Electronic Supplementary Information

Tuning the Gate Opening Pressure of a Flexible Doubly Interpenetrated Metal-Organic Framework through Ligand

Functionalization

Xiaodong Sun,^a Yali Ma,^a Jun Zhao,^b DongSheng Li,^b Guanghua Li,^a Lirong Zhang^{*a} and Yunling Liu^{*a}

 ^{a.} State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
E-mail: yunling@jlu.edu.cn; zlr@jlu.edu.cn
^{b.}College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Material, China Three Gorges University, Yichang 443002, China

S1. Calculation procedures of selectivity from IAST

The measured experimental data is excess loadings (q^{ex}) of the pure components C₂H₂, CO₂, CH₄, C₂H₆ and C₃H₈ for **JLU-Liu33F**, which should be converted to absolute loadings (q) firstly.

$$q = q^{ex} + \frac{pV_{pore}}{ZRT}$$

Here Z is the compressibility factor. The Peng-Robinson equation was used to estimate the value of compressibility factor to obtain the absolute loading, while the measure pore volume 0.36 cm³ g⁻¹ is also necessary.

The dual-site Langmuir-Freundlich equation is used for fitting the isotherm data at 298 K.

$$q = q_{m_1} \times \frac{b_1 \times p^{1/n_1}}{1 + b_1 \times p^{1/n_1}} + q_{m_2} \times \frac{b_2 \times p^{1/n_2}}{1 + b_2 \times p^{1/n_2}}$$

Here p is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), q is the adsorbed amount per mass of adsorbent (mol kg⁻¹), q_{m1} and q_{m2} are the saturation capacities of sites 1 and 2 (mol kg⁻¹), b_1 and b_2 are the affinity coefficients of sites 1 and 2 (1/kPa), n_1 and n_2 are the deviations from an ideal homogeneous surface.

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2, perhaps in the presence of other components too, can be formally defined as

$$S = \frac{q_1/q_2}{p_1/p_2}$$

 q_1 and q_2 are the absolute component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculate the values of q_1 and q_2 using the Ideal

Adsorbed Solution Theory (IAST) of Myers and Prausnitz.

S2. Supporting Figures

Fig. S1 PXRD patterns of simulated, as-synthesized sample for JLU-Liu33F

Fig. S2 TGA curves of JLU-Liu33F for the as-synthesized and activated samples.

Fig. S3 PXRD patterns of JLU-Liu33F for simulated, as-synthesized and solvent-exchanged samples. JLU-Liu33F was stable in ethanol and acetonitrile and was relatively unstable in acetone and dichloromethane.

Fig. S4 Structure comparison of the two materials **JLU-Liu33** (left) and **JLU-Liu33F** (right): a) and e) The V-shaped ligands and Zn_4O clusters; b) and f) Single net of the framework; c) and g) Space-filling model of the channel for the single net along the [100] direction; d) and h) The difference of interpenetration degree.

Fig. S5. The weak π ... π interactions between the phenyl rings of H₂MDCPB ligands, which belong to two interpenetrated nets of JLU-Liu33F.

Fig. S6 (a) CH₄ adsorption isotherms for **JLU-Liu33F** at 273 and 298 K under 1 bar and (b) Q_{st} of CH₄ for **JLU-Liu33F**.

Fig. S7 (a) CO₂ adsorption isotherms for JLU-Liu33F at 273 and 298 K under 1 bar and (b) Q_{st} of CO₂ for JLU-Liu33F.

Fig. S8 (a) C_2H_6 adsorption isotherms for **JLU-Liu33F** at 273 and 298 K under 1 bar and (b) Q_{st} of C_2H_6 for **JLU-Liu33F**.

Fig. S9 (a) C_3H_8 adsorption isotherms for JLU-Liu33F at 273 and 298 K under 1 bar and (b) Q_{st} of C_3H_8 for JLU-Liu33F.

Fig. S10 CO₂, CH₄, C₂H₆ and C₃H₈ adsorption isotherms at 298 K along with the dual-site Langmuir Freundlich (DSLF) fits (a and c); gas mixture adsorption selectivity are predicted by IAST at 298 K and 100 kPa for **JLU-Liu33F** (b and d).

