Coordination polymer-based supercapacitor with matched energy levels: enhanced capacity under visible light illumination in the presence of methanol

Hong an Tang, ^a Miao Miao Zhang, ^a Yun Gong ^{*a} and Jian Hua Lin^{*a,b}

College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China Tel: +86-023-65678932 E-mail: gongyun7211@cqu.edu.cn
^bState Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China Tel: +86-010-62753541 E-mail: jhlin@pku.edu.cn

	CP 1				
Cu(1)-O(1)#1	1.962(4)	Cu(1)-N(5)#1	1.990(5)		
Mo(1)-O(1)	1.757(4)	Mo(2)-O(9)#2	2.426(4)		
Mo(4)-O(12)	1.678(4)	O(1)-Cu(1)-N(5)	91.23(19)		
O(1) -Cu(1)-O(1) #1	180.00(9)	N(5)#1-Cu(1)-N(5)	180.00(12)		
O(1)#1-Cu(1)-N(5)	88.77(19)	O(11)-Mo(2)-O(4)	156.58(17)		
O(4)-Mo(1)-O(8)	69.37(15)	Mo(3)-O(8)-Mo(1)	90.16(14)		
O(10)-Mo(2)-O(9)#2	178.99(18)	Mo(4)-O(13)-Mo(3)	114.34(19)		
Mo(4)#2-O(4)-Mo(1)	146.8(2)				
CP 2					
Cu(1)-N(1)	1.978(10)	Cu(1)-N(2)	1.987(10)		
Cu(1)-O(45)	1.916(8)	Cu(1)-O(57)	1.963(9)		
Cu(1)-O(32)	2.701(9)	Cu(2)-O(41)	1.959(8)		
Cu(2)-O(59)	1.960(8)	Cu(2)-O(58)	2.278(9)		
Cu(2)-N(6)	1.997(9)	Cu(2)-N(5)	1.996(9)		
Cu(3)-O(49)	1.938(8)	Cu(3)-O(51)	1.936(9)		
Cu(3)-N(4)	1.974(11)	Cu(3)-N(3)	1.987(9)		
Cu(4)-O(60)	1.991(9)	Cu(4)-O(61)	2.235(9)		
Cu(4)-N(8)	1.974(10)	Cu(4)-N(7)	1.989(10)		
O(45)-Cu(1)-O(57)	92.5(4)	O(57)-Cu(1)-O(32)	112.1(4)		
N(1)-Cu(1)-N(2)	82.6(4)	O(45)-Cu(1)-N(1)	172.0(4)		

Table S1 Selected bond lengths (Å) and angles (°) for CPs 1 and 2

N(2)-Cu(1)-O(32)	77.8(3)	O(59)-Cu(2)-O(58)	92.6(3)	
O(59)-Cu(2)-N(5)	170.6(4)	O(41)-Cu(2)-N(5)	91.5(4)	
N(5)-Cu(2)-N(6)	80.0(4)	O(51)-Cu(3)-O(49)	88.9(4)	
O(49)-Cu(3)-N(4)	96.3(4)	N(3)-Cu(3)-O(51)	93.5(4)	
O(49)-Cu(3)-N(3)	175.4(4)	N(4)-Cu(3)-N(3)	81.7(4)	
O(43)-Cu(4)-O(60)	92.7(3)	N(8)-Cu(4)-N(7)	81.3(4)	
O(61)-Cu(4)-N(7)	91.0(4)	O(43)-Cu(4)-N(7)	170.0(4)	

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z; #2 -x+2,-y+2,-z;

D	Н	А	D-H	D…A distance	H…A distance	∠D–H…A
O58	H58C	O64#1	0.85	2.929(15)	2.08	172
O60	H60B	O68#2	0.85	2.810(13)	1.99	161
O61	H61C	O40#3	0.85	2.943(12)	2.12	162
O61	H61D	O61#3	0.85	3.161(15)	2.34	162
O63	H63C	O35#4	0.85	3.075(18)	2.31	150
O63	H63D	O48#5	0.85	3.137(18)	2.36	151
O64	H64C	O63	0.85	2.72(2)	1.88	168
O64	H64D	O65#5	0.85	2.881(19)	2.05	167
O66	H66E	O53#6	0.85	2.55(3)	1.74	159
O66	H66F	O55#6	0.85	2.36(2)	1.56	157
O67	H67C	O27#6	0.85	2.937(14)	2.12	160
O67	H67D	O44#7	0.85	2.998(14)	2.19	160
O68	H68C	O26#6	0.85	2.925(13)	2.09	168
O68	H68D	O67	0.85	2.782(16)	1.95	168

