Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Figure S1. Effect of (A) temperature (B) time and (C) pH on the fluorescence intensity of B-

CDs

Figure S2. Effect of (A) temperature (B) time and (C) pH on the fluorescence intensity of R-

Figure S3. (A) TEM image of B-CDs (The inset is the size distribution of B-CDs), (B) TEM image of R-CDs (The inset is the size distribution of R-CDs).

Figure S4. (A) UV-vis absorbance and fluorescent emission of B-CDs (The inset show the corresponding color under a 254 nm UV lamp). (B) UV-vis absorbance and fluorescent emission of R-CDs (The inset show the corresponding color under a 254 nm UV lamp).

Figure S5. The FT-IR spectra (A) of B-CDs and (B) of R-CDs.

Figure S6. (A) FL spectra of the B-CDs excited at different wavelengths, (B) FL spectra of the R-CDs excited at different wavelengths.

Figure S7. The excitation spectrum (A) of B-CDs and (B) of R-CDs.

Figure S8. Fluorescence emission spectra ($\lambda_{ex} = 290$ nm) of (a) B-CDs, (b) R-CDs and (c) mixing B-CDs and R-CDs, respectively.

Figure S9. Photostability of the ratiometric fluorescence I_{380}/I_{620} of mixing B-CDs/R-CDs with the time exposed to 254 nm ultraviolet light for 15 min each time (I_{380} and I_{620} are the fluorescence intensities of B-CDs and R-CDs, respectively).

Figure S10. The fluorescent emission spectra (λ_{ex} = 290 nm) of (A) R-CDs and (B) B-CDs with the addition of Hg²⁺. The inset photos show the corresponding color evolutions under a 254 nm UV lamp.

Figure S11. The TEM image of (A) B-CDs and (B) R-CDs with the addition of 320 nM Hg²⁺.

Figure S12. XPS spectra of B-CDs (bottom) and B-CDs-Hg complex.

Figure S13. The fluorescent spectra of the mixing B-CDs/R-CDs with the addition of Hg^{2+} . Before measurements, the fluorescent intensity ratios in the mixing B-CDs/R-CDs were adjusted to (A) 2:1, (B) 4:1, (C) 6:1, and (D) 8:1. The insets show the corresponding fluorescent photos under a 254 nm UV lamp.

Figure S14. The temporal fluorescent response by the ratiomertric fluorescence I_{380}/I_{620} after the addition of 320 nM Hg²⁺.

Figure S15. The ratiometric fluorescent responses to various metallic ions with Hg^{2+} . The selectivity tests were done in HEPES buffer (pH=7.4) with the addition of 1 μ M various metallic ions and organic mercury into the mixing B-CDs/R-CDs (6:1 in fluorescent intensity).

Figure S16. The fluorescent spectra of the ratiometric probe after and before the additions of metallic ions. (a) Without any addition of metallic ions. (b) The addition of 1 μ M Li⁺, Na⁺, K⁺, Ag⁺, Ca²⁺, Co²⁺, Mg²⁺, Ni²⁺, Mn²⁺, Zn²⁺, Pb²⁺, Ba²⁺, Cu²⁺, Cd²⁺, Al³⁺, Fe³⁺ together. (c) A subsequent addition of 320 nM Hg²⁺ in (b).

Figure S17. The temporal color changes of fluorescent test paper upon the addition of 320 nM Hg^{2+} . The photos were taken under a 254 nm UV lamp.