UV₃₆₅ light promoted catalyst-free synthesis of pyrimido[4,5*b*]quinoline-2,4-diones in aqueous-glycerol medium.

Geetmani Singh Nongthombam,^{a,b} George Kupar Kharmawlong,^a John Elisa Kumar,^c and Rishanlang Nongkhlaw^a*

- ^a Organic synthesis Lab, Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong-793022, India.
- ^b Applied Organic synthesis Group, Chemical Science and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat-785006, India.
- ^c Photocatalysis Lab, Centre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong-793022, India.
 - * E-mail: <u>rlnongkhlaw@nehu.ac.in</u>; Tel.: +91-364-2722628; fax: +91-364-2550076;

Table of content

1.	Experimental Procedure	1
2.	Analytical data of the compound 4a-x	2-6
3.	¹ H & ¹³ C NMR spectra of compounds 4a-x	7-54

Page No.

General procedure for preparation of 4a-x:

In a 100 ml borosilicate tube, barbituric acid (1mmol), aromatic amine (1 mmol) and 30ml of Millipore water-glycerol (50:50) was irradiated by 8 lamps of UV_{365} source for 15 minutes under continuous air-bubbling condition; then aryl aldehyde (1 mmol) was charged into the solution and further irradiated by 8 lamps of UV_{365} for another 45-75 minutes. On completion of the reaction (indicated by appearance of thick solid precipitate), the precipitate was recovered by simple filtration followed by washing with warm Millipore water and drying.

Procedure for reaction of barbituric acid with aniline in the presence of hydroxyl radical inhibitor:

In a 100 ml borosilicate tube, barbituric acid (1mmol), aniline (1 mmol), H_2O_2 (200mmol) and 50ml of Millipore water-glycerol (50:50) was irradiated by 8 lamps of UV₃₆₅ source for 15 minutes under continuous air-bubbling condition. The mixture was extracted with dichloromethane and the compounds purified by column chromatography.

Experimental

All the chemicals involved in the synthesis were purchased from Alfa Aesar, Sigma-Aldrich & Merck and were used without further purification. The purity of the products was confirmed by infrared (FT-IR), ¹H-NMR, and ¹³C-NMR. FT-IR spectra were recorded in KBr pellets on a Perkin Elmer Spectrum 400 FTIR instrument, and the frequencies are expressed in cm⁻¹. ¹H-NMR and ¹³C-NMR spectra were recorded on a BrukerAvance II-400 spectrometer in DMSO-d₆ (chemical shifts in δ). Elemental analyses were carried out on a Heraeus CHN-O-Rapid analyzer. The UV₃₆₅ irradiation was conducted in a UV reactor fitted with twelve lamps (8W each) of Herber Scientific make; model HML, Compact-LP-MP-812.

Analytical data and Spectra

5-phenyl-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4a): Yield: 98%; Melting point: 224-226 °C;

IR (KBr): v 3335, 3025, 1690, 1619, 1495, 1409, 1123, 780, 556 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.15 (s, 1H), 10.17 (bs, 2H), 8.10 (d, 1H, J = 7.2Hz), 7.47-7.56 (m, 1H), 7.33-7.35 (m, 2H), 7.04-7.18 (m, 5H), 5.93 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 167.7, 161.5, 150.6, 144.2, 135.7, 133.0, 129.5, 128.8, 127.4, 126.6, 125.2, 124.4, 120.9, 91.6, 30.6. Anal. Calcd. for C₁₇H₁₃N₃O₂: C, 70.09; H, 4.50; N, 14.42%; Found: C, 70.25; H,

4.45; N, 14.29%.

