Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supporting Information

Simple and Modular Design Platform of Bimodal

Turn-On Chemodosimeters for Oxophilic Metal Cations

David T. Hogan and Todd C. Sutherland*

2500 University Drive NW

Calgary, AB, Canada

T2N 1N4

Email at: todd.sutherland@ucalgary.ca

Contents

Section 1	General Considerations
Section 2	Photographs of Metal Cation Screenings
Section 3	UV-visible Spectroscopy of
	X=NCH ₃ , X=O, X=S and [X=NCH ₃]OTf, [X=O]OTf, [X=S]OTf
Section 4	Excitation and Emission Spectroscopy of
	X=NCH ₃ , X=O, X=S and [X=NCH ₃]OTf, [X=O]OTf, [X=S]OTf
Section 5	UV-visible Spectroscopic Titrations with Metal Cations
Section 6	Emission Spectroscopic Titrations with Metal Cations
Section 7	UV-visible Spectroscopic Regeneration Titrations with N(CH ₃) ₄ OH

Acetonitrile (Sigma-Aldrich, 99.93+% for HPLC) for all solutions was dried by cycling 3 × over flamedried 3 Å molecular sieves under N₂, each cycle lasting at least 24 h. It was kept under N₂ prior to use and filtered with Pall Microdisc 0.2 µm PTFE membranes to remove sieve dust. The metal chloride salts were obtained and treated in the following ways: AlCl₃ (Sigma, Aldrich, anhydrous powder, 99.999% trace metals basis). InCl₃ (Sigma-Aldrich, anhydrous powder, 99.999%) and NaCl (Fisher Scientific, 99.9%) were flamed under vacuum for 5 minutes. ZnCl₂ (Sigma Aldrich, anhydrous, 99.99%), LiCl (Sigma-Aldrich, 99.9%) and TBACl (Sigma-Aldrich, \ge 97%) were melted by flame under vacuum and allowed to resolidify under N₂. All above metal chloride salts were stored in a vacuum desiccator under indicating Drierite prior to use. N(CH₃)₄OH (Sigma-Aldrich, pentahydrate, 99%) was used as received.

Solutions of **X=NCH**₃, **X=O** and **X=S** and all metal chloride salts were prepared in volumetric flasks which had been pre-flushed with N₂ for at least 5 minutes and further handled under a blanket of N₂. After use, the headspace was flushed with N₂ for at least 30 seconds and the flask was sealed with Parafilm.

Electronic absorption spectroscopy was performed using a Varian Cary 5000 UV-visible-NIR spectrophotometer in dual beam mode. Solutions were measured in dried CH_3CN at 298 K, referenced against blank dried CH_3CN in quartz 10 mm path length cuvettes with elongated necks. The UV lamp-changeover was switched to 310 nm instead of 350 nm. The solutions were prepared under a blanket of N_2 and stoppered with a rubber septum to maintain inert atmosphere. When titrating, a small aliquot (several μ L) was added through the septum into the cuvette containing $2 \times 10^{-5-}$ M chemodosimeter in 2 mL CH₃CN with a small magnetic stir bar and stirred for 30 seconds before measurement.

Fluorescence spectroscopy was performed using a Jasco FP-6600 on medium sensitivity mode collecting a single scan. The excitation bandwidth was 1 nm, emission bandwidth of 6 nm, integration time of 2 seconds, data pitch of 1 nm, scanning speed of 200 nm/minute. The same solution preparation and titration protocols were performed as above.

An initial metal cation screening of **X=NCH₃**, **X=O** and **X=S** in various polar solvents revealed that the chemodosimeters were intolerant of water for two distinct reasons. The products of dehydroxylation, **[X=O]**⁺ and **[X=S]**⁺, were too electrophilic and were likely converted back to the masked tertiary alcohols by residual water such that no chemodosimetric behaviour was observed. Conversely, the acridinium **[X=NCH₃]**⁺ was stable enough in wet solvents that it would spontaneously form over a few hours, even in the absence of metal cations, giving a false positive signal. With this information in-hand, metal cation screening was conducted in CH₃CN because both initial and final species were freely soluble and CH₃CN can be rigorously dried. Judicious choice of the metal cations was also necessary for the following reasons: A) solubility limitations (Sr²⁺, Ba²⁺, Mg²⁺, Ca²⁺, Zr⁴⁺, Cd²⁺, Hg²⁺, Pb^{2/4+}, Ce³⁺, Rh³⁺, Tb³⁺, Eu³⁺); B) transition metals that were coloured or formed coloured complexes in CH₃CN were excluded (Cr³⁺, Ni²⁺, Ru³⁺, Pt²⁺, Pd²⁺, Co^{2+/3+} and V^{2/3/4/5+}); C) metals that exhibited redox behaviour with the chemodosimeters were also excluded (Fe^{2+/3+}, Ag⁺, Sn²⁺ and Cu^{1+/2+}). For these reasons, Na⁺, Al³⁺, Li⁺, Zn²⁺ and In³⁺ were chosen for screening.

