Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Cobalt catalyzed hydroboration of CO₂

Sem Raj Tamang, and Michael Findlater*

Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79401

Corresponding author email: <u>Michael.Findlater@ttu.edu</u>

Contents

General Considerations	S3
General procedure for hydroboration of CO ₂ with HBpin	S3
General procedure for hydroboration of CO ₂ with HBCat	S4
General procedure for hydroboration of CO ₂ with BH ₃ •S(Me) ₂	S4

Figure S 1 ¹¹ B NMR spectra for hydroboration of CO ₂ with 10 mol % Co(acac) ₃ ,10 mol %
NaHBEt ₃ , and HBPin (1.0 mmol) at various time intervals in THFS5
Figure S 2 ¹¹ B NMR for hydroboration of CO ₂ using 10 mol % Co(acac) ₃ , and HBPin (1.0
mmol) in THF
Figure S 3 ¹¹ B NMR spectra for hydroboration of CO ₂ with 10 mol % NaHBEt ₃ , and HBpin (1.0
mmol) at various time intervals in THF- d_8
Figure S 4 ¹ H NMR spectra for hydroboration of CO ₂ with 10 mol % NaHBEt ₃ , and HBpin (1.0
mmol) at various time intervals in THF- <i>d</i> ₈
Figure S 5 ¹ H NMR spectra for hydroboration of CO ₂ with 1 mol % Co(acac) ₃ ,1 mol %
NaHBEt ₃ , and HBPin (0.1 mmol) at various time intervals THF-d ₈
Figure S 6 ¹¹ B NMR spectra for hydroboration of CO ₂ with 1 mol % Co(acac) ₃ ,1 mol %
NaHBEt ₃ , and HBPin (0.1 mmol) at various time intervals in THF-d ₈
Figure S 7 ¹³ C NMR spectra after hydroboration of CO ₂ with 1 mol % Co(acac) ₃ , 1 mol %
NaHBEt ₃ , and HBpin (0.1 mmol) in THF- <i>d</i> ₈
Figure S 8 ¹¹ B NMR spectra for hydroboration of CO ₂ with 1 mol % NaHBEt ₃ , and HBpin (0.1
mmol) at various time intervals THF-d ₈
Figure S 9 ¹ H NMR spectra for hydroboration of CO ₂ with 1 mol % NaHBEt ₃ , and HBpin (0.1
mmol) at various time intervals in THF- <i>d</i> ₈
Figure S 10 ¹¹ B NMR spectra for hydroboration of CO ₂ with and HBpin (0.1 mmol) in the
absence of Co(acac) ₃ and NaHBEt ₃ at various time intervals THF-d ₈ S14
Figure S 11 ¹ H NMR spectra for hydroboration of CO ₂ with and HBpin (0.1 mmol) in the
absence of Co(acac) ₃ and NaHBEt ₃ at various time intervals THF-d ₈
Figure S 12 ¹³ C NMR after hydroboration of CO ₂ with HBpin (0.1mmol) in the absence of
Co(acac) ₃ and NaHBEt ₃ THF-d ₈
Figure S 13 ¹¹ B NMR spectra for hydroboration of CO ₂ with 1 mol % CoBr ₂ , 1 mol %
NaHBEt ₃ , and HBPin (0.1 mmol) at various time intervals in THF-d ₈

