Supporting Information

Enhanced indirect atomic H* reduction at a hybrid Pd/graphene cathode for electrochemical dechlorination under low negative potentials

Ran Mao^a, Huachun Lan^{b, d, *}, Li Yan^e, Xu Zhao^{a, c}, Huijuan Liu^{b, c} and Jiuhui Qu^{a, c}

^{*a*}Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P.R. China

^bSchool of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, P.R. China
^cUniversity of Chinese Academy of Sciences, Beijing, 100049, P.R. China
^dCenter for Water and Ecology, Tsinghua University, Beijing 100084, China
^eState Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P.R. China

*Corresponding author: Tel.: +86-10-62849160; fax: +86-10-62849160; e-mail: hclan@tsinghua.edu.cn.

Calculation results:

Cartesian coordinates for Pd-H and Pd/rGO-H reported in the manuscript.

С

Table S1. Cartesian coordinates for Pd-

1	r	1	r
	H	-	
	L		L,

Atomic	Coord	dinates (Angst	roms)
Types	Х	Y	Z
Н	1.161325	2.30293	0
Pd	-1.61411	-0.8661	-1.42289
Pd	-1.61411	-0.8661	1.42289
Pd	-0.53113	-2.93329	0
Pd	1.213315	-1.22766	1.446583
Pd	1.213315	-1.22766	-1.44658
Pd	-2.63395	1.252678	2.645655
Pd	-2.63395	1.252678	-2.64566
Pd	-2.56935	1.433586	0
Pd	0.049919	1.055869	0
Pd	0.009337	1.120237	2.64086
Pd	2.634229	0.707594	2.651885
Pd	0.009337	1.120237	-2.64086
Pd	2.634229	0.707594	-2.65189
Pd	2.671602	0.773266	0

Table	S2.	Cartesian	coordinates	for
-------	------------	-----------	-------------	-----

Pd/	′rGO	-H
-----	------	----

Atomic	Coord	linates (Angst	troms)
Types	Х	Y	Ζ
С	-4.05372	-3.07696	-0.37752
С	-1.95027	-4.36288	-0.73347
С	-4.74518	-1.86812	-0.50943
С	-4.07223	-0.6628	-0.95075
С	-2.64087	-3.16276	-0.6861
С	-1.92964	-1.90973	-0.88238
С	0.198061	-5.6035	-0.87886
С	2.352195	-6.83719	-0.95191
С	-0.52512	-4.40917	-0.82223
С	0.196466	-3.16223	-0.77626
С	1.61599	-5.63115	-0.85795
С	2.338045	-4.40093	-0.72038
С	3.746078	-6.82573	-0.91557

С	4.452464	-5.62863	-0.76985
С	-4.75188	0.521828	-1.18512
С	-4.06339	1.764013	-1.30064
С	-2.62788	-0.6913	-1.03733
С	-1.91599	0.539351	-1.11828
С	-4.73535	2.985659	-1.41842
С	-4.0629	4.226552	-1.30294
С	-2.62983	1.761837	-1.16073
С	-1.95346	2.998439	-0.94197
С	-4.73693	5.469048	-1.40021
С	-4.05383	6.667126	-1.20009
С	-2.65894	4.229112	-1.00956
С	-1.97322	5.463826	-0.76437
С	-2.6932	6.673176	-0.8796
С	-0.49997	-1.92414	-0.854
С	0.222624	-0.67946	-0.87966
С	1.620922	-3.17314	-0.65228
С	2.326406	-1.92613	-0.50686
С	-0.49132	0.543672	-0.96446
С	0.189335	1.768854	-0.69386
С	1.630809	-0.68066	-0.66476
С	2.324364	0.556453	-0.47667
С	3.770442	-4.39621	-0.66244
С	4.451251	-3.16401	-0.46064
С	3.772398	-1.95155	-0.34873
С	4.434104	-0.70067	-0.06052
С	-0.55893	2.988309	-0.59929
С	0.103085	4.235114	-0.27106
С	1.604724	1.768043	-0.45495
С	2.260761	2.999498	-0.05425
С	-0.60417	5.4296	-0.37975
С	1.489203	4.18029	0.137674
С	3.743656	0.540606	-0.1552
С	4.441224	1.807767	-0.039
С	3.711638	3.017654	0.029917
Pd	2.399282	-1.3791	4.25677
Pd	-0.34097	-1.09415	4.241321
Pd	1.145675	0.178064	6.21226
Pd	-0.2297	1.843814	4.260005

