Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

## Nanoscale porous glucose-based polymer for gas adsorption and

## drug delivery

Xiaowei Jiang,<sup>†</sup> Qiuliang Wang,<sup>†</sup> Yunfei Liu, Xiaohui Fu, Yali Luo<sup>\*</sup> and Yinong Lyu<sup>\*</sup> State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China

Tel: +86 25 83172114; Email: luoyali@njtech.edu.cn Tel: +86 25 83172118; Email: yinonglu@njtech.edu.cn Table of content:

Fig. S1 FT-IR spectrum of glu-NOP.

Fig. S2 SEM image of glu-NOP.

Fig. S3 Powder X-ray diffraction of glu-NOP.

Fig. S4 TGA plots of glu-NOP under nitrogen atmosphere.

Fig. S5 Initial slope fitting at 273 K for glu-NOP.

Fig. S6 In vitro biocompatibility of glu-NOP against HeLa cells at different concentrations for 24 h.

Fig. S7 Diagram of adsorption of IBU.

Fig. S8 Diagram of adsorption of 5-FU.

TABLE S1 Comparison of surface area,  $CO_2$  uptake, and isosteric heat ( $Q_{st}$ ) in selected NOPs with –OH functional groups.

TABLE S2 Porosity and CO<sub>2</sub> capacities of samples



Fig. S1 FTIR spectrum of glu-NOP.



Fig. S2 SEM image of glu-NOP.



Fig. S3 Powder X-ray diffraction of glu-NOP.



Fig. S4 TGA plots of glu-NOP under nitrogen atmosphere.



Fig. S5 Initial slope fitting at 273 K for glu-NOP.



Fig. S6 In vitro biocompatibility of glu-NOP against HeLa cells at different concentrations for 24 h.



Fig. S7 Diagram of adsorption of IBU.



Fig. S8 Diagram of adsorption of 5-FU.

|                      | $\mathbf{S}_{\mathrm{BET}}$       | CO <sub>2</sub> uptake  | Т   | Q <sub>st</sub>         | Def       |  |
|----------------------|-----------------------------------|-------------------------|-----|-------------------------|-----------|--|
|                      | (m <sup>2</sup> g <sup>-1</sup> ) | (mmol g <sup>-1</sup> ) | (K) | (kJ mol <sup>-1</sup> ) | Kel       |  |
| glu-NOP              | 682                               | 2.84                    | 273 | 23-25                   | This work |  |
|                      |                                   | 1.71                    | 298 |                         |           |  |
| Glc-3                | 829                               | 2.43                    | 273 | 25.8                    | 1         |  |
|                      |                                   | 1.45                    | 298 |                         |           |  |
| 1-naphthol           | 414                               | 1.85                    | 273 | 28-31                   | 2         |  |
|                      |                                   | 1.25                    | 298 |                         |           |  |
| phenol               | 400                               | 2.14                    | 273 | 28-31                   | 3         |  |
| Tetraphenylethylene- | 618                               | 1.92                    | 273 | -                       | 4         |  |
| НСР                  |                                   | 1.12                    | 298 |                         |           |  |

Table S1 Comparison of surface area,  $CO_2$  uptake, and isosteric heat ( $Q_{st}$ ) in selected NOPs with – OH functional groups.

Table S2 Porosity and CO<sub>2</sub> capacities of samples

|         | S <sub>micro</sub> | $V_{\text{total}}$ | V <sub>micro</sub> | $S_{micro}/S_{BET}$ | $V_{micro}/V_{total}$ | Ref       |
|---------|--------------------|--------------------|--------------------|---------------------|-----------------------|-----------|
|         | $(m^2 g^{-1})$     | $(cm^3 g^{-1})$    | $(cm^3 g^{-1})$    |                     |                       |           |
| glu-NOP | 451                | 0.39               | 0.18               | 66.1 %              | 46 %                  | This work |
| Glc-3   | 479                | 0.47               | 0.22               | 57.7 %              | 46 %                  | 1         |

## References

1. H. Li, B. Meng, S. M. Mahurin, S.-H. Chai, K. M. Nelson, D. C. Baker, H. Liu and S. Dai, *J. Mater. Chem. A*, 2015, **3**, 20913-20918.

 R. Dawson, L. A. Stevens, T. C. Drage, C. E. Snape, M. W. Smith, D. J. Adams and A. I. Cooper, J. Am. Chem. Soc., 2012, 134, 10741-10744.

3. B. Li, R. Gong, W. Wang, X. Huang, W. Zhang, H. Li, C. Hu and B. Tan, *Macromolecules*, 2011, **44**, 2410-2414.

4. S. W. Yao, X. Yang, M. Yu, Y. H. Zhang and J. X. Jiang, J. Mater. Chem. A, 2014, **2**, 8054-8059.