5-(4-fluorophenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4b): Yield: 95%; Melting point:

196-198 °C; IR (KBr): v 3375, 3033, 1687, 1622, 1505, 1402, 1124, 776, 557 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.25 (s, 1H), 10.11 (bs, 2H), 7.30-7.23 (m, 3H), 7.03-6.99 (m, 4H), 6.95-6.91 (m, 1H), 5.88 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 165.1, 160.8, 158.7, 150.8, 140.3, 136.9, 132.6, 129.4, 128.2, 128.1, 124.2, 120.2, 113.7, 91.9, 30.1. Anal. Calcd. for C₁₇H₁₂FN₃O₂: C, 66.02; H, 3.91; N, 13.59%; Found: C, 66.19; H, 3.84; N, 13.66%.

5-(3-bromophenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4c): Yield: 93%; Melting point:

200-202 °C; IR (KBr): v 3356, 3032, 1690, 1615, 1487, 1389, 1125, 780, 557 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.11 (s, 1H), 10.16 (s, 2H), 7.42-7.34 (m, 2H), 7.23-7.09 (m, 5H), 7.01 (d, 1H, J = 7.6Hz), 5.91 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 167.7, 159.8, 150.5, 147.7, 142.2, 134.8, 129.6, 129.5, 129.2, 127.3, 125.8, 123.0, 121.1, 109.1, 91.1, 30.6. Anal. Calcd. for C₁₇H₁₂BrN₃O₂: C, 55.15; H, 3.27; N, 11.35%; Found: C, 55.28;

H, 3.34; N, 11.19%.

5-(4-bromophenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4d): Yield: 94%; Melting point:

218-220 °C; IR (KBr): v 3376, 3021, 1691, 1614, 1478, 1405, 1126, 778, 555 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.26 (s, 1H), 10.12 (bs, 2H), 7.65 (d, 2H, J = 8.8Hz), 7.37-7.25 (m, 3H), 7.13-7.08 (m, 2H), 6.95 (d, 1H, J = 8.4Hz), 5.86 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 163.2, 159.6, 150.5, 150.1, 144.0, 134.6, 131.8, 130.9, 130.1, 129.5, 129.0, 126.2, 125.2, 120.9, 117.3, 91.3, 30.4. Anal. Calcd. for C₁₇H₁₂BrN₃O₂: C, 55.15; H, 3.27; N, 11.35%; Found: C, 54.96; H, 3.25; N, 11.43%.

5-(4-nitrophenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4e): Yield: 90%; Melting point:

231-233 °C; IR (KBr): v 3387, 2999, 1692, 1622, 1496, 1412, 1346, 1227, 1111, 849, 779, 556 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.12 (s, 1H), 10.20 (s, 2H), 8.03-8.05 (m, 2H), 7.39-7.43 (m, 2H), 7.20-7.27 (m, 4H), 6.03 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 168.7, 160.0, 154.0, 150.5, 144.9, 134.0, 129.6, 127.8, 126.4, 123.9, 122.8, 121.8, 90.2, 31.3. Anal. Calcd. for C₁₇H₁₂N₄O₄: C, 60.71; H, 3.60; N, 16.66%; Found: C, 60.58; H, 3.63; N,

16.72%.

5-(2-chlorophenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4f): Yield: 90%; Melting point:

204-206 °C; IR (KBr): v 3345, 3019, 1697, 1617, 1405, 1121, 780, 558 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.12 (s, 1H), 10.01 (bs, 2H), 7.74 (d, 1H, J = 7.2Hz), 7.29-7.25 (m, 3H), 7.08-6.97 (m, 4H), 5.78 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 168.2, 164.8, 151.1, 150.6, 142.6, 137.3, 133.1, 132.3, 130.6, 129.9, 129.5, 126.9, 126.0, 124.8, 120.8, 80.0, 31.4. Anal. Calcd. for C₁₇H₁₂ClN₃O₂: C, 62.68; H, 3.71; N, 12.90%; Found:

C, 62.79; H, 3.67; N, 12.82%.

