Electronic Supporting Information

N,N'-Methylenebis(N-(1,2,5-oxadiazol-3-yl)nitramide)

Derivatives as Metal-free Green Primary Explosives

Qiong Yu,^a Gregory H. Imler,^b Damon A. Parrish^b and Jean'ne M. Shreeve*a

^a Department of Chemistry, University of Idaho, Moscow, ID 83844-2343 (USA)
E-mail: jshreeve@uidaho.edu
^b Naval Research Laboratory, 4555 Overlook Avenue, Washington, D.C. 20375, United States

Table of contents

Crystallographic data	S2
Theoretical calculations	S9
¹ H and ¹³ C NMR spectra	S10
References	S19

Crystallographic data

Empirical formula	$C_7H_{10}N_{14}O_{16}(6)$
CCDC Number	1846164
Formula weight	546.29
Temperature/K	150(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.8644(10)
b/Å	12.1879(10)
c/Å	19.9991(16)
$\alpha/^{o}$	90
β/°	98.3080(10)
$\gamma/^{o}$	90
Volume/Å ³	1892.8(3)
Z	4
$\rho_{calc} g/cm^3 (-123 \ ^{o}C)$	1.917
$\rho_{calc} g/cm^3 (20 \ ^{o}C)$	1.886
μ/mm^{-1}	0.186
F(000)	1112
Crystal size/mm ³	0.330 x 0.145 x 0.117
θ range/°	3.153 - 30.027
Reflections collected	20793
Independent reflections	5335 [$R_{int} = 0.0367$]
Data/restraints/parameters	5335/0/342
Goodness-of-fit on F ²	1.018
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0373$, $wR_2 = 0.0847$
Final R indexes [all data]	$R_1 = 0.0575, wR_2 = 0.0932$
Largest diff. peak/hole / e Å ⁻³	0.377/-0.306

 Table S1. Selected crystal parameters of 6.

Figures S1 to S6

Fig. S1. Unit cell view for 6 along *a* axis, hydrogen bonds are marked as dotted lines.

Fig. S2. Unit cell view for 6 along *b* axis, hydrogen bonds are marked as dotted lines.

Fig. S3. Unit cell view for 6 along c axis, hydrogen bonds are marked as dotted lines.

	Х	у	Z
O(1)	11818(1)	449(1)	7504(1)
O(2)	12887(1)	1397(1)	6803(1)
N(3)	12019(1)	1475(2)	7074(1)
C(4)	11203(1)	2751(2)	6909(1)
N(5)	11379(1)	4011(1)	6481(1)
O(6)	12197(1)	4101(1)	6151(1)
O(7)	10637(1)	5161(1)	6422(1)
C(8)	10195(1)	2807(2)	7245(1)
N(9)	10255(1)	2421(2)	7884(1)
O(10)	9161(1)	2536(1)	8043(1)
N(11)	8406(1)	2995(1)	7488(1)
C(12)	9016(1)	3188(2)	7002(1)
N(13)	8471(1)	3874(1)	6398(1)
N(14)	8689(1)	3196(2)	5796(1)
O(15)	9283(1)	1959(1)	5836(1)
O(16)	8255(1)	3906(1)	5281(1)
C(17)	7745(1)	5324(2)	6386(1)
N(18)	8351(1)	6893(1)	6358(1)
N(19)	8956(1)	7491(2)	6952(1)

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for **6**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(20)	9033(1)	6568(1)	7440(1)	
O(21)	9356(1)	8889(1)	6943(1)	
C(22)	8350(1)	7847(2)	5770(1)	
N(23)	9238(1)	7960(2)	5459(1)	
O(24)	8901(1)	8971(1)	4918(1)	
N(25)	7777(1)	9451(2)	4896(1)	
C(26)	7426(1)	8771(2)	5421(1)	
C(27)	6257(1)	8917(2)	5555(1)	
N(28)	5939(1)	10264(1)	5918(1)	
O(29)	6709(1)	11256(1)	6135(1)	
O(30)	4937(1)	10454(1)	6024(1)	
N(31)	5506(1)	7713(1)	5295(1)	
O(32)	5971(1)	6486(1)	5033(1)	
O(33)	4465(1)	7758(1)	5299(1)	
N(34)	2721(1)	7729(2)	6024(1)	
O(35)	1816(1)	8025(2)	6377(1)	
N(36)	5484(1)	6396(1)	3448(1)	
O(37)	5016(1)	5259(1)	3865(1)	

Table S3. Bond lengths [Å] and angles [°] for 6 .
--------------------------	----------------------------------

