Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supporting Information

Simple and Modular Design Platform of Bimodal

Turn-On Chemodosimeters for Oxophilic Metal Cations

David T. Hogan and Todd C. Sutherland*

2500 University Drive NW Calgary, AB, Canada

T2N 1N4

Email at: todd.sutherland@ucalgary.ca

Contents

Acetonitrile (Sigma-Aldrich, 99.93+% for HPLC) for all solutions was dried by cycling 3 × over flamedried 3 Å molecular sieves under N₂, each cycle lasting at least 24 h. It was kept under N₂ prior to use and filtered with Pall Microdisc 0.2 μm PTFE membranes to remove sieve dust. The metal chloride salts were obtained and treated in the following ways: AlCl₃ (Sigma, Aldrich, anhydrous powder, 99.999% trace metals basis). InCl₃ (Sigma-Aldrich, anhydrous powder, 99.999%) and NaCl (Fisher Scientific, 99.9%) were flamed under vacuum for 5 minutes. ZnCl₂ (Sigma Aldrich, anhydrous, 99.99%), LiCl (Sigma-Aldrich, 99.9%) and TBACl (Sigma-Aldrich, \geq 97%) were melted by flame under vacuum and allowed to resolidify under N_2 . All above metal chloride salts were stored in a vacuum desiccator under indicating Drierite prior to use. $N(CH_3)_4OH$ (Sigma-Aldrich, pentahydrate, 99%) was used as received.

Solutions of **X=NCH3**, **X=O** and **X=S** and all metal chloride salts were prepared in volumetric flasks which had been pre-flushed with N_2 for at least 5 minutes and further handled under a blanket of N_2 . After use, the headspace was flushed with N_2 for at least 30 seconds and the flask was sealed with Parafilm.

Electronic absorption spectroscopy was performed using a Varian Cary 5000 UV-visible-NIR spectrophotometer in dual beam mode. Solutions were measured in dried $CH₃CN$ at 298 K, referenced against blank dried CH_3CN in quartz 10 mm path length cuvettes with elongated necks. The UV lampchangeover was switched to 310 nm instead of 350 nm. The solutions were prepared under a blanket of N_2 and stoppered with a rubber septum to maintain inert atmosphere. When titrating, a small aliquot (several μ L) was added through the septum into the cuvette containing 2×10^{-5} M chemodosimeter in 2 $mL CH₃CN$ with a small magnetic stir bar and stirred for 30 seconds before measurement.

Fluorescence spectroscopy was performed using a Jasco FP-6600 on medium sensitivity mode collecting a single scan. The excitation bandwidth was 1 nm, emission bandwidth of 6 nm, integration time of 2 seconds, data pitch of 1 nm, scanning speed of 200 nm/minute. The same solution preparation and titration protocols were performed as above.

An initial metal cation screening of **X=NCH3**, **X=O** and **X=S** in various polar solvents revealed that the chemodosimeters were intolerant of water for two distinct reasons. The products of dehydroxylation, **[X=O]⁺** and **[X=S]⁺** , were too electrophilic and were likely converted back to the masked tertiary alcohols by residual water such that no chemodosimetric behaviour was observed. Conversely, the acridinium **[X=NCH3] ⁺** was stable enough in wet solvents that it would spontaneously form over a few hours, even in the absence of metal cations, giving a false positive signal. With this information in-hand, metal cation screening was conducted in CH_3CN because both initial and final species were freely soluble and CH_3CN can be rigorously dried. Judicious choice of the metal cations was also necessary for the following reasons: A) solubility limitations (Sr²⁺, Ba²⁺, Mg²⁺, Ca²⁺, Zr⁴⁺, Cd²⁺, Hg²⁺, Pb^{2/4+}, Ce³⁺, Rh³⁺, Tb³⁺, Eu³⁺); B) transition metals that were coloured or formed coloured complexes in CH₃CN were excluded (Cr³⁺, Ni²⁺, Ru^{3+} , Pt^{2+} , Pd^{2+} , $Co^{2+/3+}$ and $V^{2/3/4/5+}$); C) metals that exhibited redox behaviour with the chemodosimeters were also excluded (Fe^{2+/3+}, Ag⁺, Sn²⁺ and Cu^{1+/2+}). For these reasons, Na⁺, Al³⁺, Li⁺, Zn²⁺ and In³⁺ were chosen for screening.