Figure S 14¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₂, 1 mol % Figure S 15¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(II) Benzoate, 1 mol % Figure S 16¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(TMHD)₃, 1 mol % Figure S 17¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃,1 mol % Figure S 18¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃,1 mol % Figure S 19⁻¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃,1 mol % Figure S 20¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃,1 mol % Figure S 21 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃,1 mol % Figure S 22 ¹H NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % Figure S 23 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and BH₃•S(Me)₂ (0.1 mmol) at various time intervals THF-d₈......S27 Figure S 24 ¹³C NMR spectra after hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % Figure S 26¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % NaHBEt₃, and **Figure S 27** ¹H NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % Figure S 28⁻¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % **Figure S 29** ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % Figure S 30¹¹B NMR spectra for hydroboration of CO₂ with 10 mol % Co(acac)₃, 10 mol % **General Considerations**. All reagents were purchased from Sigma-Aldrich and Alfa-Aesar, and were used without further purification unless otherwise noted. All preparations were performed under an atmosphere of dry argon using Schlenk and glove box techniques unless otherwise noted. Solvents (Benzene-d6, Toluene-d8) were dried over activated molecular sieves (4Å) prior to usage; THF-*d*8 was dried and distilled over CaH₂. ¹H, ¹¹B, and ¹³C NMR spectra were recorded on a Jeol 400 MHz spectrometer at 300K unless otherwise noted. ¹H NMR spectra were referenced to the solvent residual peak (THF-*d*₈, δ 3.58 ppm, Benzene-*d*₆, δ 7.16 ppm, Toluene-*d*₈, δ 2.08, Cyclohexane-*d*₁₂, δ 1.38 ppm, Dichloromethane-*d*₂, δ 5.32 ppm and Chloroform-*d* δ 7.26 ppm. ¹³C NMR were referenced to the solvent residual peak (THF-*d*₈, δ 3.58 ppm, Benzene-*d*₆, δ 7.16 ppm). ¹¹B NMR were referenced to BF₃·(OEt)₂ as external standard: HBPin (THF-*d*8, δ 27.34 ppm and δ 28.7 ppm), HBCat (THF-d8, δ 23.7 ppm and δ 25.1 ppm), BH₃·S(Me)₂ (THF-d8, δ - 21.3 ppm), B₂Pin₂ (THF-d8, δ 31.3 ppm).

General procedure for hydroboration of CO2 with HBpin

A pre-weighed oven dried shell vial was charged with 1 mol % $Co(acac)_3$ (0.356 mg, 0.001 mmol). It was dissolved in 0.4 mL THF- d_8 , and transferred to an oven dried J-Young tube. 1 mol % NaHBEt₃ (1µL, 0.001 mmol, 1M in THF) was added and the reaction mixture turned into a clear light yellow solution after stirring for 1 minute. A separate pre-weighed vial was charged with HBpin (12.8 mg, 0.1 mmol) and dissolved in THF- d_8 (0.3 mL); it was then transferred to the J-Young tube containing the reaction mixture. The reaction mixture was degassed by three cycles of freeze-pump-thaw, and backfilled with CO₂ for ~ 2 minutes. The J-Young NMR tube was then placed in a pre-heated oil bath at 50°C. The progress of the reaction was monitored by ¹H and ¹¹B over time. ¹H NMR yield was determined by adding mesitylene as internal standard.

HCO₂Bpin: ¹H NMR (400 MHz, THF- *d*8): δ 8.29 (s, *H*CO₂Bpin); ¹¹B NMR (128.4 MHz, THF*d*8): δ 21.7 (s, br); ¹³C NMR (100 MHz, THF- *d*8): δ 159 ppm, 84.5 ppm.

pinBOBpin: ¹H NMR (400 MHz, THF- *d*8): 1.18 (s, 24H); ¹¹B NMR (128.4 MHz, THF- *d*8): δ 21.2 (s, br); ¹³C NMR(100 MHz, THF- *d*8): δ 83.15 ppm.

CH₃OBpin: ¹H NMR (400 MHz, THF- *d*8): 3.50 (s, CH₃OBpin); ¹¹B NMR (128.4 MHz, THFd8): δ 22.03 (s, br).

General procedure for hydroboration of CO₂ with HBCat

A pre-weighed oven dried shell vial was charged with 1 mol % Co(acac)₃ (0.356 mg, 0.001 mmol). It was dissolved in 0.4 mL THF- d_8 , and transferred to an oven dried J-Young tube. 1 mol % NaHBEt₃ (1µL, 0.001 mmol, 1M in THF) was added and the reaction mixture turned into a clear light yellow solution after stirring for 1 minute. A separate pre-weighed vial was charged with HBCat (11.99 mg, 0.1 mmol) and dissolved in THF- d_8 (0.3 mL); it was then transferred to the J-Young tube containing the reaction mixture. The reaction mixture was degassed by three cycles of freeze-pump-thaw, and backfilled with CO₂ for ~ 2 minutes. The J-Young NMR tube was then placed in a pre-heated oil bath at 50°C. The progress of the reaction was monitored by ¹H and ¹¹B over time. ¹H NMR yield was determined by adding mesitylene as internal standard.

