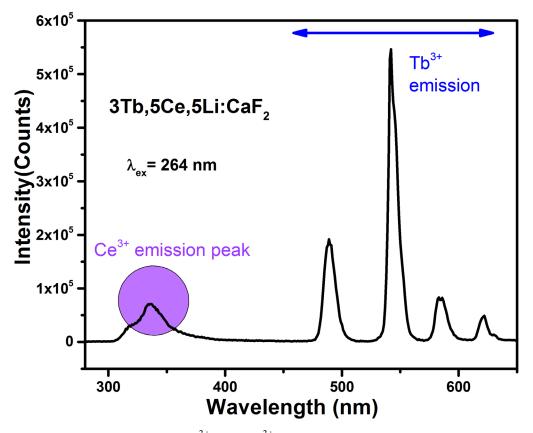
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Material (ESI) for New Journal of Chemistry


Luminescent enhancement study of 3Tb,5Ce,5Li:CaF₂ : effect of Li⁺ ions concentrations and hyperthermia applications of 3Tb:CaF₂/Fe₃O₄ nanocomposite.

Ningthoujam Premananda Singh^a, Nandini Kumam^a, Laishram Priyobarta Singh^b, Nongmaithem Rajmuhon^a* and Sri Krishna Srivastava^{a,c}*

^aDepartment of Chemistry, Manipur University, Imphal-795003, India ^bNational Institute of Technology, Langol-795004, India ^cVice-Chancellor, North-Eastern Hill University, Shillong, Meghalaya-793022, India

Table SI 1. Peaks related to FTIR spectra of $3\text{Tb}:CaF_2$ nanoparticles prepared at 150 °C using ethylene glycol as capping agent and solvent medium.

Sl. No.	Peaks (cm-1)	Vibrational
1	3408	O-H stretching
2	1641	O-H bending
3	1350-1450	С-О
4	700-1200	CH_2 bending
5	2900	Asymmetric CH_2
6	2860	symmetric CH ₂

Fig. SI 2. Emission peak of Ce^{3+} and Tb^{3+} ions in 3Tb,5Ce,5Li:CaF₂ at excitation wavelength 264 nm. Purple Circle indicates the emission peak originated from Ce^{3+} ions and four other peaks within blue double headed arrow are from the Tb^{3+} ions.

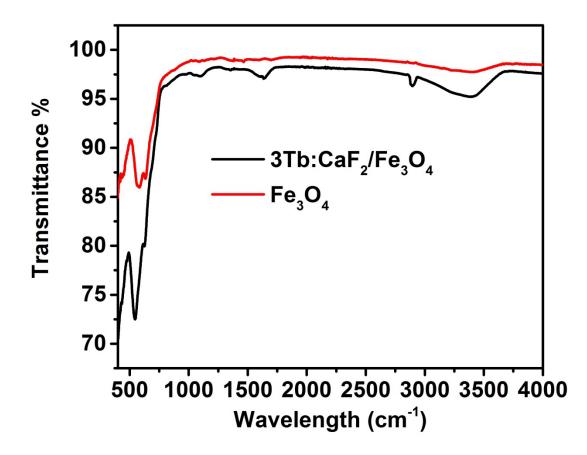


Fig. SI 3. FTIR spectra of pure Fe₃O₄ and PEG coated 3Tb:CaF₂/Fe₃O₄ nanocomposite.