Supporting Information

Integrated BiPO4 nanocrystals/BiOBr heterojunction for sensitive photoelectrochemical sensing

of 4-chlorophenol

Li Xu^a, Desheng Jiang^a, Yu Zhao^a, Pengcheng Yan^a, Jintao Dong^c, Junchao Qian^b, Huaqin Ao^a, Jiawen

Li^a, Cheng Yan^{b,*}, Henan Li^{a,b*}

^a School of Chemistry and Chemical Engineering; Institute for Energy Research, Jiangsu University,

Zhenjiang 212013, P. R. China

^b School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology

(QUT), Brisbane, QLD 4001, Australia.

^c Jiangsu Key Laboratory for Environment Functional Materials, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China

*Corresponding authors:

c2.yan@qut.edu.au (C. Yan)

lhn@ujs.edu.cn (H.N. Li)

According to the similar method (Experimental section), different mass ratios of BiPO₄/BiOBr (5 wt% and 10 wt%) heterojunction was obtained, respectively. Furthermore, XRD analysis was used to characterize the crystal structure and phase of the prepared materials. Fig. S1a shows XRD patterns for BiPO₄, BiOBr, and BiPO₄/BiOBr heterojunction. It can be observed that all diffraction peaks of BiPO₄ were consistent with the standard peaks of monoclinic BiPO₄ (JCPDS, No., 15-0767)¹. In XRD patterns of BiOBr, all typical diffraction peaks corresponded to the tetragonal BiOBr standard card (JCPDS, card, No., 09-0393). For BiPO₄/BiOBr heterojunction, the diffraction peaks of BiPO₄ and BiOBr were both appeared. The high intensity and sharp diffraction peaks indicate that the prepared BiPO₄/BiOBr heterojunction possessed a good crystallinity. No diffraction peak of other impurities existed in the XRD patterns, suggesting that BiPO₄/BiOBr heterojunction was formed by coupling BiOBr and BiPO₄ with single phase.

In order to further analyze the composition of as-prepared materials, the samples were characterized by infrared spectroscopy. Fig. S1b shows the FT-IR spectra of BiOBr, BiPO₄, and BiPO₄/BiOBr heterojunction. Four typical absorption peaks were located ranging from 925 cm⁻¹ to 1100 cm⁻¹ in BiPO₄/BiOBr heterojunction, ascribing to the stretching vibration of P-O². There were three characteristic peaks at 600 cm⁻¹, 535 cm⁻¹, and 579 cm⁻¹, respectively, corresponding to the flexural vibrations of delta (O-P-O) and O=P-O³, which was originated from BiPO₄ in BiPO₄/BiOBr heterojunction. In addition, the characteristic absorption peaks of Bi-O bond originated from BiOBr appeared at 514cm⁻¹ in BiPO₄/BiOBr heterojunction⁴. In a word, the typical absorption peaks of BiOBr and BiPO₄ were observed in the BiPO₄/BiOBr heterojunction. The results of FT-IR suggest that BiPO₄/BiOBr heterojunction was successfully prepared.

Fig. S1. XRD patterns (a) and FT-IR patterns (b) of BiOBr, BiPO₄ and all BiPO₄/BiOBr heterojunction with different BiPO₄ contents.

The band gap energy (Eg) of the BiOBr and BiPO₄ was calculated according to the formula: $\alpha hv = A(hv - Eg)^{n/2}$, respectively, where α , h, v, and A stand for the absorption coefficient, Planck constant, light frequency, and a constant⁵. In addition, the n in the equation was depended on the characteristics of the transition in a semiconductor (n = 1 for direct transition and n = 4 for indirect transition). As previous literature reported, the n value of BiPO₄ and BiOBr was both 4⁶. The Eg of BiPO₄ and BiOBr was estimated to be 3.5 and 2.90 eV, respectively, from the plot of $(\alpha hv)^2$ versus (hv) in Fig. S2b, which were close to those in some reported literatures⁶.