CH₃OBCat: ¹H NMR (400 MHz, THF- *d*8): 3.78 (s, CH₃OBCat); ¹¹B NMR (128.4 MHz, THF*d*8): δ 23.4 (s, br); ¹³C NMR (100 MHz, THF- *d*8): δ 53.3 ppm

CatBOBCat: ¹¹B NMR (128.4 MHz, THF- *d*8): δ 17.7 (s, br); ¹³C NMR (100 MHz, THF- *d*8): δ 150.2

General procedure for hydroboration of CO₂ with BH₃•S(Me)₂

$$BH_{3} \cdot S(Me)_{2} + CO_{2} \xrightarrow{\begin{array}{c}1 \text{ mol }\% \text{ Co}(acac)_{3}\\1 \text{ mol }\% \text{ NaBHEt}_{3}\\50^{\circ}\text{C}, \text{ THF}\end{array}} \xrightarrow{\begin{array}{c}H_{3}\text{CO}}B \xrightarrow{O}B \xrightarrow{O}CH_{3}\\0\\B \xrightarrow{I}\\OCH_{3}\\(CH_{3}\text{OBO})_{3}\end{array}$$

A pre-weighed oven dried shell vial was charged with 1 mol % Co(acac)₃ (0.356 mg, 0.001 mmol). It was dissolved in 0.4 mL THF- d_8 , and transferred to an oven dried J-Young tube. 1 mol % NaHBEt₃ (1µL, 0.001 mmol, 1M in THF) was added and the reaction mixture turned into a clear light yellow solution after stirring for 1 minute. A separate pre-weighed vial was charged with BH₃•S(Me)₂ (7.60 mg, 0.1 mmol) and dissolved in THF- d_8 (0.3 mL); it was then transferred to the J-Young tube containing the reaction mixture. The reaction mixture was degassed by three cycles of freeze-pump-thaw, and backfilled with CO₂ for ~ 2 minutes. The J-Young NMR tube was then placed in a pre-heated oil bath at 50°C. The progress of the reaction was monitored by ¹H and ¹¹B over time. ¹H NMR yield was determined by adding mesitylene as internal standard.

(CH₃OBO)₃: ¹H NMR (400 MHz, THF-d8): δ 3.54, (s, (CH₃OBO)₃), ¹¹B NMR (128.4 MHz, THF-d8): δ 19.3ppm (s, br). ¹³C NMR (100 MHz, THF-d8): δ 51.3 ppm.

Figure S 1 ¹¹B NMR spectra for hydroboration of CO₂ with 10 mol % Co(acac)₃,10 mol % NaHBEt₃, and HBPin (1.0 mmol) at various time intervals in THF. (•) represents the ¹¹B peak for BEt₃ at 76 ppm, (*) represents the peak for CH₃OBPin at 22.03 ppm, (•) represents the peak for pinBOBpin at 21.2 ppm, (\circ) represents the peak for unreacted HBpin at 27.3 ppm and 28.7 ppm and (\diamond) represents the peak for unidentified boron species.

Figure S 2¹¹B NMR for hydroboration of CO₂ using 10 mol % Co(acac)₃, and HBPin (1.0 mmol) in THF. (*) represents the peak for HBpin at 27.34 ppm and 28.7 ppm.

Figure S 3 ¹¹B NMR spectra for hydroboration of CO₂ with 10 mol % NaHBEt₃, and HBpin (1.0 mmol) at various time intervals in THF- d_8 . (•) represents the ¹¹B peak for HBPin at 27.4 and 28.7 ppm, (\diamond) represents the peak for CH₃-OBPin at 22.3 ppm, (\bullet) represents the peak for pinBOBpin at 21.2 ppm, (\triangle) represents the peak for BH₄⁻ at -43.0 ppm, and (*) represents the peak for unidentified boron species.

