Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Mapping the working route of phosphate monoester hydrolysis catalyzed by copper based models with special emphasis on the role of oxoanions by experimental and theoretical studies

Sanchari Dasgupta, ^a Gabriel Aullón, *^b Ennio Zangrando^c and Debasis Das*^a

^{*a*}Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata:700009, India ^{*b*}Departament de Química Inorgànica i Orgànica (Secció de Química Inorgànica) and Institut de QuímicaTeorica i Computacional, Universitat de Barcelona , Martí i Franques 1-11, 08028 Barcelona, Spain

^cDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy

Contents of Supporting Information

- 1) Fig. S1 FT-IR spectrum of complex 2
- 2) Fig. S2 FT-IR spectrum of complex 3
- 3) Fig. S3 UV-Vis spectra of complexes 2 and 3 in DMF medium
- 4) Table S1 Coordination Bond Lengths (Å) and Angles (°) for Complex 2
- 5) Table S2 Coordination Bond Lengths (Å) and Angles (°) for Complex 3
- Fig. S4 Intramolecular and Intermolecular H-bonding interactions operative between two tetranuclear units of complex 2
- 7) **Fig. S5** Polymeric network of complex **2** viewed along crystallographic axis *a* propagated via H-bonding interactions
- 8) **Fig. S6** Intramolecular and intermolecular H-bonding interactions operative between two tetranuclear units of complex **3** via lattice water molecule
- Fig. S7 Polymeric network of complex 3 viewed along crystallographic axis *a* propagated via H-bonding interactions
- 10) Fig. S8 ESI-MS spectrum of complex 2 in acetonitrile medium
- 11) Fig. S9 ESI-MS spectrum of complex 3 in acetonitrile medium
- 12) Fig. S10 Controlled experiment of Phosphatase activity for ligand H₂L in 97.5% DMF-H₂O mixture
- 13) Fig. S11 Controlled experiment of Phosphatase activity for [Cu(ClO₄)₂] in 97.5% DMF-H₂O mixture

- 14) Fig. S12 Controlled experiment of Phosphatase activity for [Cu(NO₃)₂] in 97.5% DMF-H₂O mixture
- 15) Fig. S13 Controlled experiment of Phosphatase activity for [Cu(OAc)₂] in 97.5% DMF-H₂O mixture
- 16) Table S3 First-order rate parameters for phosphatase activity as obtained by the non linear treatment of Michaelis-Menten treatment of complexes 1, 2 and 3
- 17) Fig. S14 Plot of enzymatic kinetics of hydrolysis of 4-NPP for (a) complex 1, (b) complex 2 and (c) complex 3
- 18) Fig. S15 ESI-MS spectrum of reaction mixture of complex 2 and 4-NPP recorded in positive mode
- 19) Fig. S16 ESI-MS spectrum of reaction mixture of complex 3 and 4-NPP recorded in positive mode
- 20) Table S4 Relative Gibbs Free Energies in DMF Solution for Compounds Involved in the Reaction Shown in the Scheme 2 Having Symmetrically Disposition of Bischelate Ligand L. The Energy for Initial Complexes is Arbitrarily Taken to Zero. All Energies are in kJ/mol
- 21) **Table S5** Main Geometric Parameters for the Optimized Binuclear Structures. Distances in Angstroms, Angles in Degrees
- 22) Table S6 Continous Shape Measures (CSM) for Copper Atoms in the Computed Geometries Accross the Proposed Pathway
- 23) Table S7 Crystallographic Data and Details of Refinements for Complexes 2 and 3

Fig. S1 FT-IR spectrum of complex 2.

Fig. S2 FT-IR spectrum of complex 3.

Fig. S3 UV-Vis spectra of complexes 2 and 3 in DMF medium.