Table 55. Dona lenguis		0.	
O(1)-N(3)	1.2410(16)	O(2)-N(3)	1.2325(16)
N(3)-C(4)	1.4182(18)	C(4)-N(5)	1.3648(17)
C(4)-C(8)	1.4537(19)	N(5)-O(6)	1.2519(15)
N(5)-O(7)	1.2724(15)	C(8)-N(9)	1.3080(17)
C(8)-C(12)	1.4460(19)	N(9)-O(10)	1.3829(16)
O(10)-N(11)	1.3733(15)	N(11)-C(12)	1.3014(18)
C(12)-N(13)	1.3982(17)	N(13)-N(14)	1.3797(16)
N(13)-C(17)	1.4507(17)	N(14)-O(15)	1.2177(15)
N(14)-O(16)	1.2250(15)	C(17)-N(18)	1.4600(17)
C(17)-H(17A)	0.9900	C(17)-H(17B)	0.9900
N(18)-N(19)	1.3828(16)	N(18)-C(22)	1.4056(17)
N(19)-O(20)	1.2208(15)	N(19)-O(21)	1.2241(15)
C(22)-N(23)	1.3008(19)	C(22)-C(26)	1.4221(19)
N(23)-O(24)	1.3687(16)	O(24)-N(25)	1.3830(16)
N(25)-C(26)	1.3049(17)	C(26)-C(27)	1.4555(19)
C(27)-N(31)	1.3687(17)	C(27)-N(28)	1.3880(17)
N(28)-O(29)	1.2437(16)	N(28)-O(30)	1.2477(15)
N(31)-O(33)	1.2357(15)	N(31)-O(32)	1.2807(15
N(34)-O(35)	1.3882(17)	N(34)-H(34A)	0.9100
N(34)-H(34B)	0.9100	N(34)-H(34C)	0.9100
O(35)-H(35)	0.98(2)	N(36)-O(37)	1.4068(15)
N(36)-H(36A)	0.9100	N(36)-H(36B)	0.9100

N(36)-H(36C)	0.9100	O(37)-H(37)	0.82(2)
O(2)-N(3)-O(1)	121.73(12)	O(2)-N(3)-C(4)	121.42(12)
O(1)-N(3)-C(4)	116.84(12)	N(5)-C(4)-N(3)	121.60(12)
N(5)-C(4)-C(8)	118.53(12)	N(3)-C(4)-C(8)	119.68(12)
O(6)-N(5)-O(7)	119.21(11)	O(6)-N(5)-C(4)	125.12(12)
O(7)-N(5)-C(4)	115.68(12)	N(9)-C(8)-C(12)	106.97(12)
N(9)-C(8)-C(4)	120.76(12)	C(12)-C(8)-C(4)	132.25(12)
C(8)-N(9)-O(10)	106.78(11)	N(11)-O(10)-N(9)	110.87(10)
C(12)-N(11)-O(10)	105.53(11)	N(11)-C(12)-N(13)	117.01(12)
N(11)-C(12)-C(8)	109.84(12)	N(13)-C(12)-C(8)	132.67(12)
N(14)-N(13)-C(12)	118.39(11)	N(14)-N(13)-C(17)	119.37(11)
C(12)-N(13)-C(17)	122.14(11)	O(15)-N(14)-O(16)	127.34(12)
O(15)-N(14)-N(13)	116.56(11)	O(16)-N(14)-N(13)	116.10(12)
N(13)-C(17)-N(18)	113.85(11)	N(13)-C(17)-H(17A)	108.8
N(18)-C(17)-H(17A)	108.8	N(13)-C(17)-H(17B)	108.8
N(18)-C(17)-H(17B)	108.8	H(17A)-C(17)-H(17B)	107.7
N(19)-N(18)-C(22)	117.78(11)	N(19)-N(18)-C(17)	117.77(11)
C(22)-N(18)-C(17)	124.44(11)	O(20)-N(19)-O(21)	126.03(12)
O(20)-N(19)-N(18)	116.39(11)	O(21)-N(19)-N(18)	117.58(11)
N(23)-C(22)-N(18)	122.35(13)	N(23)-C(22)-C(26)	110.44(12)
N(18)-C(22)-C(26)	127.19(13)	C(22)-N(23)-O(24)	104.78(11)
N(23)-O(24)-N(25)	111.23(10)	C(26)-N(25)-O(24)	105.96(11)
N(25)-C(26)-C(22)	107.59(12)	N(25)-C(26)-C(27)	122.53(12)
C(22)-C(26)-C(27)	129.76(12)	N(31)-C(27)-N(28)	122.86(12)
N(31)-C(27)-C(26)	117.28(12)	N(28)-C(27)-C(26)	119.83(12)
O(29)-N(28)-O(30)	122.05(12)	O(29)-N(28)-C(27)	116.45(12)
O(30)-N(28)-C(27)	121.50(12)	O(33)-N(31)-O(32)	120.99(11)
O(33)-N(31)-C(27)	124.96(12)	O(32)-N(31)-C(27)	114.05(12)
O(35)-N(34)-H(34A)	109.5	O(35)-N(34)-H(34B)	109.5
H(34A)-N(34)-H(34B)	109.5	O(35)-N(34)-H(34C)	109.5
H(34A)-N(34)-H(34C)	109.5	H(34B)-N(34)-H(34C)	109.5
N(34)-O(35)-H(35)	102.4(13)	O(37)-N(36)-H(36A)	109.5
O(37)-N(36)-H(36B)	109.5	H(36A)-N(36)-H(36B)	109.5
O(37)-N(36)-H(36C)	109.5	H(36A)-N(36)-H(36C)	109.5
H(36B)-N(36)-H(36C)	109.5	N(36)-O(37)-H(37)	103.3(15)

