Smart Naked-Eye Repeatable off-on-off and on-off-on Switching

Luminescent Copper(I)-1H-imidazo[4,5-f][1,10]phenanthroline

Complexes with Reversible Acid-Base Responses

Ying Shi, Xia Liu, Yuyu Shan, Weibo Kong, Yuenan Lu, Zhidan Tan, Xiu-Ling Li*

School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

	1a	$\mathbf{2b}{\cdot}\mathbf{2CH}_{2}\mathbf{Cl}_{2}{\cdot}\mathbf{H}_{2}\mathbf{O}$	3b ·MeOH·H ₂ O
Empirical formula	$C_{59}H_{42}CuF_6N_4OP_3$	$C_{64}H_{51}Cl_4CuN_4O_2P_2$	$C_{68}H_{51}CuN_4O_2P_2$
Formula weight	1093.41	1175.36	1081.60
<i>T</i> (K)	150(2)	150(2)	150(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	monoclinic	triclinic	triclinic
Space group	C2/c	PĪ	PĪ
Unit cell dimensions			
<i>a</i> (Å)	42.967(2)	11.7392(4)	11.303(4)
<i>b</i> (Å)	11.6599(6)	16.1442(5)	13.704(4)
<i>c</i> (Å)	24.2264(12)	16.9695(6)	21.312(7)
α(°)	90	65.6720(10)	105.655(4)
eta(°)	116.906(2)	72.0060(10)	100.773(4)
γ(°)	90	82.8840(10)	101.648(4)
$V(Å^3)$	10823.5(10)	2787.13(16)	3009.6(16)
Ζ	8	2	2
D_{calc} (Mg·m ⁻³)	1.342	1.401	1.194
μ (mm ⁻¹)	0.557	0.691	0.462
<i>F</i> (000)	4480	1212	1124
Reflections collected	46417	43145	18224
Independent reflections	12558	14575	13256
Reflections with $I > 2\sigma(I)$	8260	12763	10210
Data/restraints/parameters	12558/1/671	14575/0/705	13256/0/695
Goodness-of-fit (GOF) on F^2	1.023	1.061	1.038
Final <i>R</i> indices $[I > 2\sigma(I)]$	0.0549	0.0386	0.0420
$wR_2 \left[I > 2\sigma(I)\right]$	0.1434	0.1112	0.1055
R indices (all data)	0.0901	0.0443	0.0594
wR_2 (all data)	0.1708	0.1150	0.1141

 $\textbf{Table S1.} Crystallographic data and select refinement details for 1a, 2b \cdot 2 CH_2 Cl_2 \cdot H_2 O and 3b \cdot MeOH \cdot H_2 O and 3b \cdot M$

Figure S1. IR spectra of nimpH (*X*-axis: cm⁻¹; *Y*-axis: transmittance).

Figure S2. IR spectra of complex 1a. (*X*-axis: cm⁻¹; *Y*-axis: transmittance).

Figure S₃. IR spectra of complex **1b**. (*X*-axis: cm⁻¹; *Y*-axis: transmittance).

Figure S4. IR spectra of complex 2a. (*X*-axis: cm⁻¹; *Y*-axis: transmittance).

Figure S5. IR spectra of complex **2b**. (*X*-axis: cm⁻¹; *Y*-axis: transmittance).

Figure S6. IR spectra of complex **3a**. (*X*-axis: cm⁻¹; *Y*-axis: transmittance).

Figure S7. IR spectra of complex **3b**. (*X*-axis: cm⁻¹; *Y*-axis: transmittance).

Figure S8. ¹H NMR spectrum of nimpH in DMSO-*d*₆.

Figure S10. ¹H NMR spectrum of **1b** in DMSO-*d*₆.

Figure S11. ¹H NMR spectrum of **2a** in DMSO-*d*₆.

Figure S12. ¹H NMR spectrum of $\mathbf{2b}$ in DMSO- d_6 .

Figure S13. ¹H NMR spectrum of 3a in DMSO- d_6 .

Figure S14. ¹H NMR spectrum of **3b** in DMSO-*d*₆.

Figure S15. (a) Changes observed in the emission spectra of complex **1a** $(2.5 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1})$ in DCM upon adding NaOH solution in MeOH $(1.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1})$ at 298 K, (b) Changes observed in the emission spectra of complex **1a** $(2.5 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1})$ in DCM upon adding TBAF solution in DCM $(6.4 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1})$ at 298 K, (c) Changes observed in the emission spectra of complex **1b** $(2.5 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1})$ in DCM upon adding TFA solution in DCM $(1.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1})$ at 298 K and (d) changes of the maximum emission intensity of **1a** and **1b** upon adding different proportions of NaOH, TBAF and TFA.