Table S1 Coordination bond lengths (Å) and angles (°) for complex 2

1.921(5)	Cu(2)-O(3)	1.907(5)
1.985(6)	Cu(2)-N(2)	1.972(6)
1.973(5)	Cu(2)-O(4)	1.926(5)
1.907(5)	Cu(2)-O(1)	2.094(5)
2.355(7)	Cu(2)-O(3')	2.172(5)
2.9735(14)	Cu(2)-Cu(2')	3.131(2)
1	I	
95.5(2)	O(3)-Cu(2)-N(2)	96.5(2)
84.4(2)	N(2)-Cu(2)-O(4)	84.7(2)
83.7(2)	O(3)-Cu(2)-O(4)	178.5(2)
171.4(3)	O(3)-Cu(2)-O(3')	79.9(2)
95.3(2)	O(4)-Cu(2)-O(3')	98.6(2)
173.0(2)	N(2)-Cu(2)-O(3')	126.3(2)
92.0(3)	O(3)-Cu(2)-O(1)	100.7(2)
95.0(3)	O(4)-Cu(2)-O(1)	78.8(2)
93.5(2)	N(2)-Cu(2)-O(1)	141.1(2)
95.0(3)	O(3')-Cu(2)-O(1)	91.1(2)
	$ \begin{array}{c} 1.921(5)\\ 1.985(6)\\ 1.973(5)\\ 1.907(5)\\ 2.355(7)\\ 2.9735(14)\\ \end{array} $ 95.5(2) 84.4(2) 83.7(2) 171.4(3) 95.3(2) 173.0(2) 92.0(3) 95.0(3) 93.5(2) 95.0(3)	1.921(5) $Cu(2)-O(3)$ $1.985(6)$ $Cu(2)-N(2)$ $1.973(5)$ $Cu(2)-O(4)$ $1.907(5)$ $Cu(2)-O(1)$ $2.355(7)$ $Cu(2)-O(3')$ $2.9735(14)$ $Cu(2)-Cu(2')$ 95.5(2) $O(3)-Cu(2)-N(2)$ 84.4(2) $N(2)-Cu(2)-O(4)$ 83.7(2) $O(3)-Cu(2)-O(4)$ 171.4(3) $O(3)-Cu(2)-O(3')$ 95.3(2) $O(4)-Cu(2)-O(3')$ 95.3(2) $O(4)-Cu(2)-O(3')$ 92.0(3) $O(3)-Cu(2)-O(1)$ 95.0(3) $O(4)-Cu(2)-O(1)$ 95.0(3) $O(3')-Cu(2)-O(1)$ 95.0(3) $O(3')-Cu(2)-O(1)$

Primed atoms at -x+1,-y,-z+1

Cu(1)-O(1)	1.927(3)	Cu(2)-O(3)	1.925(3)
Cu(1)-N(1)	1.983(4)	Cu(2)-N(2)	1.997(4)
Cu(1)-O(2)	2.013(3)	Cu(2)-O(4)	1.928(3)
Cu(1)-O(4)	1.905(3)	Cu(2)-O(1)	2.061(3)
Cu(1)-O(5)	2.279(4)	Cu(2)-O(3')	2.214(3)
Cu(1)-Cu(2)	2.9936(8)	Cu(2)-Cu(2')	3.1996(12)

Table S2 Coordination bond lengths (Å) and angles (°) for complex 3.

O(1)-Cu(1)-N(1)	94.74(14)	O(3)-Cu(2)-N(2)	95.25(14)
N(1)-Cu(1)-O(2)	84.18(14)	N(2)-Cu(2)-O(4)	84.11(14)
O(4)-Cu(1)-O(1)	81.64(13)	O(3)-Cu(2)-O(4)	179.36(13)
O(4)-Cu(1)-N(1)	160.01(16)	O(3)-Cu(2)-O(3')	78.95(13)
O(4)-Cu(1)-O(2)	97.67(14)	O(4)-Cu(2)-O(3')	101.39(13)
O(1)-Cu(1)-O(2)	174.87(15)	N(2)-Cu(2)-O(3')	124.61(14)
O(1)-Cu(1)-O(5)	96.88(14)	O(3)-Cu(2)-O(1)	102.81(13)
O(2)-Cu(1)-O(5)	88.24(14)	O(4)-Cu(2)-O(1)	77.73(13)
O(4)-Cu(1)-O(5)	101.80(14)	N(2)-Cu(2)-O(1)	142.72(15)
N(1)-Cu(1)-O(5)	98.15(15)	O(3')-Cu(2)-O(1)	91.04(13)

Primed atoms at -x+1,-y+1,-z+1

Fig. S4 Intramolecular and Intermolecular H-bonding interactions operative between two tetranuclear units of complex **2**.

Fig. S5 Polymeric network of complex **2** viewed along crystallographic axis *a* propagated via H-bonding interactions.

Fig. S6 Intramolecular and intermolecular H-bonding interactions operative between two tetranuclear units of complex 3 via lattice water molecule.

Fig. S7 Polymeric network of complex **3** viewed along crystallographic axis *a* propagated via H-bonding interactions.

Fig. S8 ESI-MS spectrum of complex 2 in acetonitrile medium.

Fig. S9 ESI-MS spectrum of complex 3 in acetonitrile medium.

Fig. S10 Controlled experiment of Phosphatase activity for ligand H_2L in 97.5% DMF- H_2O mixture.

Fig. S11 Controlled experiment of Phosphatase activity for $[Cu(ClO_4)_2]$ in 97.5% DMF-H₂O mixture .

Fig. S12 Controlled experiment of Phosphatase activity for $[Cu(NO_3)_2]$ in 97.5% DMF-H₂O mixture .

Fig. S13 Controlled experiment of Phosphatase activity for $[Cu(OAc)_2]$ in 97.5% DMF-H₂O mixture .