Fig. S11 (a) C_2H_2 , CO_2 and CH_4 adsorption isotherms at 298 K along with the dual-site Langmuir-Freundlich (DSLF) fits; (b) C_2H_2/CH_4 and C_2H_2/CO_2 adsorption selectivity are calculated by IAST at 298 K and 1 bar for **JLU-Liu33F**.

Table 51. Crystal data and structure reminiment for JLO-Liu55 F.			
formula	$C_{138}H_{118}N_4O_{33}Zn_8$		
formula weight	2883.32		
temp (K)	293(2) K		
wavelength (Å)	0.71073 Å		
crystal system, space group	Trigonal, R3c		
<i>a</i> (Å)	21.613(3)		
<i>b</i> (Å)	21.613(3)		
<i>c</i> (Å)	78.182(16)		
$V(Å^3)$	31627(9)		
$Z, D_c (Mg/m^3)$	6, 0.908		
<i>F</i> (000)	8868		
θ range (deg)	1.21 to 25.05°		
reflns collected/unique	65434/12454		
R _{int}	0.0580		
data/restraints/params	12454/151/418		
GOF on F^2	1.020		
R_1 , wR_2 (I>2 σ (I))	$R_1 = 0.0632, wR_2 = 0.1807$		
R_1 , wR_2 (all data)	$R_1 = 0.0994$, $wR_2 = 0.1997$		

S3. Supporting Tables

Table S1. Crystal data and structure refinement for JLU-Liu33F

After refining the crystal with the modern version refinement engine, the main CheckCIF A alerts have been solved. However, there still exists B alerts in the report. The B-level errors in the crystal data according to their checkCIF/PLATON report has been explained in the ESI: The bond length unrealistic is ascribed to weak CH··· π interactions between the phenyl rings of H₂MDCPB ligands which belongs to two interpenetrated nets. The CH··· π interactions lead to the deformation of the phenyl rings, so the C31-C34 bond length is longer. There also exists "Low bond precision on C-C Bonds" problems in the check report, but it will not influence the accuracy of the JLU-Liu33F structure.

Table S2. Selected bond lengths [Å] and angles [°] for JLU-Liu33F.

Zn(1)-O(1)	1.956(5)	O(6)-C(34)	1.242(16)
Zn(1)-O(5)	1.957(4)	O(7)-C(34)	1.283(15)
Zn(2)-O(5)	1.954(11)	O(8)-C(41)	1.128(11)
Zn(2)-O(11)	2.190(11)	O(9)-C(41)	1.562(10)
Zn(3)-O(10)	1.902(3)	C(1)-C(2)	1.3900
Zn(3)-O(6)	1.923(8)	C(1)-C(6)	1.3900
Zn(4)-O(10)	2.047(10)	C(1)-C(7)	1.518(6)
Zn(1)-O(3)#1	1.918(8)	C(2)-C(3)	1.3900
Zn(1)-O(2)#2	1.968(8)	C(7)-C(8)	1.3900
Zn(2)-O(11)#2	2.190(11)	C(7)-C(12)	1.3900
Zn(2)-O(11)#3	2.190(11)	C(8)-C(9)	1.3900
Zn(2)-O(4)#4	2.200(10)	C(10)-C(13)	1.452(10)
Zn(3)-O(7)#6	1.947(6)	O(1)-Zn(1)-O(5)	111.9(2)
Zn(4)-O(9)#10	1.887(5)	O(11)#2-Zn(2)-O(11)	36.5(4)
Zn(4)-O(9)#7	1.887(5)	O(5)-Zn(2)-O(4)#5	88.2(3)

O(1)-C(13)	1.273(9)	C(3)-C(4)-C(5)	120.0
O(2)-C(13)	1.273(10)	C(4)-C(5)-C(21)	119.0(6)
O(3)-C(20)	1.506(13)	C(8)-C(7)-C(12)	120.0
O(4)-C(20)	1.250(12)	C(8)-C(9)-C(10)	120.0

Symmetry transformations used to generate equivalent atoms:

#1 x-1/3,x-y+4/3,z-1/6 #2 -y+1,x-y+1,z #3 -x+y,-x+1,z #4 -y+5/3,-x+4/3,z-1/6 #5 -x+y-1/3,y-2/3,z-1/6 #6 -y+2,x-y+1,z #7 x+1/3,x-y+2/3,z+1/6 #8 -x+y+1,-x+2,z #9 -y+4/3,-x+5/3,z+1/6 #10 -x+y+4/3,y+2/3,z+1/6 #11 x+1/3,x-y+5/3,z+1/6 #12 x-1/3,x-y+1/3,z-1/6