5-(2-chlorophenyl)-7-methyl-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4g): Yield: 87%;

Melting point: 184-186 °C; IR (KBr): v 3363, 3022, 1689, 1624, 1467, 1384, 1124, 781, 559 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.12 (s, 1H), 9.99 (bs, 2H), 7.74 (d, 1H, J = 7.6Hz), 7.27-7.16 (m, 3H), 7.14-7.10 (m, 1H), 7.07-7.03 (m, 2H), 5.80 (s, 1H), 2.26 (s, 3H); 13 C-NMR (100 MHz, DMSO-D₆): δ 168.2, 164.9, 151.1, 150.7, 142.6, 136.0, 133.6, 133.1, 130.0, 130.6, 130.4, 129.5, 126.9, 126.0, 122.1, 90.2,

31.3, 20.9. Anal. Calcd. for C18H14CIN3O2: C, 63.63; H, 4.15; N, 12.37%; Found: C, 63.77; H, 4.09; N, 12.44%.

7-methoxy-5-phenyl-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4h): Yield: 97%; Melting point:

190-192 °C; IR (KBr): v 3310, 3133, 2960, 1693, 1606, 1493, 1404, 1251, 778, 555 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.13 (s, 1H), 10.06 (bs, 2H), 7.18-7.10 (m, 4H), 7.01-6.95 (m, 4H), 5.94 (s, 1H), 3.73 (s, 3H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 167.8, 158.3, 158.0, 157.9, 150.6, 136.2, 131.0, 128.7, 128.3, 127.3, 126.6, 125.5, 122.3, 114.7, 114.3, 90.9, 55.2, 30.4. Anal. Calcd. for C₁₈H₁₅N₃O₃: C, 67.28; H, 4.71;

N, 13.08%; Found: C, 67.36; H, 4.68; N, 13.15%.

5-(p-tolyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4i): Yield: 91%; Melting point: 180-182 °C; IR (KBr): v 3350, 3120, 2960, 1667, 1408, 1231, 778, 557 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.34 (s, 1H), 10.04 (bs, 2H), 7.28 (d, 2H, J = 8.4Hz), 7.22-7.18 (m, 2H), 6.93-6.87 (m, 4H), 5.84 (s, 1H), 2.36 (s, 3H); 13 C-NMR (100 MHz, DMSO-D₆): δ 163.5, 161.7, 150.5, 143.4, 141.1, 137.8, 133.9, 133.0, 129.8, 129.3, 128.8, 127.9, 126.5, 123.5, 119.7, 91.0, 30.3, 21.3. Anal. Calcd. for C₁₈H₁₅N₃O₂: C, 70.81; H, 4.95; N, 13.76%; Found:

C, 70.90; H, 5.01; N, 13.68%.

7-methyl-5-(p-tolyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4j): Yield: 88%; Melting point:

200-201 °C; IR (KBr): v 3345, 3048, 2957, 1676, 1411, 1225, 780, 556 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.11 (s, 1H), 10.00 (bs, 2H), 7.1 (d, 2H, J = 8Hz), 6.93-6.86 (m, 5H), 5.87 (s, 1H), 2.22 (s, 3H), 2.18 (s, 3H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 163.6, 161.8, 150.6, 150.2, 141.2, 134.9, 132.9, 132.3, 129.9, 129.3, 128.8, 128.5, 127.9, 126.5, 121.2, 90.9, 30.1, 21.3, 20.4. Anal. Calcd. for C19H17N3O2: C, 71.46; H, 5.37; N,

13.16%; Found: C, 71.55; H, 5.43; N, 13.08%.

7-methoxy-5-(4-nitrophenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4k): Yield: 95%;

Melting point: 231-233 °C; IR (KBr): v 3413, 3037, 2965, 1699, 1619, 1398, 1254, 780, 554 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.13 (s, 1H), 10.16 (bs, 2H), 8.05 (d, 2H, J = 8.4Hz), 7.24-7.26 (m, 3H), 7.02 (d, 2H, J = 8.8Hz), 6.04 (s, 1H), 3.75 (s, 3H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 167.4, 161.2, 158.5, 154.0, 150.6, 144.9, 135.4, 131.2, 127.7, 124.2, 122.8, 114.7, 90.4, 55.3, 31.2. Anal. Calcd. for C₁₈H₁₄N₄O₅: C, 59.02; H, 3.85; N, 15.29%; Found: C, 58.91; H, 3.86; N, 15.35%.