			-		
Complex	$V_{max} (M s^{-1})$	$\mathbf{K}_{\mathbf{M}}\left(\mathbf{M}\right)$	$k_{\rm cat}$ (s ⁻¹)	$k_{\rm cat}/{\rm K}_{\rm M}({\rm M}^{-1}{\rm s}^{-1})$	Std. Error
Complex 1	4.526×10 ⁻⁴	1.43×10 ⁻³	9.052	6.336×10 ³	3.59×10 ⁻⁵
Complex 2	3.495×10 ⁻⁴	1.11×10 ⁻³	6.990	6.297×10 ³	5.49×10 ⁻⁵
Complex 3	1.570×10 ⁻⁴	8.68×10 ⁻⁴	3.14	3.617×10 ³	1.83×10 ⁻⁵

Table S3 First-order rate parameters for phosphatase activity as obtained by the non lineartreatment of Michaelis-Menten treatment of complexes 1, 2 and 3

(b)

Fig. S14 Plot of enzymatic kinetics of hydrolysis of 4-NPP for (a) complex **1**, (b) complex **2** and (c) complex **3**.

Fig. S15 ESI-MS spectrum of reaction mixture of complex **2** and 4-NPP recorded in positive mode.

Fig. S16 ESI-MS spectrum of reaction mixture of complex **3** and 4-NPP recorded in positive mode.

Table S4 Relative Gibbs free energies in DMF solution for compounds involved in the reaction shown in the scheme 2 having symmetrically disposition of bischelate ligand L. The energy for initial complexes is arbitrarily taken to zero. All energies are in kJ/mol.

Compounds	Relative Free Energies in DMF				
Compounds	Vacant	ClO_4^-	NO_3^-	AcO^{-}	
$[Cu_2L_2] (As) + HPO_4Ar^- + H_2O$	0.0	0.0	0.0	0.0	
$\left[Cu_{2}L_{2}(HPO_{4}Ar)\right]^{-} (\mathbf{Bs}) + H_{2}O$	-42.1	-50.6	-43.1	-39.5	
$\left[Cu_{2}L_{2}(HPO_{4}Ar)(H_{2}O)\right]^{-}(Cs)$	-85.6	-101.2	-97.0	-93.0	
$\left[Cu_{2}L_{2}(H_{2}PO_{4})\right]^{-}(\boldsymbol{Ds}) + HOAr$	-74.3	-70.6	-66.1	-72.4	
$[Cu_2L_2(H_2O)] (Es) + H_2PO_4^- + HOAr$	-27.1	-37.2	-36.3	-34.9	

 $Ar = -C_6H_4NO_2.$

Table S5 Main geometric parameters for the optimized binuclear structures. Distances in

Angstroms, Angles in Degrees.

Compounds	Vacant	ClO_4^-	NO ₃ ⁻	AcO
$[Cu_2(L)_2]$ (A)				
$Cu_A \cdots Cu_B$	3.014	2.899	2.851	2.875
Cu_{A} - μ - O_{Alk}	1.929	1.947	1.958	1.965
Cu_{A} - μ - O_{Ar}	2.028	2.021	2.038	1.998
Cu _A -O _{Ar}	1.886	1.911	1.915	1.938
Cu _A -N	2.086	2.087	2.090	2.118
Cu _A -O _X	n.a.	2.718	2.492	2.511
Cu_{B} - μ - O_{Alk}	1.958	1.982	1.988	1.993
Cu_{B} - μ - O_{Ar}	2.008	2.050	2.065	2.330
Cu _B -O _{Alk}	1.874	1.898	1.905	1.924
Cu _B -N	2.062	2.043	2.037	2.048
Cu _B -O _X	n.a.	2.588	2.432	2.131
heta	161.9°	143.0°	136.8°	129.8°
$[Cu_2L_2(HPO_4Ar)]^-$ (B)				
$Cu_A \cdots Cu_B$	3.066	3.051	3.009	3.000
Cu_{A} - μ - O_{Alk}	2.012	2.011	2.007	2.005
Cu_{A} - μ - O_{Ar}	2.094	2.091	2.089	2.065
Cu _A -O _{Ar}	1.923	1.936	1.939	1.945
Cu _A -N	2.132	2.113	2.113	2.126
Cu _A -O _P	2.168	2.185	2.208	2.216
Cu_{B} - μ - O_{Alk}	2.001	2.002	2.007	2.018
Cu_{B} - μ - O_{Ar}	1.974	2.013	2.030	2.075
Cu _B -O _{Alk}	1.880	1.902	1.924	1.926
Cu _B -N	2.084	2.060	2.051	2.056
Cu _B -O _X	n.a.	2.564	2.386	2.289
heta	175.9°	159.2°	151.6°	147.1°