Gas C_2H_2 (cm³g⁻¹) $CO_2 (cm^3g^{-1})$ CH₄ (cm³g⁻¹) Temperature 273 K 298 K 273 K 298 K 273 K 298 K 48 16 14 8 4 Ads. amount 24 Gas $C_2H_6(cm^3g^{-1})$ C₃H₈ (cm³g⁻¹) N_2 (cm³g⁻¹) Temperature 273 K 298 K 273 K 298 K 77 K Ads. amount 22 15 27 17 225

Table S3. Gas adsorption data for JLU-Liu33F.

Compound	C ₂ H ₂ uptake (273 K, cm ³ g ⁻¹)	Q _{st} (kJ mol ⁻¹)	Ref.
SNNU-23	93	63	1
USTA-34b	N.A.	50	1
JLU-Liu33F	48	49	This work
SNNU-23	41	39	1
ZJNU-73	N.A.	33	2
ZJNU-74	N.A.	31	2
FJI-H8	277	32	3
NJU-Bai17	252	38	4
MFM-188	297	33	5
ZJU-12	241	29	6
MFM-300(V ^{III})	182	29	7

Table S4. Comparison of several MOFs for their C_2H_2 uptake (273 K and 1 bar) and Q_{st} values.

N.A.; Not available

0.11-1			
Compound	Selectivity	Temperature (K)	Reference
Compound-1	229	273	8
ZJNU-81	48	278	9
ZJNU-82	39	278	9
ZJNU-83	34	278	9
ZJNU-58	47	278	10
ZJNU-59	28	278	10
JLU-Liu33F	57	273	This work
SNNU-22	36	273	1
SNNU-23	31	273	1
Zn-NH ₂ BTB-1-PIM	<31	273	1
CoTZB(INT)	<31	273	1
[InAg(na) ₄]	17	273	11

Table S5. A comparison with other MOFs which exhibits high selectivity for C_2H_2 over CH_4 under 1 bar.

REFERENCES

1. J. W. Zhang, M. C. Hu, S. N. Li, Y. C. Jiang and Q. G. Zhai, Dalton Trans., 2017, 46, 836-844.

2. F. Chen, D. Bai, D. Jiang, Y. Wang and Y. He, *Dalton Trans.*, 2017, 46, 11469-11478.

3. J. Pang, F. Jiang, M. Wu, C. Liu, K. Su, W. Lu, D. Yuan and M. Hong, *Nat. Commun.*, 2015, 6, 7575.

4. M. Zhang, B. Li, Y. Li, Q. Wang, W. Zhang, B. Chen, S. Li, Y. Pan, X. You and J. Bai, *Chem. Commun.*, 2016, **52**, 7241–7244.

5. F. Moreau, I. d. Silva, N. H. A. Smail, T. L. Easun, M. Savage, H. G. W. Godfrey, S. F. Parker, P. Manuel, S. Yang and M. Schröder, *Nat. Commun.*, 2016, **8**, 14085.

6. X. Duan, Y. Cui, Y. Yang and G. Qian, CrystEngComm, 2017, 19, 1464–1469.

7. Z. Lu, H. G. W. Godfrey, I. da Silva, Y. Cheng, M. Savage, P. Manuel, S. Rudic, A. J. Ramirez-Cuesta, S. Yang and M. Schroder, *Chem. Sci.*, 2018, **9**, 3401-3408.

8. H. R. Fu, Y. Zhao, Z. Zhou, X. G. Yang and L. F. Ma, *Dalton Trans.*, 2018, 47, 3725-3732.

9. M. He, Y. Wang, X. Gao, S. Li and Y. He, Dalton Trans., 2018, 47, 8983-8991.

10. Y. Wang, M. He, X. Gao, S. Li, S. Xiong, R. Krishna and Y. He, *ACS Appl. Mater. Interfaces*, 2018, **10**, 20559-20568.

11. Y. X. Tan, Y. P. He and J. Zhang, *RSC Adv.*, 2015, 5, 7794-7797.