	76.4(1)
O(3)–V(1)–N(2)	156.6(1)	N(2)–V(1)–N(1)	82.7(1)
O(5)-V(1)-N(3)	101.6(1)	N(3)–V(1)–N(1)	83.9(1)
O(1)-V(1)-N(3)	159.0(1)		
4			
V(1)–O(1)	1.994(2)	V(1)–N(1)	2.341(2)
V(1)–O(3)	2.008(2)	V(1)–N(2)	2.113(2)
V(1)–O(5)	1.589(2)	V(1)–N(3)	2.129(2)
O(5)–V(1)–O(1)	101.5(1)	O(3)–V(1)–N(3)	92.7 (1)
O(5)–V(1)–O(3)	95.9 (1)	N(2)–V(1)–N(3)	78.0(1)
O(1)–V(1)–O(3)	94.5(1)	O(5)–V(1)–N(1)	170.6 (1)
O(5)-V(1)-N(2)	98.3 (1)	O(1)–V(1)–N(1)	77.1(1)
O(1)-V(1)-N(2)	89.1(1)	O(3)–V(1)–N(1)	75.0(1)
O(3)-V(1)-N(2)	164.3 (1)	N(2)–V(1)–N(1)	91.0(1)
O(5)-V(1)-N(3)	101.7 (1)	N(3)–V(1)–N(1)	81.5(1)
O(1)-V(1)-N(3)	154.8 (1)		

Table S5. Selected bond distances (Å) and angles (°) for compound 3 $[VO(ida)(bpy)] \cdot 2H_2O$ and compound 4 (phen) $[VO(ida)(phen)] \cdot 4H_2O$.

V(1)–O(1)	2.014(2)	V(1)–O(7)	1.601(2)
V(1)–O(3)	2.002(2)	V(1)–O(1)W	2.032(2)
V(1)–O(5)	2.012(2)	V(1)–N(1)	2.317(2)
O(7)–V(1)–O(3)	105.3(1)	O(5)-V(1)-O(1)W	165.5 (1)
O(7)–V(1)–O(5)	94.4(1)	O(1)-V(1)-O(1)W	86.6(1)
O(3)–V(1)–O(5)	90.7 (1)	O(7)–V(1)–N(1)	171.7 (1)
O(7)–V(1)–O(1)	103.8 (1)	O(3)–V(1)–N(1)	75.3(1)
O(3)–V(1)–O(1)	150.9(1)	O(5)–V(1)–N(1)	77.4(1)
O(5)-V(1)-O(1)	90.0(1)	O(1)–V(1)–N(1)	76.2(1)
O(7)–V(1)–O(1)W	100.1(1)	O(1)W-V(1)-N(1)	88.2(1)
O(3)–V(1)–O(1)W	86.5 (1)		

Table S6. Selected bond distances (Å) and angles (°) for compound 5 $(Hphen)[VO(H_2O)(nta)] \cdot 2H_2O.$

Table S7. Hydrogen bonds observed in compound **3** $[VO(ida)(bpy)] \cdot 2H_2O$.

$D-H\cdots A$	D–H (Å)	$H \cdots A$ (Å)	$D \cdots A$ (Å)	$D–H\cdots A(^{o})$
N1–H···O1w ^a	0.930	2.175	2.959	141.33
$N1H{\cdots}O2w^b$	0.930	2.505	3.248	137.05
O2w−H···O4	0.852	1.917	2.755	167.32
O1w−H···O2	0.850	1.915	2.760	172.31
O2w−H···O2 ^c	0.851	2.145	2.961	160.44
$O1w\!-\!H\!\cdots\!O2w^d$	0.850	2.067	2.797	143.56

Symmetry transformations: (a) x + 1, y, z; (b) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (c) -x-1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (d) x - 1, $-y + \frac{1}{2}$, z - 1.

$D-H\cdots A$	D–H (Å)	$H \cdots A$ (Å)	$D \cdots A$ (Å)	$D–H\cdots A(^{o})$
$N1-H\cdots N4^{a}$	0.930	2.280	3.095	145.91
$N1-H\cdots N5^{b}$	0.930	2.372	3.131	138.70
$O1w-H\cdots O2w^{c}$	0.855	1.949	2.790	167.37
$O3w-H\cdots O4w^d$	0.852	1.925	2.727	156.30
O3w−H···O4	0.849	1.980	2.818	169.06
$O4w-H\cdots O1w^e$	0.851	2.038	2.874	167.35
$O2w-H\cdots O2$	0.852	1.972	2.816	170.58
O4w−H···O4	0.851	1.929	2.780	176.93
O1w−H···O2	0.852	1.928	2.775	172.15
$O2wH\text{-}\cdot\text{-}O3w^{f}$	0.852	1.971	2.808	167.41

Table S8. Hydrogen bonds observed in compound 4 (phen)[VO(ida)(phen)]·4H₂O.