$[Cu_2L_2(HPO_4Ar)(H_2O)]^-$ (C)				
$Cu_A \cdots Cu_B$	3.066	3.033	2.984	2.974
Cu_{A} - μ - O_{Alk}	2.029	2.020	2.023	2.023
Cu_{A} - μ - O_{Ar}	2.101	2.081	2.069	2.044
Cu _A -O _{Ar}	1.923	1.928	1.932	1.944
Cu _A -N	2.138	2.111	2.108	2.123
Cu _A -O _P	2.148	2.213	2.233	2.240
Cu_B - μ - O_{Alk}	2.025	2.010	2.013	2.018
Cu_B - μ - O_{Ar}	1.963	1.991	2.020	2.082
Cu _B -O _{Alk}	1.914	1.926	1.940	1.957
Cu _B -N	2.075	2.036	2.029	2.026
Cu _B -O _X	n.a.	2.761	2.403	2.284
$Cu_B\cdots O_W$	2.437	3.023	3.136	3.332
heta	165.0°	157.9°	148.7°	143.3°
$[Cu_2L_2(H_2O)(HPO_4Ar)]^-$ (C1)				
$Cu_A \cdots Cu_B$	3.694	3.631	3.651	3.669
Cu_{A} - μ - O_{Alk}	2.062	1.999	1.993	1.990
Cu_A - O_W	2.036	2.039	2.036	2.031
Cu _A -O _{Ar}	1.947	1.962	1.966	1.968
Cu _A -N	2.094	2.092	2.091	2.094
Cu _A -O _P	2.254	2.293	2.303	2.312
Cu_B - μ - O_{Alk}	1.949	1.958	1.969	1.980
Cu _B -O _{Ar}	1.932	1.951	2.008	2.018
Cu _B -O _{Alk}	1.954	1.991	1.991	2.034
Cu _B -N	2.108	2.074	2.074	2.082
Cu _B -O _X	n.a.	2.655	2.379	2.248
[Cu ₂ L(LH)(μ -OH)(HPO ₄ Ar)] ⁻ (C2)				