Figure S1. Photograph of c . 0.1 mM **X=NCH**₃ in $CH₃CN$ with a saturating amount of metals, as labelled, under ambient light (top) and 365 nm UV light (bottom). The left-most vial contains **[X=NCH3]OTf** for reference.

Figure S2. Photograph of c . 0.1 mM $X = S$ in CH₃CN with a saturating amount of metals, as labelled, under ambient light (top) and 365 nm UV light (bottom). The left-most vial contains **[X=S]OTf** for reference.

Figure S3. Photograph of c . 0.1 mM $X=NCH_3$ (left), $X=O$ (middle), and $X=S$ (right) in $CH₃CN$ without added metals, under ambient light (top) and 365 nm UV light (bottom).

Figure S5. UV-visible spectra of **[X=NCH3]OTf** (blue), **[X=O]OTf** (red) and **[X=S]OTf** (orange) in CH3CN. Inset: photograph of *c*. 0.1 mM solutions of these compounds under ambient light.

 X=NCH3, **X=O**, **X=S** and **[X=NCH3]OTf**, **[X=O]OTf**, **[X=S]OTf**

emission spectra (black) of **X=NCH3**. Excitation emission spectra (black) of **X=O**. Excitation wavelength: 286 nm.

Figure S6. Normalized excitation (blue) and **Figure S7.** Normalized excitation (red) and wavelength: 244 nm.

267 nm.

Figure S8. Emission spectrum of **X=S**, exciting at **Figure S9.** Normalized excitation (blue) and emission spectra (black) of **[X=NCH3]OTf**. Both traces are normalized to the excitation wavelength of 424 nm.

Figure S10. Normalized excitation (red) and emission spectra (black) of **[X=O]OTf**. Both traces are normalized to the excitation wavelength of 447 nm.

Figure S11. Normalized excitation (orange) and emission spectra (black) of **[X=S]OTf**. Both traces are normalized to the excitation wavelength of 493 nm.

Figure S12. Normalized emission spectra of **[X=NCH3]OTf** (blue, 424 nm excitation), **[X=O]OTf** (red, 447 nm excitation) and **[X=S]OTf** (orange, 493 nm excitation) in $CH₃CN$. Inset: photograph of *c*. 0.1 mM solutions of these compounds under 365 nm UV light.

	λ_{em} (nm)	λ_{exc} (nm)	Relative φ_f
$X=NCH_3$	348	270	0.05 ± 0.01 ^a
$X=0$	298	270	0.11 ± 0.01^a
$X = S$			
$[X=NCH3]$ OTf	500	424	$0.05 \pm 0.01^{\rm b}$
$[X=0]$ OTf	513	440	0.63 ± 0.06^b
$[X=SIOTf]$	563	475	0.05 ± 0.01 ^c

Table S2. Emission Data

^a Measured against L-tryptophan in pH 7.0 phosphate-buffered water (φ_f = 0.12)

^b Measured against coumarin 6 in absolute ethanol (φ_f = 0.78)

^c Measured against rhodamine 6G in Milli-Q water (φ_f = 0.95)

Section 5 UV-visible Spectroscopic Titrations with Metal Cations

Figure S13a. UV-visible Al³⁺ titration into **X=NCH3**. Initial spectrum in light blue; final spectrum in dark blue.

Figure S13b. Normalized absorbance for **X=NCH³** (grey, open) and **[X=NCH3] +** (blue, closed) as a function of titrated equivalents of Al^{3+} .

Figure S14a. UV-visible In³⁺ titration into **X=NCH3**. Initial spectrum in light blue; final spectrum in dark blue.

Figure S14b. Normalized absorbance for **X=NCH³** (grey, open) and **[X=NCH3] +** (blue, closed) as a function of titrated equivalents of In^{3+} .

Figure S15a. UV-visible Zn^{2+} titration into **X=NCH3**. Initial spectrum in light blue; final spectrum in dark blue.

Figure S15b. Normalized absorbance for **X=NCH³** (grey, open) and **[X=NCH3] +** (blue, closed) as a function of titrated equivalents of Zn^{2+} .

Figure S16. UV-visible Li⁺ titration into **X=NCH3**. Initial spectrum in light blue; final spectrum in dark blue.

Figure S17. UV-visible Na⁺ titration into **X=NCH3**. Initial spectrum in light blue; final spectrum in dark blue.

Figure S18. UV-visible TBACl titration into **X=NCH3**. Initial spectrum in light blue; final spectrum in dark blue.