Table S4. Anisotropic displacement parameters (Å²x 10³) for **6**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$

nuctor en	Jonent takes the form	. 21 [11 4 4	\mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{K} \mathbf{u} \mathbf{O} \mathbf{O}		
	U ¹¹	U ²²	U ³³	U ²³	U ¹³
O(1)	26(1)	27(1)	31(1)	16(1)	11(1)
O(2)	17(1)	22(1)	47(1)	9(1)	17(1)
N(3)	13(1)	16(1)	20(1)	3(1)	4(1)

C(4)	11(1)	15(1)	14(1)	3(1)	2(1)
N(5)	11(1)	16(1)	16(1)	2(1)	2(1)
O(6)	13(1)	26(1)	19(1)	6(1)	7(1)
O(7)	14(1)	17(1)	32(1)	9(1)	7(1)
C(8)	12(1)	11(1)	14(1)	1(1)	1(1)
N(9)	13(1)	21(1)	16(1)	3(1)	4(1)
O(10)	15(1)	25(1)	15(1)	7(1)	5(1)
N(11)	14(1)	17(1)	16(1)	4(1)	2(1)
C(12)	12(1)	10(1)	14(1)	1(1)	1(1)
N(13)	13(1)	13(1)	11(1)	0(1)	1(1)
N(14)	15(1)	18(1)	14(1)	-2(1)	1(1)
O(15)	21(1)	19(1)	23(1)	-6(1)	4(1)
O(16)	30(1)	31(1)	12(1)	2(1)	-2(1)
C(17)	10(1)	13(1)	17(1)	1(1)	0(1)
N(18)	17(1)	13(1)	13(1)	1(1)	-4(1)
N(19)	15(1)	16(1)	16(1)	-2(1)	-1(1)
O(20)	23(1)	20(1)	14(1)	3(1)	-2(1)
O(21)	37(1)	17(1)	25(1)	-1(1)	-3(1)
C(22)	12(1)	13(1)	14(1)	-1(1)	1(1)
N(23)	16(1)	19(1)	21(1)	2(1)	3(1)
O(24)	15(1)	25(1)	20(1)	4(1)	7(1)
N(25)	14(1)	18(1)	16(1)	2(1)	4(1)
C(26)	13(1)	12(1)	12(1)	-1(1)	2(1)
C(27)	12(1)	12(1)	12(1)	0(1)	2(1)
N(28)	16(1)	15(1)	13(1)	1(1)	3(1)
O(29)	24(1)	22(1)	26(1)	-9(1)	3(1)
O(30)	16(1)	23(1)	24(1)	-1(1)	8(1)
N(31)	13(1)	14(1)	12(1)	3(1)	1(1)
O(32)	18(1)	14(1)	19(1)	-4(1)	2(1)
O(33)	10(1)	22(1)	26(1)	3(1)	3(1)
N(34)	18(1)	19(1)	15(1)	1(1)	1(1)
O(35)	30(1)	26(1)	51(1)	-6(1)	23(1)
N(36)	16(1)	16(1)	15(1)	1(1)	3(1)
O(37)	39(1)	21(1)	15(1)	-3(1)	7(1)

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **6 6**.