$Cu_A \cdots Cu_B$	2.968	2.991	3.006	2.970
Cu_{A} - μ - O_{Alk}	1.991	2.074	2.068	2.023
Cu _A - µ -OH	2.054	1.930	1.924	1.973
Cu _A -O _{Ar}	1.945	1.981	1.984	1.961
Cu _A -N	2.109	2.119	2.119	2.128
Cu _A -O _P	2.182	2.272	2.285	2.253
Cu_B - μ - O_{Alk}	2.022	2.023	2.014	2.059
Си _в - µ -ОН	1.951	2.282	2.329	2.007
Cu _B -O _{Ar}	1.917	1.956	1.995	2.250
Cu _B -N	2.098	2.078	2.065	2.085
Cu _B -O _X	n.a.	2.721	2.397	2.250
Cu _B -O _{Alk}	3.316	2.107	2.157	2.756
heta	158.9°	145.8°	144.7°	156.3°
$[Cu_2L(LH)(HO\cdots HPO_3\cdots OAr)]^{-1}$				
(TS)				
(TS) $Cu_A \cdots Cu_B$	3.204	3.071	3.100	3.174
(TS) $Cu_A \cdots Cu_B$ $Cu_A - \mu - O_{Alk}$	3.204 2.272	3.071 2.057	3.100 2.057	3.174 2.064
(TS) $Cu_A \cdots Cu_B$ $Cu_A - \mu - O_{Alk}$ $Cu_A - OH$	3.204 2.272 2.077	3.071 2.057 1.939	3.100 2.057 1.932	3.174 2.064 1.923
(TS) $Cu_A \cdots Cu_B$ $Cu_A - \mu - O_{Alk}$ $Cu_A - OH$ $Cu_A - OAr$	3.204 2.272 2.077 1.952	3.071 2.057 1.939 1.996	3.100 2.057 1.932 2.002	3.174 2.064 1.923 2.009
(TS) $Cu_A \cdots Cu_B$ $Cu_A - \mu - O_{Alk}$ $Cu_A - OH$ $Cu_A - OH$ $Cu_A - O_{Ar}$ $Cu_A - N$	3.204 2.272 2.077 1.952 2.112	3.071 2.057 1.939 1.996 2.081	3.1002.0571.9322.0022.086	3.1742.0641.9232.0092.092
(TS) $Cu_A \cdots Cu_B$ $Cu_A - \mu - O_{Alk}$ $Cu_A - OH$ $Cu_A - OH$ $Cu_A - O_{Ar}$ $Cu_A - N$ $Cu_A - O_P$	3.204 2.272 2.077 1.952 2.112 1.983	3.071 2.057 1.939 1.996 2.081 2.245	 3.100 2.057 1.932 2.002 2.086 2.261 	 3.174 2.064 1.923 2.009 2.092 2.273
(TS) $Cu_A \cdots Cu_B$ $Cu_A - \mu - O_{Alk}$ $Cu_A - OH$ $Cu_A - OH$ $Cu_A - O_{Ar}$ $Cu_A - N$ $Cu_A - O_P$ $Cu_B - \mu - O_{Alk}$	3.204 2.272 2.077 1.952 2.112 1.983 1.892	3.071 2.057 1.939 1.996 2.081 2.245 1.936	 3.100 2.057 1.932 2.002 2.086 2.261 1.942 	 3.174 2.064 1.923 2.009 2.092 2.273 1.924
(TS) $Cu_{A} \cdots Cu_{B}$ $Cu_{A} - \mu - O_{Alk}$ $Cu_{A} - OH$ $Cu_{A} - OH$ $Cu_{A} - O_{Ar}$ $Cu_{A} - N$ $Cu_{A} - O_{P}$ $Cu_{B} - \mu - O_{Alk}$ $Cu_{B} - O_{Ar}$	3.204 2.272 2.077 1.952 2.112 1.983 1.892 1.926	3.071 2.057 1.939 1.996 2.081 2.245 1.936 1.961	 3.100 2.057 1.932 2.002 2.086 2.261 1.942 1.985 	 3.174 2.064 1.923 2.009 2.092 2.273 1.924 1.920
(TS) $Cu_{A} \cdots Cu_{B}$ $Cu_{A} - \mu - O_{Alk}$ $Cu_{A} - OH$ $Cu_{A} - OH$ $Cu_{A} - O_{Ar}$ $Cu_{A} - N$ $Cu_{A} - O_{P}$ $Cu_{B} - \mu - O_{Alk}$ $Cu_{B} - O_{Alk}$ $Cu_{B} - O_{Alk}$	3.204 2.272 2.077 1.952 2.112 1.983 1.892 1.926 2.065	3.071 2.057 1.939 1.996 2.081 2.245 1.936 1.961 2.100	 3.100 2.057 1.932 2.002 2.086 2.261 1.942 1.985 2.129 	 3.174 2.064 1.923 2.009 2.092 2.273 1.924 1.920 2.168
(TS) $Cu_{A} \cdots Cu_{B}$ $Cu_{A} - \mu - O_{Alk}$ $Cu_{A} - OH$ $Cu_{A} - OH$ $Cu_{A} - O_{Ar}$ $Cu_{A} - N$ $Cu_{A} - O_{P}$ $Cu_{B} - \mu - O_{Alk}$ $Cu_{B} - O_{Ar}$ $Cu_{B} - O_{Alk}$ $Cu_{B} - O_{Alk}$ $Cu_{B} - O_{Alk}$	3.204 2.272 2.077 1.952 2.112 1.983 1.892 1.926 2.065 2.086	3.071 2.057 1.939 1.996 2.081 2.245 1.936 1.961 2.100 2.075	 3.100 2.057 1.932 2.002 2.086 2.261 1.942 1.985 2.129 2.069 	 3.174 2.064 1.923 2.009 2.092 2.273 1.924 1.920 2.168 2.077
(TS) $Cu_{A} \cdots Cu_{B}$ $Cu_{A} - \mu - O_{Alk}$ $Cu_{A} - OH$ $Cu_{A} - OH$ $Cu_{A} - O_{Ar}$ $Cu_{A} - N$ $Cu_{A} - O_{P}$ $Cu_{B} - \mu - O_{Alk}$ $Cu_{B} - O_{Ar}$ $Cu_{B} - O_{Alk}$	3.204 2.272 2.077 1.952 2.112 1.983 1.892 1.926 2.065 2.086 <i>n.a.</i>	3.071 2.057 1.939 1.996 2.081 2.245 1.936 1.961 2.100 2.075 2.496	 3.100 2.057 1.932 2.002 2.086 2.261 1.942 1.985 2.129 2.069 2.312 	 3.174 2.064 1.923 2.009 2.092 2.273 1.924 1.920 2.168 2.077 2.190
(TS) $Cu_{A} \cdots Cu_{B}$ $Cu_{A} - \mu - O_{Alk}$ $Cu_{A} - OH$ $Cu_{A} - OH$ $Cu_{A} - O_{Ar}$ $Cu_{A} - N$ $Cu_{A} - O_{P}$ $Cu_{B} - \mu - O_{Alk}$ $Cu_{B} - O_{Alk}$	3.204 2.272 2.077 1.952 2.112 1.983 1.892 1.926 2.065 2.086 <i>n.a.</i> 1.796	3.071 2.057 1.939 1.996 2.081 2.245 1.936 1.961 2.100 2.075 2.496 2.286	3.100 2.057 1.932 2.002 2.086 2.261 1.942 1.985 2.129 2.069 2.312 2.338	3.174 2.064 1.923 2.009 2.092 2.273 1.924 1.920 2.168 2.077 2.190 2.379