5-(3-chlorophenyl)-7-methyl-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (41): Yield: 89%;

Melting point: 270-272 °C; IR (KBr): v 3401, 3031, 2950, 1687, 1623, 1406, 1122, 789, 552 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.11 (s, 1H), 10.09 (bs, 2H), 7.21-7.15 (m, 3H), 7.10-7.06 (m, 3H), 6.95 (d, 1H, J = 7.6Hz), 5.92 (s, 1H), 2.27 (s, 3H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 163.5, 161.5, 150.5, 147.5, 136.5, 132.2, 130.2, 130.0, 129.3, 126.2, 125.4, 124.4, 122.2, 117.0, 90.2, 30.5, 20.4. Anal. Calcd.

for $C_{18}H_{14}CIN_3O_2$: C, 63.63; H, 4.15; N, 12.37%; Found: C, 63.72; H, 4.11; N, 12.29%.

 $\label{eq:chlorophenyl} \textbf{7-chlorophenyl} \textbf{-5,10-dihydropyrimido} [4,5-b] \textbf{quinoline-2,4} (1H,3H) \textbf{-dione} \qquad (4m) \textbf{:} \qquad \mbox{Yield:} \qquad 85\%;$

Melting point: 186-188 °C; IR (KBr): v 3334, 3021, 1691, 1405, 1122, 778, 554 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.11 (s, 1H), 10.19 (bs, 2H), 7.73 (d, 1H, J = 7.2Hz), 7.45 (t, 1H, J = 7.2Hz), 7.35 (t, 1H, J = 7.4Hz), 7.26-7.19 (m, 1H), 7.15-7.04 (m, 2H), 6.74 (d, 1H, J = 8.8Hz), 5.72 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 163.1, 161.3, 151.0, 150.1, 140.9, 132.3, 130.7, 129.4, 129.3, 127.1, 126.7, 126.1, 125.1, 122.2,

119.9, 91.5, 31.8. Anal. Calcd. for $C_{17}H_{11}Cl_2N_3O_2$: C, 56.69; H, 3.08; N, 11.67%; Found: C, 56.49; H, 3.12; N, 11.74%.

5-(3-bromophenyl)-7-methyl-5,10-dihydropyrimido[4,5-*b*]quinoline-2,4(1*H*,3*H*)-dione (4n): Yield: 90%;

Melting point: >300 °C; IR (KBr): v 3352, 3043, 1688, 1621, 1396, 1121, 851, 780, 557 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.11 (s, 1H), 10.12 (bs, 2H), 7.43-7.37 (m, 1H), 7.23-7.21 (m, 2H), 7.14-7.09 (m, 3H), 7.00 (d, 1H, J = 8Hz), 5.92 (s, 1H), 2.27 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 163.2, 161.5, 150.5, 147.8, 136.6, 130.1, 130.0, 129.6, 129.1, 127.3, 125.8, 122.3, 121.1, 90.3, 30.5, 20.4. Anal. Calcd.

for $C_{18}H_{14}BrN_3O_2$: C, 56.27; H, 3.67; N, 10.94%; Found: C, 56.00; H, 3.58; N, 11.17%.

7-methoxy-5-(p-tolyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (40): Yield: 93%; Melting point:

197-199 °C; IR (KBr): v 3339, 3027, 1698, 1618, 1408, 1225, 780, 554 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.11 (s, 1H), 9.99 (s, 2H), 7.09 (d, 2H, J = 8.8Hz), 6.97-6.86 (m, 5H), 5.88 (s, 1H), 3.71 (s, 3H), 2.18 (s, 3H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 158.6, 158.1, 151.1, 144.5, 141.9, 133.4,129.8, 128.4, 127.0, 123.7, 122.7, 115.2, 91.5, 55.7, 30.5, 20.9. Anal. Calcd. for C₁₉H₁₇N₃O₃: C, 68.05; H, 5.11; N, 12.53%; Found: C,

67.88; H, 5.03; N, 12.70%.