Figure S16. (a) Changes observed in the emission spectra of complex **2a** $(2.5 \times 10^{-5} \text{ mol}\cdot\text{L}^{-1})$ in DCM upon adding NaOH solution in MeOH $(1.0 \times 10^{-3} \text{ mol}\cdot\text{L}^{-1})$ at 298 K, (b) Changes observed in the emission spectra of complex **2a** $(2.5 \times 10^{-5} \text{ mol}\cdot\text{L}^{-1})$ in DCM upon adding TBAF solution in DCM $(6.4 \times 10^{-3} \text{ mol}\cdot\text{L}^{-1})$ at 298 K, (c) Changes observed in the emission spectra of complex **2b** $(2.5 \times 10^{-5} \text{ mol}\cdot\text{L}^{-1})$ in DCM upon adding TFA solution in DCM $(1.0 \times 10^{-3} \text{ mol}\cdot\text{L}^{-1})$ at 298 K and (d) changes of the maximum emission intensity of **2a** and **2b** upon adding different proportions of NaOH, TBAF and TFA.

Figure S17. (a) Changes observed in the emission spectra of the free ligand nimpH ($2.5 \times 10^{-5} \text{ mol}\cdot\text{L}^{-1}$) in DCM upon adding NaOH solution in MeOH ($1.0 \times 10^{-3} \text{ mol}\cdot\text{L}^{-1}$) at 298 K, (b) Changes observed in the emission spectra of the free ligand nimpH ($2.5 \times 10^{-5} \text{ mol}\cdot\text{L}^{-1}$) in DCM upon adding TBAF solution in DCM ($2.6 \times 10^{-3} \text{ mol}\cdot\text{L}^{-1}$) at 298 K. All the emission spectra were obtained upon excitation at 285 nm.

Figure s18. (a) Changes observed in the emission spectra of complex **2b** ($5.0 \times 10^{-6} \text{ mol}\cdot\text{L}^{-1}$) in DCM upon adding TBAF solution in DCM ($1.25 \times 10^{-3} \text{ mol}\cdot\text{L}^{-1}$) at 298 K; (b) Changes observed in the emission spectra of complex **2b** ($2.5 \times 10^{-5} \text{ mol}\cdot\text{L}^{-1}$) in DCM upon adding TBAF solution in DCM ($3.20 \times 10^{-2} \text{ mol}\cdot\text{L}^{-1}$) at 298 K; (c) and (d) Luminescent images of **2b** radiated with an ultraviolet light at 365 nm before and after addition of TBAF.

Figure s19 (a) Changes observed in the emission spectra of complex **3b** ($5.0 \times 10^{-6} \text{ mol}\cdot\text{L}^{-1}$) in DCM upon adding TBAF solution in DCM ($1.25 \times 10^{-3} \text{ mol}\cdot\text{L}^{-1}$) at 298 K; (b) Changes observed in the emission spectra of complex **3b** ($2.5 \times 10^{-5} \text{ mol}\cdot\text{L}^{-1}$) in DCM upon adding TBAF solution in DCM ($3.20 \times 10^{-2} \text{ mol}\cdot\text{L}^{-1}$) at 298 K; (c) and (d) Luminescent images of **3b** radiated with an ultraviolet light at 365 nm before and after addition of TBAF.

Figure S20. ESI-MS spectra of complex 1a with collision cell energy at 10 ev.

Figure S21. ESI-MS spectra of complex $\mathbf{1b}$ with collision cell energy at 10 ev.

Figure S22. ESI-MS spectra of complex 2a with collision cell energy at 10 ev.

Figure S23. ESI-MS spectra of complex 2b with collision cell energy at 10 ev.

Figure S24. ESI-MS spectra of complex **3a** with collision cell energy at 10 ev.

Figure S25. ESI-MS spectra of complex $\mathbf{3b}$ with collision cell energy at 10 ev.

Figure S26. ¹³C NMR spectrum of **1a** in CD₂Cl₂.

Figure S27. ¹³C NMR spectrum of **1b** in CD₂Cl₂.

Figure S28. ¹³C NMR spectrum of 2a in CD₂Cl₂.

Figure S29. ¹³C NMR spectrum of **2b** in CD₂Cl₂.

Figure S₃o. ¹³C NMR spectrum of **3a** in CD₂Cl₂.

Figure S₃₁. ¹³C NMR spectrum of **3b** in CD₂Cl₂.