Figure S 4 ¹H NMR spectra for hydroboration of CO₂ with 10 mol % NaHBEt₃, and HBpin (1.0 mmol) at various time intervals in THF- d_8 . (*) represents the peak for CH₃-OBPin at 3.46 ppm.

Figure S 5 ¹H NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃,1 mol % NaHBEt₃, and HBPin (0.1 mmol) at various time intervals THF- d_8 . (•) represents the ¹H peak for CH₃-OBPin at 3.46 ppm, (*) represents the peak for HCOOBPin at 8.32 ppm and (•) represents the peak for pinBOBpin at 1.18 ppm.

Figure S 6 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and HBPin (0.1 mmol) at various time intervals in THF- d_8 . The (•) represents the peak for HBpin.

Figure S 7 ¹³C NMR spectra after hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and HBpin (0.1 mmol) in THF*d*₈. (*) represents the peak for CO₂ at 125.6 ppm, and (•) represents the peak for pinBOBpin at 83.15 ppm.

Figure S 8 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % NaHBEt₃, and HBpin (0.1 mmol) at various time intervals THF d_8 . (*) represents the ¹¹B peak for HBpin at 27.34 ppm, (•) represents the peak for CH₃-OBPin at 22.23 ppm, (◊) represents the broad peak for HCOOBPin at 21.8 ppm, and (•) represents the peak for pinBOBpin at 21.2 ppm.

Figure S 9 ¹H NMR spectra for hydroboration of CO₂ with 1 mol % NaHBEt₃, and HBpin (0.1 mmol) at various time intervals in THF- d_8 . (•) represents the ¹H peak for CH₃-OBPin at 3.46 ppm, (*) represents the peak for HCOOBPin at 8.32 ppm, (\diamond) represents the peak for grease.

Figure S 10 ¹¹B NMR spectra for hydroboration of CO₂ with and HBpin (0.1 mmol) in the absence of Co(acac)₃ and NaHBEt₃ at various time intervals THF- d_8 . (•) represents the ¹¹B peak for pinBOBpin at 21.2ppm, (\diamond) represents the broad peak for HCOOBPin at 20.5 ppm, and (*) represents the peak for HBpin.

Figure S 11 ¹H NMR spectra for hydroboration of CO₂ with and HBpin (0.1 mmol) in the absence of Co(acac)₃ and NaHBEt₃ at various time intervals THF- d_8 . (•) represents the ¹H peak for pinBOBpin at 1.21 ppm, and (*) represents the peak for HCOOBPin at 8.32 ppm.

Figure S 12 ¹³C NMR after hydroboration of CO₂ with HBpin (0.1mmol) in the absence of Co(acac)₃ and NaHBEt₃ THF- d_8 . (\diamond) represents the peak for HCOOBPin at 159 ppm and 84.49 ppm, (*) represents the peak for CO₂, and (•) represents the peak for pinBOBpin at 83.15 ppm.

Figure S 13 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % CoBr₂, 1 mol % NaHBEt₃, and HBPin (0.1 mmol) at various time intervals in THF- d_8 . (•) represents the ¹¹B peak for pinBOBpin at 21.2 ppm, (◊) represents the broad peak for CH₃OBPin at 22.2 ppm, and (*) represents the peak for unreacted HBpin.

Figure S 14 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac) ₂, 1 mol % NaHBEt₃, and HBPin (0.1 mmol) at various time intervals in THF- d_8 . (•) represents the ¹¹B peak for pinBOBpin at 21.2 ppm, (◊) represents the broad peak for CH₃OBPin at 22.2 ppm, (○) represents the peak for HCOOBpin at 21.7 ppm and (*) represents the peak for unreacted HBpin.

Figure S 15 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(II) Benzoate, 1 mol % NaHBEt₃, and HBPin (0.1 mmol) at various time intervals in THF- d_8 . (•) represents the ¹¹B peak for pinBOBpin at 21.2 ppm, (\circ) represents the peak for HCOOBpin at 21.7 ppm and (*) represents the peak for unreacted HBpin.