 Table S2 Distances (Å) and angles (°) of the selected intermolecular H bonds in CP 2

Symmetry transformations used to generate the equivalent atoms:

#1 - x + 2, -y + 1, -z + 1; #2 x + 1, y, z; #3 - x + 2, -y + 1, -z; #4 - x + 1, -y, -z + 1; #5 - x + 1, -y + 1, -z + 1; #6 - x + 1; -z + 1; -z + 1; -z + 1; #6 - x + 1; -z + 1;

y+1, -z; #7 x-1, y, z.

Fig. S1 IR spectra of CPs 1 (a) and 2 (b).

(b)

Fig. S2 The PXRD patterns of CPs 1 (a) and 2 (b).

Fig. S3 UV-vis absorption spectra at room temperature for CPs 1 (red) and 2 (blue).

Fig. S4 The diffuse reflectance spectra (DRS) for CPs 1 and 2 in the transformed Kubelka–Munk functions.

Fig. S5 Band structure (a), and TDOS and PDOS of RuO_2 (b). In the PDOS, blue, red and green lines represent s, p and d orbits, respectively.

Fig. S6 Mott–Schottky plot of CP 1 in Na_2SO_4 aqueous solution (0.2 M, 50 mL) at the frequency of 1000 Hz in a potential range of $-0.6 \sim 1.5$ V vs AgCl/Ag (the amplitude of the potential perturbation was 5 mV).

Fig. S7 Nyquist plots (Z' vs. -Z'') of CP 1 at 0 V vs AgCl/Ag in Na₂SO₄ aqueous solution with and without methanol in the absence and presence of visible light illumination ($\lambda > 420$ nm, 100 mW cm⁻²).

(a)

(g)

x20

4/13/2018 n 14:34:50

Fig. S8 SEM images of CP 1-modified FTO (FTO/CP 1) (a-c), RuO₂-modified FTO (FTO/RuO₂) (d-f) and FTO/CP 1/RuO₂ (g, h).

(b)

(c)

Fig. S9 EDS and elemental mappings for CP **1**-modified FTO (FTO/CP **1**) (a), RuO₂-modified FTO (FTO/RuO₂) (b) and FTO/CP **1**/RuO₂ (c).

Table S3 The values of the parameters in the equivalent circuits

	R_{S}/Ω	R_{ct}/Ω	L/H	C/F	Q
RuO ₂ with methanol under illumination	30.44	8.66	1.96×10-6	6.11×10 ⁻⁶	4.78×10-3
FTO/CP 1/RuO ₂ in dark	25.25	45.47	1.62×10 ⁻¹⁷	4.85×10-5	4.38×10 ⁻³
FTO/CP 1/RuO ₂ under illumination	25.26	39.72	1.97×10 ⁻¹⁵	4.59×10-5	4.36×10-3
FTO/CP 1/RuO ₂ with methanol in dark	22.58	19.79	1.86×10 ⁻¹⁵	3.70×10 ⁻⁵	4.69×10-3
FTO/CP 1/RuO ₂ with methanol under	24.27	18.75	3.01×10 ⁻²³	4.05×10 ⁻⁵	4.77×10 ⁻³
illumination					

(a)

(b)

Fig. S10 Comparison of CVs for FTO/CP **1** and FTO/CP $1/\text{RuO}_2$ at 0.01 V s⁻¹ (a) and GCD curves of FTO/CP **1** at 0.1 A g⁻¹ (b) in the Na₂SO₄ solution in the absence and presence of methanol with (solid line) and without (dotted line) visible light illumination

 $(\lambda > 420 \text{ nm}, 100 \text{ mW cm}^{-2})$; 1000 GCD cycles of GCD curves of FTO/CP 1 at 0.1 A g⁻¹ in the Na₂SO₄ solution in dark (c).