$\left[Cu_{2}L(LH)(H_{2}PO_{4}\text{-}OAr)\right]^{-}$ (C3)				
$Cu_A \cdots Cu_B$	2.990	3.092	3.105	3.119
Cu_{A} μ - O_{Alk}	1.993	1.986	1.987	1.997
Cu_{A} μ - O_{Ar}	2.151	2.165	2.161	2.105
Cu _A -O _{Ar}	1.919	1.932	1.939	1.953
Cu _A -N	2.096	2.133	2.129	2.127
Cu _A -O _P	2.150	2.099	2.095	2.117
Cu_B - μ - O_{Alk}	1.920	1.911	1.912	1.920
Cu_B - μ - O_{Ar}	2.038	2.066	2.103	2.196
Cu _B -O _{Alk}	1.907	2.107	2.159	2.142
Cu _B -N	2.068	2.057	2.055	2.060
Cu _B -O _X	n.a.	2.184	2.097	2.020
heta	150.1°	176.5°	179.1°	178.6°
$\left[Cu_{2}L_{2}(H_{2}PO_{4})\right]^{-}(\boldsymbol{D})$				
$Cu_A \cdots Cu_B$	3.245	3.130	3.070	3.046
Cu_{A} - μ - O_{Alk}	2.001	1.998	1.995	1.997
Cu_{A} - μ - O_{Ar}	2.513	2.289	2.246	2.172
Cu _A -O _{Ar}	1.930	1.936	1.938	1.952
Cu _A -N	2.148	2.132	2.132	2.140
Cu _A -O _P	1.973	2.043	2.075	2.102
Cu _B -µ-O _{Alk}	2.006	1.990	1.991	1.994
Cu _B -µ-O _{Ar}	1.971	2.010	2.047	2.129
Cu _B -O _{Alk}	1.884	1.902	1.919	1.935
Cu _B -N	2.107	2.069	2.063	2.066
Cu _B -O _X	n.a.	2.716	2.405	2.257
heta	172.3°	162.7°	153.9°	148.5°
$[Cu_2L_2(H_2O)](E)$				
$Cu_A \cdots Cu_B$	3.009	2.894	2.847	2.828

Cu_{A} - μ - O_{Alk}	1.939	1.955	1.964	1.964
Cu_{A} - μ - O_{Ar}	2.037	2.023	2.035	2.023
Cu _A -O _{Ar}	1.882	1.906	1.909	1.924
Cu _A -N	2.084	2.082	2.084	2.106
Cu _A -O _X	n.a.	2.732	2.537	2.242
Cu_B - μ - O_{Alk}	1.964	1.988	1.992	1.975
Cu_B - μ - O_{Ar}	1.991	2.042	2.064	2.144
Cu _B -O _{Alk}	1.893	1.919	1.928	1.960
Cu _B -N	2.055	2.042	2.032	2.045
Cu _B -O _X	n.a.	2.455	2.345	2.465
$Cu_B{\cdots}O_W$	3.392	3.399	3.391	3.491
θ	159.7°	141.5°	135.2°	129.4°

Ar = $-C_6H_4NO_2$. The θ value is defined as the bent angle between CuO₂ planes in the Cu₂O₂ ring.

Table S6 Continuous Shape Measures (CSM) for copper atoms in the computed geometries accross the proposed pathway.

Compounds	Vacant	ClO_4^-	NO ₃ ⁻	AcO
$[Cu_2(L)_2]$ (A)				
CuA	$S_{re} = 1.01$	$S_{\rm SQ} = 0.73$	$S_{\rm SQ} = 0.67$	$S_{\rm SQ} = 0.64$
CuA	5SQ = 1.01	$S_{\rm SPY} = 3.09$	$S_{\rm SPY} = 2.35$	$S_{\text{SPY}} = 2.81$
		$S_{SQ} = 1.70$	$S_{\rm SQ} = 1.98$	$S_{\text{TBP}} = 3.66$
Cu _B	$S_{\rm SQ} = 0.70$	$S_{\rm SPY} = 3.07$	$S_{\text{SPY}} = 3.30$	$S_{\text{SPY}} = 4.71$
		$S_{\text{TBP}} = 4.10$	$S_{\text{TBP}} = 3.84$	$S_{\rm SQ} = 4.60$
$\left[Cu_{2}L_{2}(HPO_{4}Ar)\right]^{-}(\mathbf{B})$				
	$S_{cov} = 0.57$	$S_{\rm SPY} = 0.85$	$S_{\rm SPY} = 0.73$	$S_{\rm SPY} = 0.68$
Cu _A	$S_{\rm SPY} = 0.57$ $S_{\rm ro} = 1.40$	$S_{SQ} = 1.73$	$S_{SQ} = 1.41$	$S_{SQ} = 1.28$
	$S_{SQ} = 1.40$	$S_{\text{TBP}} = 3.74$	$S_{\text{TBP}} = 4.15$	$S_{\text{TBP}} = 4.64$
		$S_{\rm SQ} = 1.04$	$S_{SQ} = 1.24$	$S_{\text{SPY}} = 1.38$
Cu _B	$S_{SQ} = 1.11$	$S_{\text{SPY}} = 1.40$	$S_{\text{SPY}} = 1.51$	$S_{SQ} = 1.41$
		$S_{\text{TBP}} = 3.63$	$S_{\text{TBP}} = 3.40$	$S_{\text{TBP}} = 3.54$