Pd	2.671397	1.44901	4.15302
Pd	-3.77039	-1.83359	1.585118
Pd	1.848245	-2.25874	1.737364
Pd	-0.92176	-1.80914	1.634488
Pd	0.844576	0.305424	2.259167
Pd	-2.25658	0.230214	2.876386
Pd	-1.02769	2.323759	1.600023
Pd	3.69395	-0.26301	2.041327
Pd	4.258887	2.451802	2.11737
Pd	1.555246	3.111733	2.158351
Н	1.209399	1.684778	5.309346

Electrode	Components	Pos. (eV)	FWHM (eV)	%Area
Pd/CFP	$Pd^0 3d_{5/2}$	335.07	1.05	53.80
	$Pd^0 3d_{3/2}$	340.33	1.05	35.84
	$PdO_x 3d_{5/2}$	336.54	2.05	6.22
	$PdO_x3d_{3/2}$	341.82	2.05	4.14
Pd/rGO/CFP	$Pd^0 3d_{5/2}$	335.07	0.93	42.30
	$Pd^0 3d_{3/2}$	340.33	0.93	28.18
	$PdO_x3d_{5/2}$	336.54	1.67	17.72
	$PdO_x3d_{3/2}$	341.82	1.67	11.81

Table S3. XPS analysis of Pd component obtained from the Pd 3d spectrum.

Table S4. XPS analysis of C component obtained from the C 1s spectrum.

Electrode	Components	Pos. (eV)	FWHM (eV)	%Area
rGO/CFP	C-C/C=C	284.80	1.52	57.37
	C-0	286.13	1.52	15.79
	O-C=O	288.62	2.59	26.84
Pd/rGO/CFP	C-C/C=C	284.80	1.38	70.53
	C-0	286.18	1.38	11.44
	O-C=O	288.90	2.28	18.03

Cathode meterials	Initial	TCAA	$E_{\rm CAT}$	(V	VS	Removal	Refs.
	concent	ration	SCE)			efficiency (%)	
Pd/Fe-C	500 μg/	L	-1.5			90.0 (40 min)	[1]
Cu tubing	100 mg	/L	-1.0			65.2 (25 min)	[2]
Graphene/Cu foam	500 μg/	L	-1.2			99.6 (40 min)	[3]
MoS ₂ /carbon felt	1.6 mg/	L	-1.1			36.0 (10 min)	[4]
Co-MoS ₂ /carbon felt	1.6 mg/	L	-1.1			100.0 (10 min)	[4]
Pd/rGO/CFP	500 μg/	L	-0.5			81.5 (40 min)	This
							work

Table S5. Comparison of TCAA dechlorination performance of different electrodes.

References

- [1] A. Z. Li, X. Zhao, Y. N. Hou, H. J. Liu, L.Y. Wu, J. H. Qu, The Electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. *Appl. Catal.*, *B: Environ.*, 2012, 111-112, 628-635.
- [2] G. V. Korshin, M. D. Jensen, Electrochemical reduction of haloacetic acids and exploration of their removal by electrochemical treatment. *Electrochim. Acta* 2001, 47, 747-751.
- [3] R. Mao, N. Li, H. C. Lan, X. Zhao, H. J. Liu, J. H. Qu, M. Sun, Dechlorination of trichloroacetic acid using a noble metal-free graphene-Cu foam electrode via direct cathodic reduction and atomic H*. *Environ. Sci. Technol.*, 2016, 50, 3829-3837.
- [4] L. Z. Huang, S. U. Pedersen, E. T. Bjerglund, P. Lamagni, M. Glasius, H. C. B. Hansen, K. Daasbjerg, Hierarchical MoS₂ nanosheets on flexible carbon felt as an efficient flow-through electrode for dechlorination. *Environ. Sci.: Nano*, 2017, 4, 2286-2296.

Figure S1. Schematic diagram of the experimental set-up. (1) reactor; (2) cathode; (3) reference electrode (SCE); (4) anode: platinum wire; (5) proton-exchange membrane;
(6) sampling port; (7) magnetic stirrer; (8) electrochemical workstation; (9) Computer.

Figure S2. Pd_{14} cluster, showing four {111} and one {100} faces.

Figure S3. SEM image of GO on CFP.

Figure S4. (a) XPS C 1s spectrum and (c) Pd 3d spectrum of the Pd/rGO/CFP electrode after electrochemical reduction process .