Symmetry transformations: (a) -x, $y -\frac{1}{2}$, $-z + \frac{1}{2}$; (b) -x, $y -\frac{1}{2}$, $-z + \frac{1}{2}$; (c) x + 1, y, z; (d) x + 1, y, z; (e) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (f) -x, $y -\frac{1}{2}$, $-z + \frac{1}{2}$.

		? .	-	5 55 4 (0)
$D–H\cdots A$	D–H(A)	$H \cdots A(A)$	$D \cdots A(A)$	$D - H \cdots A(^{o})$
N2–H···O3w ^a	0.880	1.871	2.706	157.57
$O1w \cdots O4^b$	0.840	1.823	2.627	159.86
$O1w-H\cdots O2^{c}$	0.840	1.832	2.669	174.43
$O2w-H\cdots O6^d$	0.851	1.987	2.789	156.81
O2w−H····O5	0.843	1.957	2.786	167.35
O3w–H···O2w	0.851	1.957	2.789	165.65
O3w–H…O1	0.845	2.066	2.872	159.09

Table S9. Hydrogen bonds observed in compound **5** (Hphen)[VO(H₂O)(nta)] \cdot 2H₂O.

Symmetry transformations: (a) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (b) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (c) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (d) -x + 1, -y + 1, -z + 1.

	Hepatoma cell lines	IC ₅₀ (μM) 48h	Refs
Complex 2	HepG2	29.07 ± 0.017	This work
	SMMC-	5.34 ± 0.034	This work
	7721		
Cisplatin	HepG2	12.75 ± 0.80	63
	SMMC-	30.56 ± 0.80	63
	7721		
	Hep3B	4.97 ± 0.86	64
	BEL-7404	11.1 ± 0.6	65
Oxaliplatin	HepG2	12.10 ± 5.03	66
	BEL-7404	24.7 ± 3.3	64
Carboplatin	BEL-7404	190.8 ± 17.8	65
[V ^{IV} O(satsc)(phen)]	BEL-7402	55.16 ± 3.89	67
	HUH-7	47.93 ± 4.22	67
	HepG2	6.80 ± 0.76	67
[V ^{IV} O(3,5-dibrsatsc)(phen)]	BEL-7402	19.46 ± 2.14	67
	HUH-7	11.65 ± 1.85	67
	HepG2	1.68 ± 0.41	67
[V ^{IV} O(msatsc)(phen)]	BEL-7402	30.80 ± 13.05	68
	HUH-7	2.87 ± 0.23	68
	HepG2	1.81 ± 0.38	68
[V ^{IV} O(4-chlorosatsc)(phen)]	BEL-7402	17.02 ± 3.69	68
	HUH-7	1.98 ± 0.72	68
	HepG2	1.33 ± 0.37	68

Table S10. The comparison of anti-proliferation activity for compound 2, the marketedplatinum-based drugs and other vanadium(IV) on hepatoma cells.

Figure S1. Calculated and experimental powder X-ray diffraction (PXRD) patterns of compound 1.

Figure S2. Calculated and experimental powder X-ray diffraction (PXRD) patterns of compound 2.

Figure S3. Calculated and experimental powder X-ray diffraction (PXRD) patterns of compound 3.

Figure S4. Calculated and experimental powder X-ray diffraction (PXRD) patterns of compound 4

Figure S5. Calculated and experimental powder X-ray diffraction (PXRD) patterns of compound 5.

Figure S6. Solid state ¹³C NMR spectrum of compound 2.

Figure S7. The FT-IR spectrum of vanadyl compound 1.

Figure S8. The FT-IR spectrum of vanadyl compound 2.

Figure S9. The FT-IR spectrum of vanadyl compound 3.

Figure S10. The FT-IR spectrum of vanadyl compound 4.

Figure S11. The FT-IR spectrum of vanadyl compound 5.

Figure S12. The solid diffuse UV-Vis spectrum of vanadyl compound 1.

Figure S13. The solid diffuse UV-Vis spectrum of vanadyl compound 2.

Figure S14. The solid diffuse UV-Vis spectrum of vanadyl compound 3.

Figure S15. The solid diffuse UV-Vis spectrum of vanadyl compound 4.

Figure S16. The solid diffuse UV-Vis spectrum of vanadyl compound 5.

Figure S17. The thermal gravimetric analysis of compound 2.

Figure S18. The thermal gravimetric analysis of compound 5.

Figure S19. EPR spectra of compounds 1-5 in DMSO at 130 K (t = 0 h)

Figure S20. X-band EPR spectra in solid state of (a) compound 3, (b) compound 5 at various temperatures.

Figure S21. ESI-MS spectrum of compound 5 in positive ion mode.

Figure S22. SMMC-7721 and HepG2 cells were incubated with various concentrations of compound 2, and ligands for 48 h, respectively.

Figure S23. Inhibitory effect of compound **2** on SMMC-7721, HepG2 and 293T cells after 48 h (n = 3, error bar = S.D.).