$[Cu_2L_2(HPO_4Ar)(H_2O)]^-$ (C)				
	$S_{\text{SDV}} = 0.51$	$S_{\rm SPY} = 0.80$	$S_{\rm SPY} = 0.64$	$S_{\rm SPY} = 0.63$
Cu _A	$S_{\rm SP1} = 0.01$	$S_{SQ} = 1.44$	$S_{\rm SQ} = 1.09$	$S_{\rm SQ} = 0.97$
	550 - 1.50	$S_{\text{TBP}} = 4.06$	$S_{\text{TBP}} = 4.85$	$S_{\text{TBP}} = 5.56$
	$S_{m} = 1.21$	$S_{SQ} = 1.73$	$S_{SQ} = 1.91$	$S_{\text{SPY}} = 2.45$
Cu _B	$S_{SQ} = 1.21$	$S_{\rm SPY} = 2.63$	$S_{\rm SPY} = 2.29$	$S_{\rm SQ} = 2.45$
	SSPY - 2.02	$S_{\text{TBP}} = 3.33$	$S_{\text{TBP}} = 2.92$	$S_{\text{TBP}} = 2.86$
$[Cu_2L_2(H_2O)(HPO_4Ar)]^-$ (C1)				
	$S_{\rm SPY} = 1.71$	$S_{\rm SPY} = 1.77$	$S_{\text{TBP}} = 1.76$	$S_{\text{TBP}} = 1.83$
Cu _A	$S_{\text{TBP}} = 1.77$	$S_{\text{TBP}} = 1.87$	$S_{\text{SPY}} = 1.96$	$S_{\text{SPY}} = 1.92$
	$S_{\rm SQ} = 2.28$	$S_{SQ} = 2.15$	$S_{\rm SQ} = 2.35$	$S_{\rm SQ} = 2.27$
		$S_{\rm SQ} = 1.90$	$S_{\rm SPY} = 1.84$	$S_{\text{TBP}} = 1.72$
Cu _B	$S_{\rm SQ} = 0.33$	$S_{\rm SPY} = 2.34$	$S_{\rm SQ} = 2.01$	$S_{\rm SPY} = 2.20$
		$S_{\text{TBP}} = 2.66$	$S_{\text{TBP}} = 2.02$	$S_{\rm SQ} = 2.92$
$[Cu_2L(LH)(\mu$ -OH)(HPO ₄ Ar)] ⁻				
(C2)				
	$S_{\rm SPY} = 0.55$	$S_{\rm SPY} = 0.30$	$S_{\rm SPY} = 0.32$	$S_{\rm SPY} = 0.59$
Cu _A	$S_{\rm SQ} = 1.33$	$S_{\rm SQ} = 0.79$	$S_{\rm SQ} = 0.76$	$S_{SQ} = 1.33$
	$S_{\text{TBP}} = 4.38$	$S_{\text{TBP}} = 5.32$	$S_{\text{TBP}} = 5.23$	$S_{\text{TBP}} = 3.87$
C-	S (27	$S_{\rm SPY} = 1.32$	$S_{\rm SPY} = 0.96$	$S_{\rm SPY} = 1.15$
Cu _B	$S_{SQ} = 0.37$	$S_{\rm OCT} = 1.87$	$S_{\rm OCT} = 1.22$	$S_{\rm OCT} = 2.76$
$[Cu_2L(LH)(HO\cdots HPO_3\cdots OAr)]^-$				
(TS)				
	$S_{\rm SQ} = 1.95$	$S_{SQ} = 1.86$	$S_{\rm SQ} = 1.86$	$S_{\rm SQ} = 1.93$
Cu _A	$S_{\text{SPY}} = 2.53$	$S_{\rm SPY} = 2.05$	$S_{\rm SPY} = 2.01$	$S_{\text{SPY}} = 2.03$
	$S_{\text{TBP}} = 4.19$	$S_{\text{TBP}} = 2.73$	$S_{\text{TBP}} = 2.67$	$S_{\text{TBP}} = 2.57$
Cu-	$S_{re} = 0.57$	$S_{\rm SQ} = 0.42$	$S_{\rm SPY} = 0.49$	$S_{\rm SPY} = 0.66$
CuB	$S_{SQ} = 0.37$	$S_{\rm SPY} = 0.67$	$S_{\rm SQ} = 0.61$	$S_{\rm SQ} = 1.29$
$[Cu_2L(LH)(H_2PO_4-OAr)]^{-} (C3)$				
Cu _A	$S_{\rm SPY} = 1.76$	$S_{\rm SPY} = 0.66$	$S_{\rm SPY} = 0.69$	$S_{\rm SPY} = 0.77$