Figure S 16 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(TMHD)₃, 1 mol % NaHBEt₃, and HBPin (0.1 mmol) at various time intervals in THF- d_8 . (•) represents the ¹¹B peak for pinBOBpin at 21.2 ppm, (\circ) represents the peak for HCOOBpin at 21.7 ppm and (*) represents the peak for unreacted HBpin.

Figure S 17 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and HBPin (0.1 mmol) at various time intervals in Toluene- d_8 . (•) represents the broad overlapped peak for pinBOBpin and HCOOBpin at 21.2 ppm.

Figure S 18 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and HBPin (0.1 mmol) at various time intervals in benzene- d_6 . (•) represents the broad peak for pinBOBpin at 21.4 ppm.

Figure S 19 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and HBPin (0.1 mmol) at various time intervals in CD₂Cl₂- d_2 . (•) represents the peaks for pinBOBpin at 21.1 ppm.

Figure S 20 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and HBPin (0.1 mmol) at various time intervals in CDCl₃. (\bullet) represents the peaks for trace amount of pinBOBpin at 21.0 ppm.

Figure S 21 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and HBPin (0.1 mmol) at various time intervals in cyclohexane- d_{12} .

Figure S 22 ¹H NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and BH₃•S(Me)₂ (0.1 mmol) at various time intervals in THF-*d*₈. The (*) represents the ¹H peak for (CH₃OBO)₃ at 3.54 ppm and (\diamond) represents peak for free S(Me)₂ at 2.00 ppm.

Figure S 23 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and BH₃•S(Me)₂ (0.1 mmol) at various time intervals THF- d_8 . The (*) represents the ¹¹B peak for (CH₃OBO)₃ at 19.3 ppm, and (\diamond) represents the peak for BH₃•THF at -0.25 ppm.

Figure S 24 ¹³C NMR spectra after hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and BH₃•S(Me)₂ (0.1 mmol) in THF- d_8 . The (\diamond) represents peak for (CH₃OBO)₃ at 51.3 ppm, (\bullet) represents the peak for S(Me)₂ at 17.6 ppm,(\circ) represents the peak for benzene- d_6 at 128.8 ppm, and (*) represents the peak for CO₂ at 125 ppm.

Figure S 25 ¹H NMR spectra in THF-*d*₈ after hydrolysis with 50 μ L of DCL in D₂O.The (\Diamond) represents the peak for CH₃OD at 3.26 ppm, (\bullet) represents the peak for S(Me)₂ at 1.99 ppm, and (*) represents the peak for mesitylene at 2.16 ppm, and 6.67 ppm.

Figure S 26 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % NaHBEt₃, and BH₃•S(Me)₂ (0.1 mmol) at various time intervals in THF. The (*) represents the ¹¹B peak for (CH₃OBO)₃ at 19.3 ppm, (\diamond) represents the peak for unreacted BH₃•S(Me)₂ at - 21.3 ppm, and (\bullet) represents the peak for BH₃•THF at -0.25 ppm.

Figure S 27 ¹H NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, and HBCat (0.1 mmol) at various time intervals in THF- d_8 . (*) represents the ¹H peak for CH₃OBCat at 3.78 ppm.

Figure S 28 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, HBCat (0.1 mmol) and CO₂ at various time intervals in THF-*d*₈. The (*) represents the ¹¹B peak for CH₃OBCat at 23.4ppm, (•) represents the peak for unreacted HBCat at 25.01ppm, and (\Diamond) represents the peak for CatBOBCat at 17.1 ppm.

Figure S 29 ¹¹B NMR spectra for hydroboration of CO₂ with 1 mol % Co(acac)₃, 1 mol % NaHBEt₃, HBCat (0.1 mmol) and CO₂ at various time intervals in THF- d_8 . (*) represents the ¹³C peak for CH₃OBCat at 53.2 ppm.

Figure S 30 ¹¹B NMR spectra for hydroboration of CO₂ with 10 mol % Co(acac)₃, 10 mol % NaBHEt₃, and B₂Pin₂ (1.0 mmol) at various time intervals in THF. (*) represents the ¹¹B peak for B₂Pin₂ at 30.2 ppm.