5-(4-chlorophenyl)-7-methyl-5,10-dihydropyrimido[4,5-*b*]quinoline-2,4(1*H*,3*H*)-dione (4p): Yield: 87%;

Melting point: 218-220 °C; IR (KBr): v 3329, 3017, 2945, 1697, 1398, 1225, 780, 557 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.11 (s, 1H), 10.07 (bs, 2H), 7.20-7.16 (m, 3H), 7.07 (d, 2H, J = 8Hz), 6.99 (d, 2H, J = 8.4Hz), 5.89 (s, 1H), 2.26 (s, 3H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 164.9, 160.7, 150.6, 143.6, 136.1, 130.7, 130.0, 128.8, 128.5, 128.0, 127.2, 122.0, 90.5, 30.2, 20.4. Anal. Calcd. for C₁₈H₁₄ClN₃O₂: C, 66.63; H, 4.15; N, 12.37%; Found: C, 63.83; H, 4.07; N, 12.12%.

5-(3-fluorophenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4q): Yield: 93%; Melting point:

198-200 °C; IR (KBr): v 3367, 3024, 1686, 1619, 1398, 1122, 778, 554 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.11 (s, 1H), 10.16 (bs, 2H), 7.37-7.33 (m, 2H), 7.19-7.13 (m, 3H), 6.85-6.70 (m, 3H), 5.90 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 164.4, 163.3, 160.9, 150.5, 147.9, 134.8, 129.5, 129.1, 129.0, 125.8, 122.7, 121.4, 118.3, 113.0, 111.2, 90.3, 30.7. Anal. Calcd. for C₁₇H₁₂FN₃O₂: C, 66.02; H, 3.91; N, 13.59%; Found: C, 66.23; H, 4.02; N, 13.38%.

5-(3-fluorophenyl)-7-methyl-5,10-dihydropyrimido[4,5-*b*]quinoline-2,4(1*H*,3*H*)-dione (4r): Yield: 91%;

Melting point: >300 °C; IR (KBr): v 3365, 3057, 2957, 1698, 1614, 1412, 1125, 779, 553 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.11 (s, 1H), 10.09 (bs, 2H), 7.22-7.08 (m, 4H), 6.84-6.82 (m, 2H), 6.71-6.68 (m, 1H), 5.92 (s, 1H), 2.27 (s, 3H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 168.2, 163.8, 161.4, 151.0, 148.6, 137.0, 130.8, 130.5, 129.6, 129.5, 123.2, 122.7, 113.7, 111.5, 91.0, 31.1, 20.9. Anal. Calcd. for C₁₈H₁₄FN₃O₂: C, 66.87; H, 4.36; N, 13.00%; Found: C, 66.68; H, 4.27; N, 13.20%.

5-(4-fluorophenyl)-7-methoxy-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4s): Yield: 96%;

Melting point: 194-196 °C; IR (KBr): v 3387, 3032, 1695, 1617, 1397, 1123, 780, 558 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.12 (s, 1H), 10.06 (bs, 2H), 7.18 (d, 2H, J = 8.8Hz), 7.00-6.90 (m, 5H), 5.90 (s, 1H), 3.73 (s, 3H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 168.2, 161.5, 159.1, 158.6, 151.1, 141.0, 133.4, 128.7, 125.8, 124.1, 122.8, 115.2, 114.4, 91.3, 55.8, 30.4. Anal. Calcd. for C₁₈H₁₄FN₃O₃: C, 63.71; H, 4.16; N, 12.38%; Found: C, 63.56; H, 4.06; N, 12.45%.