	Х	у	Z
H(17A)	7365	5318	6796
H(17B)	7144	5251	5989
H(34A)	2833	8634	5769
H(34B)	2561	6834	5750
H(34C)	3362	7527	6321

H(35)	1380(20)	6990(30)	6307(11)
H(36A)	5184	7421	3497
H(36B)	5318	6069	3009
H(36C)	6253	6436	3568
H(37)	5191(18)	5650(30)	4243(11)

Table S6. Torsion angles [°] for 6.

O(2)-N(3)-C(4)-N(5)	-4.6(2)	O(1)-N(3)-C(4)-N(5)	175.09(13)
O(2)-N(3)-C(4)-C(8)	-179.44(13)	O(1)-N(3)-C(4)-C(8)	0.27(19)
N(3)-C(4)-N(5)-O(6)	6.5(2)	C(8)-C(4)-N(5)-O(6)	-178.61(12)
N(3)-C(4)-N(5)-O(7)	-173.62(12)	C(8)-C(4)-N(5)-O(7)	1.25(18)
N(5)-C(4)-C(8)-N(9)	-137.34(14)	N(3)-C(4)-C(8)-N(9)	37.64(19)
N(5)-C(4)-C(8)-C(12)	44.8(2)	N(3)-C(4)-C(8)-C(12)	-140.20(14)
C(12)-C(8)-N(9)-O(10)	0.49(14)	C(4)-C(8)-N(9)-O(10)	-177.84(11)
C(8)-N(9)-O(10)-N(11)	0.33(14)	N(9)-O(10)-N(11)-C(12)	-1.08(14)
O(10)-N(11)-C(12)-N(13)	-171.72(11)	O(10)-N(11)-C(12)-C(8)	1.36(14)
N(9)-C(8)-C(12)-N(11)	-1.21(15)	C(4)-C(8)-C(12)-N(11)	176.85(14)
N(9)-C(8)-C(12)-N(13)	170.39(14)	C(4)-C(8)-C(12)-N(13)	-11.5(2)
N(11)-C(12)-N(13)-N(14)	-137.96(13)	C(8)-C(12)-N(13)-N(14)	50.9(2)
N(11)-C(12)-N(13)-C(17)	45.81(18)	C(8)-C(12)-N(13)-C(17)	-125.32(16)
C(12)-N(13)-N(14)-O(15)	5.21(18)	C(17)-N(13)-N(14)-O(15)	-178.45(12)
C(12)-N(13)-N(14)-O(16)	-175.18(12)	C(17)-N(13)-N(14)-O(16)	1.15(18)
N(14)-N(13)-C(17)-N(18)	-86.79(14)	C(12)-N(13)-C(17)-N(18)	89.40(15)
N(13)-C(17)-N(18)-N(19)	-78.96(15)	N(13)-C(17)-N(18)-C(22)	101.82(15)
C(22)-N(18)-N(19)-O(20)	-173.26(12)	C(17)-N(18)-N(19)-O(20)	7.47(18)
C(22)-N(18)-N(19)-O(21)	7.28(19)	C(17)-N(18)-N(19)-O(21)	-172.00(12)
N(19)-N(18)-C(22)-N(23)	72.86(17)	C(17)-N(18)-C(22)-N(23)	-107.91(16)
N(19)-N(18)-C(22)-C(26)	-108.60(16)	C(17)-N(18)-C(22)-C(26)	70.62(19)
N(18)-C(22)-N(23)-O(24)	179.59(12)	C(26)-C(22)-N(23)-O(24)	0.84(15)
C(22)-N(23)-O(24)-N(25)	-1.09(14)	N(23)-O(24)-N(25)-C(26)	0.91(14)
O(24)-N(25)-C(26)-C(22)	-0.36(14)	O(24)-N(25)-C(26)-C(27)	-176.71(11)
N(23)-C(22)-C(26)-N(25)	-0.32(16)	N(18)-C(22)-C(26)-N(25)	-178.99(13)
N(23)-C(22)-C(26)-C(27)	175.68(13)	N(18)-C(22)-C(26)-C(27)	-3.0(2)
N(25)-C(26)-C(27)-N(31)	90.92(16)	C(22)-C(26)-C(27)-N(31)	-84.54(18)
N(25)-C(26)-C(27)-N(28)	-87.34(17)	C(22)-C(26)-C(27)-N(28)	97.19(17)
N(31)-C(27)-N(28)-O(29)	178.91(12)	C(26)-C(27)-N(28)-O(29)	-2.93(18)
N(31)-C(27)-N(28)-O(30)	-0.4(2)	C(26)-C(27)-N(28)-O(30)	177.80(11)
N(28)-C(27)-N(31)-O(33)	6.8(2)	C(26)-C(27)-N(31)-O(33)	-171.42(12)
N(28)-C(27)-N(31)-O(32)	-173.56(12)	C(26)-C(27)-N(31)-O(32)	8.24(17)