Figure S19a. UV-visible Al3+ titration into **X=O**. **Figure S19b.** Normalized absorbance for **X=O** dark red.

Initial spectrum in light red; final spectrum in (grey, open) and **[X=O]⁺** (red, closed) as a function of titrated equivalents of Al³⁺.

Figure S20a. UV-visible In^{3+} titration into **X=0**. Initial spectrum in light red; final spectrum in dark red.

Figure S20b. Normalized absorbance for **X=O** (grey, open) and **[X=O]⁺** (red, closed) as a function of titrated equivalents of In^{3+} .

dark red. Feature from 300-350 nm is a lamp artifact, consequence of lamp changeover at 310 nm instead of recommended 350 nm.

Figure S21. UV-visible Zn2+ titration into **X=O**. **Figure S22.** UV-visible Li⁺ titration into **X=O**. Initial spectrum in light red; final spectrum in Initial spectrum in light red; final spectrum in dark red.

Figure S23. UV-visible Na⁺ titration into **X=O**. Initial spectrum in light red; final spectrum in dark red.

Figure S24. UV-visible TBACl titration into **X=O**. Initial spectrum in light red; final spectrum in dark red.

Figure S25a. UV-visible Al3+ titration into **X=S**. dark orange.

Initial spectrum in light orange; final spectrum in (orange, closed) as a function of titrated **Figure S25b.** Normalized absorbance for **[X=S]⁺** equivalents of Al^{3+} .

Figure S26a. UV-visible In³⁺ titration into **X=S**. Initial spectrum in light orange; final spectrum in dark orange.

Figure S26b. Normalized absorbance for **[X=S]⁺** (orange, closed) as a function of titrated equivalents of In^{3+} .

Figure S27. UV-visible Zn^{2+} titration into **X=S**. Initial spectrum in light orange; final spectrum in dark orange.

Figure S28. UV-visible Li⁺ titration into **X=S**. Feature from 300-350 nm is a lamp artifact, consequence of lamp changeover at 310 nm instead of recommended 350 nm. Initial spectrum in light orange; final spectrum in dark orange.

Figure S29. UV-visible Na⁺ titration into **X=S**. Initial spectrum in light orange; final spectrum in dark orange.

Figure S30. UV-visible TBACl titration into **X=S**. Initial spectrum in light orange; final spectrum in dark orange.

^a No isosbestic points are visible due to the proximity of the UV bands for **X=S** and **[X=S]⁺**

Figure S31. Metal cation-responsivity plot of (a) I/I_0 in absorbance at 424 nm $(X=NCH_3)$, 447 (**X=O**) and 493 (**X=S**) following titrations with metal cations. (b) The analogous plot for increase in emission at 500 nm (**X=NCH3**), 513 nm (**X=O**) and 563 nm (**X=S**).

Section 6 Emission Spectroscopic Titrations with Metal Cations

Figure S32a. Emission Al3+ titration into **X=NCH3**, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S32b. Normalized emission for at 348 nm (grey, open) and 318 nm (black, closed) as a function of titrated equivalents of Al^{3+} .

Figure S33a. Emission Al3+ titration into **X=NCH3**, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S33b. Normalized emission for **X=NCH³** (grey, open) and **[X=NCH3] +** (blue, closed) as a function of titrated equivalents of Al^{3+} .

Figure S34a. Emission In3+ titration into **X=NCH3**, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S34b. Normalized emission for at 348 nm (grey, open) and 318 nm (black, closed) as a function of titrated equivalents of In^{3+} .

Figure S35a. Emission In3+ titration into **X=NCH3**, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S35b. Normalized emission for **X=NCH³** (grey, open) and **[X=NCH3] +** (blue, closed) as a function of titrated equivalents of In^{3+} .

Figure S36a. Emission Zn^{2+} titration into X=NCH_3 , exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S36b. Normalized emission for at 348 nm (grey, open) and 318 nm (black, closed) as a function of titrated equivalents of Zn^{2+} .

Figure S37a. Emission Zn^{2+} titration into **X=NCH**₃, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S37b. Normalized emission for **X=NCH³** (grey, open) and **[X=NCH3] +** (blue, closed) as a function of titrated equivalents of Zn^{2+} .

Figure S38. Emission Li⁺ titration into **X=NCH3**, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not Li⁺ (Figure S43/S44).