The photocurrent response of BiOBr/ITO, BiPO₄/ITO and BiPO₄/BiOBr/ITO was tested by repeated 10 times for 20 seconds at the potential of 0 V, respectively. As shown in Fig. S3, all BiPO₄/BiOBr/ITO electrodes showed increased photocurrent, compared with BiOBr/ITO and BiPO₄/ITO. The photocurrent of all electrodes did not change significantly after repeated irradiation. It shows that BiOBr/ITO, BiPO₄/ITO and all BiPO₄/BiOBr/ITO were relatively stable and suitable for constructing photoelectrochemical detection platform. The 7 wt% BiPO₄/BiOBr/ITO electrode was used to construct PEC sensor.

Fig. S2. (a) UV-vis diffused reflectance spectra of $BiPO_4/BiOBr$ heterojunction, $BiPO_4$ and BiOBr; (b) The band gap energy of $BiPO_4$ and BiOBr.

Fig. S3 (a) Transient photocurrent response for BiOBr, $BiPO_4$ and all $BiPO_4/BiOBr$ heterojunction; (b) Transient photocurrent response for 3 wt% $BiPO_4/BiOBr$ heterojunction and physical mixture of $BiPO_4$ and BiOBr at the same weight percent ratio.

Fig. S4. (a) Influence of particular possible interfering substances on the responses of the photoelectrochemical sensor for 4-CP (80 ng mL⁻¹) in phosphate buffer solution (0.1 M, pH 7.0); (b) Stability tests of photoelectrochemical sensor for detection of 4-CP (80 ng mL⁻¹).

Figure S5. Photograph of PEC detection system.

Detection method	Linear range (ng mL ⁻¹)	Detection limit (ng mL ⁻¹)	Reference
Differential pulse voltammetric detection	1.03×10 ² -1.29×10 ⁵	38.57	7
Voltammetric detection	38.56-5.14×10 ⁵	14.14	8
Differential pulse voltammetric detection	1.28×10 ⁴ -3.85×10 ⁵	4.74×10 ²	9
Amperometric detection	3.21×10 ² -5.14×10 ³ ; 8.04×10 ³ -1.51×10 ⁴	50.13	10
Photoelectrochemical detection	8-2.40×10 ³	3.75	This work

Tab. S1 Comparison of proposed sensor with other previously reported sensors for 4-CP determination.

Tab. S2. PEC detection of 4-CP in real water samples by the proposed sensor.

4-CP concentration (ng mL ⁻¹)				
sample	added	found	recovery	RSD
1	8.00	8.23	102.87%	3.60%
2	80.00	82.19	102.73%	3.70%
3	400.00	397.00	99.25%	2.40%
4	1200.00	1193.20	99.41%	4.20%
5	2000.00	1987.00	99.35%	2.8%

References

1 D. Liu, W.B. Cai, Y.G. Wang and Y.F. Zhu, Appl. Catal., B 2018, 236, 205-211.

2 Y.F. Liu, Y.H. Lv, Y.Y. Zhu, D. Liu, R.L. Zong and Y.F. Zhu, Appl. Catal., B 2014, 147, 851-857.

3 Y.Y. Zhu, Y.F. Liu, Y.H. Lv, Q. Ling, D. Liu and Y.F. Zhu, J. Mater. Chem. A 2014, 2, 13041-13048.

4 J. Di, J.X. Xia, S. Yin, H. Xu, M.Q. He, H.M. Li, L. Xu and Y.P. Jiang, *RSC Adv.* 2013, **3**, 19624-19631.

5 Z. Mo, H. Xu, Z.G. Chen, X.J. She, Y.H. Song, P.C. Yan, Y.G. Xu, Y.C. Lei, S.Q. Yuan and H.M. Li, *Chin. J. Catal.* 2018, **39**, 760-770.

6 L. Xu, J.X. Xia, L.G. Wang, J. Qian, H.M. Li, K. Wang, K.Y. Sun and M.Q. He, *Chem. Eur. J.* 2014, 20, 2244-2253.

7 B. Wang, O.K. Okoth, K. Yan and J.D. Zhang, Sens. Actuators, B 2016, 236, 294-303.

8 L. Wang, Q. Sun, Y. Liu and Z.S. Lu, RSC Adv. 2016, 6, 34692-34698.

9 X.L. Zhu, K.X. Zhang, D.W. Wang, D.M. Zhang, X. Yuan and J. Qu, J. Electroanal. Chem. 2018, 810, 199-206.

10 C.C. Qiu, T. Chen, X. Wang, Y. Li and H.Y. Ma, Colloids Surf. B. 2013, 103, 129-135.