7-bromo-5-(4-nitrophenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4t): Yield: 91%; Melting

point: 238-240 °C; IR (KBr): v 3398, 3038, 1682, 1621, 1514, 1346, 1110, 851, 780, 554 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.32 (s, 1H), 10.30 (bs, 2H), 8.06 (d, 2H, J = 8Hz), 7.40 (d, 2H, J = 16Hz), 7.26-7.32 (m, 1H), 6.90 (d, 2H, J = 8Hz), 5.98 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 168.7, 161.0, 153.4, 150.5, 145.0, 137.9, 132.0, 129.7, 127.8, 123.9, 122.8, 121.5, 114.9, 91.9, 31.5. Anal. Calcd. for C₁₇H₁₁BrN₄O₄: C, 49.18; H, 2.67; N, 13.49%; Found: C, 42.28; H, 2.71; N, 13.30%.

5-(4-fluorophenyl)-7-methyl-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4u): Yield:87%; Melting

point: 204-206 °C; IR (KBr): v 3375, 3018, 1689, 1614, 1409, 1124, 778, 553 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.11 (s, 1H), 10.08 (bs, 2H), 7.18 (d, 2H, J = 8Hz), 7.07 (d, 2H, J = 8Hz), 7.01-6.90 (m, 3H), 5.89 (s, 1H), 2.26 (s, 3H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 167.7, 161.0, 158.6, 150.6, 140.4, 135.7, 131.3, 129.9, 128.1, 126.5, 125.7, 121.7, 113.7, 90.8, 30.0, 20.7. Anal. Calcd. for C₁₈H₁₄FN₃O₂: C, 66.87; H, 4.36; N, 13.00%; Found: C, 67.02; H, 4.44; N, 12.88%.

7-bromo-5-(2-chlorophenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4v): Yield: 88%;

Melting point: 193-195 °C; IR (KBr): v 3374, 3017, 1689, 1618, 1406, 1125, 780, 556 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.26 (s, 1H), 10.10 (bs, 2H), 7.74 (d, 1H, J = 7.6Hz), 7.55 (d, 1H, J = 7.6Hz), 7.47 (t, 1H, J = 7.4Hz), 7.36 (t, 1H, J = 7.4Hz), 7.27-7.21 (m, 2H), 6.64 (d, 1H, J = 8.4Hz), 5.74 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 163.1, 161.3, 150.6, 150.1, 143.4, 133.6, 132.7, 132.1, 130.7,

129.3, 127.0, 126.7, 126.1, 119.1, 110.9, 88.3, 31.8. Anal. Calcd. for $C_{17}H_{11}BrClN_3O_2$: C, 50.46; H, 2.74; N, 10.38%; Found: C, 50.58; H, 2.69; N, 10.27%.

5-(3-chlorophenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4w): Yield: 85%; Melting point:

202-204°C; IR (KBr): v 3353, 3032, 1689, 1625, 1399, 1121, 780, 557 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.11 (s, 1H), 10.12 (bs, 2H), 7.34-7.30 (m, 2H), 7.19-7.06 (m, 5H), 6.96 (d, 1H, J = 7.6Hz), 5.91 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 163.6, 161.2, 150.5, 147.5, 135.1, 132.2, 129.5, 129.3, 127.9, 126.3, 125.5, 125.4, 124.4, 121.2, 117.9, 90.2, 30.6. Anal. Calcd. for C₁₇H₁₂ClN₃O₂: C, 62.68; H, 3.71; N, 12.90%; Found:

C, 62.47; H, 3.76; N, 13.11%.

5-(4-chlorophenyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (4x): Yield: 93%; Melting point:

194-196 °C; IR (KBr): v 3342, 3024, 1699, 1621, 1394, 1124, 779, 554 cm⁻¹; ¹H-NMR (400 MHz, DMSO-D₆): δ 11.26 (s, 1H), 10.10 (bs, 2H), 7.32-7.25 (m, 3H), 7.17 (d, 2H, J= 8.4Hz), 7.08-6.99 (m, 3H), 5.88 (s, 1H); ¹³C-NMR (100 MHz, DMSO-D₆): δ 164.1, 161.6, 150.5, 143.6, 135.7, 130.2, 129.5, 128.9, 128.5, 128.0, 127.2, 125.1, 120.8, 90.4, 30.3. Anal. Calcd. for C₁₇H₁₂ClN₃O₂: C, 62.68; H, 3.71; N, 12.90%; Found: C, 62.81; H, 3.69; N, 12.76%.