	$S_{\mathrm{TBP}} = 2.47$	$S_{SQ} = 1.54$	$S_{\rm SQ} = 1.56$	$S_{SQ} = 1.45$
	$S_{\rm SQ} = 2.77$	$S_{\text{TBP}} = 5.22$	$S_{\text{TBP}} = 4.90$	$S_{\text{TBP}} = 3.91$
Cu _B	$S_{\rm SQ} = 6.46$	$S_{\text{TBP}} = 0.76$	$S_{\text{TBP}} = 0.49$	$S_{\text{TBP}} = 0.68$
		$S_{\rm SPY} = 4.27$	$S_{\text{SPY}} = 4.59$	$S_{\text{SPY}} = 4.95$
$\left[Cu_{2}L_{2}(H_{2}PO_{4})\right]^{-}(\mathbf{D})$				
	$S_{\rm SPY} = 2.57$	$S_{\rm SPY} = 1.19$	$S_{\rm SPY} = 0.89$	$S_{\rm SPY} = 0.69$
Cu _A	$S_{\text{TBP}} = 4.09$	$S_{\rm SQ} = 2.45$	$S_{\rm SQ} = 1.90$	$S_{SQ} = 1.50$
	$S_{\rm SQ} = 4.29$	$S_{\text{TBP}} = 4.20$	$S_{\text{TBP}} = 4.70$	$S_{\text{TBP}} = 5.10$
		$S_{SQ} = 1.49$	$S_{\rm SQ} = 1.61$	$S_{\text{SPY}} = 1.82$
Cu _B	$S_{\rm SQ} = 0.39$	$S_{\text{SPY}} = 2.06$	$S_{\text{SPY}} = 1.86$	$S_{\rm SQ} = 2.08$
		$S_{\text{TBP}} = 3.07$	$S_{\text{TBP}} = 2.89$	$S_{\text{TBP}} = 2.82$
$[Cu_2L_2(H_2O)](E)$				
Cu _A	$S_{\rm SQ} = 0.99$	$S_{\rm SQ} = 0.75$	$S_{\rm SQ} = 0.67$	$S_{\rm SQ} = 0.74$
		$S_{\text{SPY}} = 3.29$	$S_{\rm SPY} = 2.56$	$S_{\rm SPY} = 2.40$
		$S_{\rm SQ} = 1.36$	$S_{\rm SQ} = 1.64$	$S_{\rm SQ} = 2.25$
Cu _B	$S_{\rm SQ} = 0.63$	$S_{\text{SPY}} = 2.41$	$S_{\rm SPY} = 2.62$	$S_{\rm SPY} = 2.94$
		$S_{\text{TBP}} = 4.25$	$S_{\text{TBP}} = 3.92$	$S_{\text{TBP}} = 3.98$

Continuous shape measures from ideal square-planar (S_{SQ}), square-pyramidal (S_{SPY}), trigonalbipyramidal (S_{TBP}), or octahedral (S_{OCT}) geometries.

 $Ar = -C_6H_4NO_2.$

Table S7 Crystallographic data and details of refinements for complexes 2 and 3

	2 C ₂ H ₅ OH 0.5(H ₂ O)	3 [·] MeCN [·] H ₂ O
CCDC Number	1835391	1835392
empirical formula	$C_{46}H_{64}Br_4Cu_4N_6O_{15.5}$	$C_{52}H_{74}Br_4Cu_4N_6O_{14}\\$
Fw	1522.83	1580.97
Crystal system	Monoclinic	Monoclinic
space group	<i>P</i> 2 ₁ /c	<i>P</i> 2 ₁ /n
a /Å	12.401(3)	11.3423(10)
$b/{ m \AA}$	19.901(6)	11.3744(10)
c /Å	13.776(4)	24.430(2)

α /°	90.0	90.0
β/°	107.718(5)	100.142(3)
γ /°	90.0	90.0
$V/Å^3$	3238.5(16)	3102.5(5)
Z	2	2
D_{calcd} /mg m ⁻³	1.562	1.692
μ (Mo-K α) (mm ⁻¹)	3.823	3.993
F(000)	1524	1592
θ range (°)	1.86-25.6	1.69 -24.13
collected reflections	15198	32079
indep reflections	5700	4926
$R_{ m int}$	0.086	0.081
Obs reflecs[$I > 2\sigma(I)$]	2963	3609
Parameters	342	372
<i>R</i> 1 [<i>I</i> > $2\sigma(I)$]	0.0621	0.0444
<i>wR</i> 2 [<i>I</i> >2σ(<i>I</i>)]	0.1518	0.0977
GOF on F^2	0.973	1.014
residuals (e Å ⁻³)	1.183, -1.319	0.670, -0.422

CCDC 1835391-1835392 contain the supplementary crystallographic data for this paper. These data can be obtained free charge from the Cambridge Crystallographic Data Centre viahttp://www.ccdc.cam.ac.uk/5 data_request/cif.