Table S7. Hydrogen bonds for 6 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)				

N(34)-H(34A)N(25)#3	0.91	2.10	2.9295(17)	
N(34)-H(34B)O(16)#2	0.91	2.23	3.0028(16)	
N(34)-H(34C)N(9)#1	0.91	2.12	3.0146(18)	
O(35)-H(35)O(7)#4	0.98(2)	1.75(2)	2.7076(16)	
N(36)-H(36A)O(30)#3	0.91	1.98	2.8219(16)	
N(36)-H(36B)O(21)#5	0.91	2.27	3.1201(16)	
N(36)-H(36C)O(2)#7	0.91	2.21	2.7266(16)	
N(36)-H(36C)O(6)#7	0.91	1.89	2.7816(16)	
O(37)-H(37)O(32)	0.82(2)	1.84(2)	2.6371(15)	

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2, y+1/2,-z+3/2 #2 -x+1, -y+1, -z+1 #3 -x+1, -y+2, -z+1 #4 x-1, y, z #5 x-1/2, -y+3/2, z-1/2 #6 x-1/2, -y+1/2, z-1/2 #7 -x+2, -y+1, -z+1

Theoretical calculations

As mentioned in the manuscript, the heats of formation were determined using isodesmic reactions (**Scheme S1**). The calculations were carried out using Gaussian 03 (Revision D.01) suite of programs.¹ The geometric optimization and frequency analyses of the structures were calculated using B3LYP/6-31+G** level,² and single energy points were calculated at the MP2/6-311++G** level.³ The heats of formation for the cations were obtained by an atomization approach using G2 ab initio method.⁴ The heats of formation of other compounds in Scheme S1 were obtained from the NIST WebBook.⁵

Scheme S1. Isodesmic reactions.

Compounds	ZPE	Hcorr	Mp-6-311++g**	HoF(gas)
	[Hartree/Particle]	[Hartree/Particle]	[Hartree/Particle]	[kJ mol ⁻¹]
Anion	0.17775	0.206862	-1973.2013768	-784.8165576
11	0.18574	0.217373	-2172.4104146	298.1216829

 Table S8 The heats of formation (HOF) for bis(2,5-dinitromethyl)-1,3,4-oxadiazole anion and

 11.^[a]

[a] The enthalpy of sublimation was calculated by using Trouton's rule. Solid-state heats of formation of the resulting compounds were calculated with Equation (1) in which Tm is the melting temperature. $\Delta H_{\rm f} = \Delta H_{\rm f}(g) - \Delta H_{\rm sub} = \Delta H f(g) - 188 [\rm J mol^{-1} K^{-1}] \times T_{\rm m}$ (1).

¹H and ¹³C NMR spectra

Fig S4 ¹H-NMR spectrum of **1** in d_6 -DMSO.

Fig S7 ¹³C-NMR spectrum of **3** in d_6 -DMSO.

Fig S8 ¹H-NMR spectrum of **5** in d_6 -DMSO.

Fig S11 ¹³C-NMR spectrum of 6 in d_6 -DMSO.

Fig S12 ¹H-NMR spectrum of **7** in d_6 -DMSO.

Fig S13 ¹³C-NMR spectrum of 7 in d_6 -DMSO.

Fig S16 ¹H-NMR spectrum of **9** in d_6 -DMSO.

Fig S17 ¹³C-NMR spectrum of 9 in d_6 -DMSO.

Fig S21 ¹³C-NMR spectrum of 11 in d_6 -DMSO.

Reference

- Gaussian 03 (Revision E.01), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al–Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc. Wallingford CT, 2004.
- R. G. Parr and W. Yang, *Density Functional Theory of Atoms and Molecules*, Oxford University Press, New York, 1989.

- 3 M. Head-Gordon and J. A. Pople, *Chem. Phys. Lett.*, 1988, **153**, 503–506.
- 4 Martin, J. M. Chem. Phys. Lett., 1996, 259, 669–678.
- 5 P. J. Linstrom and W. G. Mallard, Eds. NIST Chemistry WebBook, NIST Standard

Reference Database, 69, National Institute of Standards and Technology, 2005.