¹H-NMR of 4a

¹³C-NMR of 4a

¹H-NMR of 4b

¹³C-NMR of 4b

-11.115 —10.161 -5.912 g 8 8 1.0 0.9 0.8 Normalized Intensity 0.6 0.5 0.5 0.3 0.2 0.1 0 2.11 5.02 1.18 ЦЦЦЦ 7 2.17 Ц +-------10 0.99 Ll 0.44 L_I 6 5 Chemical Shift (ppm) ידי 0 ЧΤ 9 3 ' | 8 5 2 1 4

¹³C-NMR of 4c

¹³C-NMR of 4d

¹³C-NMR of 4e

¹³C-NMR of 4g

¹³C-NMR of 4h

-11.349 --2.368 -6.912 -6.892 -6.880 -5.849 7.299 7.278 7.224 7.204 7.185 1.0 -0.9 0.8 -0.7 0.6 0.5 0.3 0.2 0.1 0 2.22 2.58 4.28 2.04 LI 10 3.58 ∥ 1.00 Ц 0.92 니 12 \mathbf{T} 11 ידי 2 3 7 6 Chemical Shift (ppm) ġ ò 8 5 4 1

¹H-NMR of 4i

¹³C-NMR of 4i

—11.116 -10.009 <u>√</u>2.226 √2.186 -7.110-6.938-6.916-6.908-6.908-6.883-6.883-6.8631.0 0.9 0.8 Normalized Intensity 0.6 0.5 0.4 0.6 0.5 0.3 0.2 0.1 0 3.24 3.11 2.41 5.13 0.87 日 2.11 Ц 0.94 山 11 10 ידייי 7 ידי 2 тт 3 6 5 Chemical Shift (ppm) ġ 8 5 4 0

¹H-NMR of 4j

¹H-NMR of 4k

-161.232 ~158.574 -154.024 -150.649 -135.448 -131.219 -127.789 -124.203 _122.825 -144.931 -114.782 -167.463 -39.989 -39.779 -39.575 -39.365 -39.365 -39.155 -38.945 -55.357 -31.273 38.741 0.25 Normalized Intensity 0.10 12 0.15 -0.10 0.05 -----160 աստելա ᠳ᠇ 140 120 60 40 100 80 Chemical Shift (ppm) 20

¹³C-NMR of 4k

28

¹H-NMR of 41

¹³C-NMR of 41

¹³C-NMR of 4m

¹H-NMR of 40

¹³C-NMR of 40

-11.114 —10.071 -2.265 -5.899 .182 80 80. 6 8 1.0 -0.9 -0.8 0.3 0.2 0.1 0 _____ 0.58 Ц Ц 11 3.11 2.00 2.04 1.81 ∦ 1.14 니 9 רי 5 4 6 5 Chemical Shift (ppm) 1

¹H-NMR of 4p

¹³C-NMR of 4q

¹H-NMR of 4r

¹H-NMR of 4s

-11.329 68.062 -8.042 7.407 7.328 7.328 --5.987 -6.884 .289 .269 6.904 1.0 0.9 0.8 -Normalized Intensity 9.0 Normalized Intensity 9.0 Normalized Intensity 9.0 Normalized Intensity 0.3 0.2 0.1 0 2.03 Ll 0.32 山 0.82 ∐ 11 11 10 6 5 Chemical Shift (ppm) ġ 8 5 4 ż ż 7 Ó

¹H-NMR of 4t

¹³C-NMR of 4t

¹³C-NMR of 4v

¹³C-NMR of 4w

¹H-NMR of 4x