Figure S39. Emission Li⁺ titration into **X=NCH3**, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not Li⁺ (Figure S43/S44).

Figure S40. Emission Na⁺ titration into **X=NCH3**, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not Na⁺ (Figure S43/S44).

Figure S41. Emission Na⁺ titration into **X=NCH3**, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not Na⁺ (Figure S43/S44).

Figure S42. Emission TBACl titration into **X=NCH3**, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not TBACl(Figure S43/S44).

Figure S43. Emission TBACl titration into **X=NCH3**, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not TBACl(Figure S43/S44).

Figure S44. Emission CH₃CN titration into **X=NCH3**, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue. This was done as a control to determine why the negative control TBACl exhibited slight turn-on behaviour. The decrease at 348 nm here is due to formation of **[X=NCH3] +** in the presence of trace water from dried $CH₃CN$.

Figure S45. Emission 4L bottle-CH₃CN titration into **X=NCH3**, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue. This was done as a control to determine why the negative control TBACl exhibited slight turn-on behaviour. The increase at 500 nm here is due to formation of **[X=NCH3] +** in the presence of water from nondried 4L bottle- $CH₃CN$.

Figure S46a. Emission Al3+ titration into **X=O**, exciting at 280 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S46b. Emission Al3+ titration into **X=O**, exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S46c. Normalized emission for **X=O** (grey, open) and **[X=O]⁺** (red, closed) as a function of titrated equivalents of Al^{3+} .

Figure S47a. Emission In3+ titration into **X=O**, exciting at 280 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S47b. Emission In3+ titration into **X=O**, exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S47c. Normalized emission for **X=O** (grey, open) and **[X=O]⁺** (red, closed) as a function of titrated equivalents of In^{3+} .

Figure S48a. Emission Zn2+ titration into **X=O**, exciting at 280 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S48b. Emission Zn²⁺ titration into **X=O**, exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S48c. Normalized emission for **X=O** (grey, open) and **[X=O]⁺** (red, closed) as a function of titrated equivalents of Zn^{2+} .

Figure S49. Emission Li⁺ titration into **X=O**, **Figure S50.** Emission Li⁺ titration into **X=O**, final spectrum in dark red.

exciting at 280 nm. Initial spectrum in light red; exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S51. Emission Na⁺ titration into **X=O**, exciting at 280 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S52. Emission Na⁺ titration into **X=O**, exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S53. Emission TBACl titration into **X=O**, **Figure S54.** Emission TBACl titration into **X=O**, final spectrum in dark red.

exciting at 280 nm. Initial spectrum in light red; exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S55a. Emission Al3+ titration into **X=S**, exciting at 384 nm. Initial spectrum in light (orange, closed) as a function of titrated orange; final spectrum in dark orange.

Figure S55b. Normalized emission for **[X=S]⁺** equivalents of Al³⁺.

Figure S56a. Emission In3+ titration into **X=S**, **Figure S56b.** Normalized emission for **[X=S]⁺** exciting at 384 nm. Initial spectrum in light (orange, closed) as a function of titrated orange; final spectrum in dark orange.

equivalents of In^{3+} .

Figure S57. Emission Zn^{2+} titration into **X=S**, orange; final spectrum in dark orange.

exciting at 384 nm. Initial spectrum in light exciting at 384 nm. Initial spectrum in light **Figure S58.** Emission Li⁺ titration into **X=S**, orange; final spectrum in dark orange.

Figure S59. Emission Na⁺ titration into **X=S**, orange; final spectrum in dark orange.

exciting at 384 nm. Initial spectrum in light exciting at 384 nm. Initial spectrum in light **Figure S60.** Emission TBACl titration into **X=S**, orange; final spectrum in dark orange.

Section 7 UV-visible Spectroscopic Regeneration Titrations with N(CH₃)₄OH

Figure S61. UV-visible N(CH₃)₄OH titration into a solution containing $X=NCH_3$ and 1 eq. of Al^{3+} . Initial spectrum in light blue; final spectrum in dark blue.

Figure S62. UV-visible N(CH₃)₄OH titration into a solution containing **X=O** and 10 eq. of Al³⁺. Initial spectrum in light red; final spectrum in dark red.

Figure S63. UV-visible N(CH₃)₄OH titration into a solution containing $X = S$ and 20 eq. of Al^{3+} . Initial spectrum in light orange; final spectrum in dark orange.