Figure S1. Photograph of *c*. 0.1 mM $X=NCH_3$ in CH₃CN with a saturating amount of metals, as labelled, under ambient light (top) and 365 nm UV light (bottom). The left-most vial contains [$X=NCH_3$]OTf for reference.

Figure S2. Photograph of *c*. 0.1 mM **X=S** in CH_3CN with a saturating amount of metals, as labelled, under ambient light (top) and 365 nm UV light (bottom). The left-most vial contains **[X=S]OTf** for reference.

Figure S3. Photograph of *c*. 0.1 mM **X=NCH**₃ (left), **X=O** (middle), and **X=S** (right) in CH₃CN without added metals, under ambient light (top) and 365 nm UV light (bottom).

Figure S5. UV-visible spectra of **[X=NCH₃]OTf** (blue), **[X=O]OTf** (red) and **[X=S]OTf** (orange) in CH₃CN. Inset: photograph of *c*. 0.1 mM solutions of these compounds under ambient light.

	λ_{abs} (nm) / [ϵ] (L·mol ⁻¹ ·cm ⁻¹)
X=NCH ₃	286 [14 000]
X=0	244 [14 000] 289 [4 400]
X=S	267 [11 000]
[X=NCH ₃]OTf	261 [62 000]
	361 [17 000]
	424 [5 100]
[X=0]OTf	259 [40 000]
	373 [31 000]
	447 [5 300]
[X=S]OTf	281 [54 000]
L - J	384 [13 000]
	493 [4 200]

Figure S6. Normalized excitation (blue) and emission spectra (black) of **X=NCH**₃. Excitation wavelength: 286 nm.

Figure S7. Normalized excitation (red) and emission spectra (black) of X=O. Excitation wavelength: 244 nm.

267 nm.

Figure S8. Emission spectrum of X=S, exciting at Figure S9. Normalized excitation (blue) and emission spectra (black) of [X=NCH₃]OTf. Both traces are normalized to the excitation wavelength of 424 nm.

Figure S10. Normalized excitation (red) and emission spectra (black) of **[X=0]OTf**. Both traces are normalized to the excitation wavelength of 447 nm.

Figure S11. Normalized excitation (orange) and emission spectra (black) of **[X=S]OTf**. Both traces are normalized to the excitation wavelength of 493 nm.

Figure S12. Normalized emission spectra of $[X=NCH_3]OTf$ (blue, 424 nm excitation), [X=O]OTf (red, 447 nm excitation) and [X=S]OTf (orange, 493 nm excitation) in CH₃CN. Inset: photograph of *c*. 0.1 mM solutions of these compounds under 365 nm UV light.

	λ_{em} (nm)	λ_{exc} (nm)	Relative ϕ_f
X=NCH ₃	348	270	0.05 ± 0.01^{a}
X=0	298	270	0.11 ± 0.01^{a}
X=S	_	—	—
[X=NCH ₃]OTf	500	424	0.05 ± 0.01^{b}
[X=0]0Tf	513	440	0.63 ± 0.06^{b}
[X=S]OTf	563	475	$0.05 \pm 0.01^{\circ}$

Table S2. Emission Data

^a Measured against L-tryptophan in pH 7.0 phosphate-buffered water (ϕ_f = 0.12)

^b Measured against coumarin 6 in absolute ethanol ($\phi_f = 0.78$)

^c Measured against rhodamine 6G in Milli-Q water (ϕ_f = 0.95)

Section 5 UV-visible Spectroscopic Titrations with Metal Cations

Figure S13a. UV-visible Al^{3+} titration into **X=NCH**₃. Initial spectrum in light blue; final spectrum in dark blue.

Figure S13b. Normalized absorbance for **X=NCH**³ (grey, open) and **[X=NCH**₃]⁺ (blue, closed) as a function of titrated equivalents of Al³⁺.

Figure S14a. UV-visible In^{3+} titration into **X=NCH**₃. Initial spectrum in light blue; final spectrum in dark blue.

Figure S14b. Normalized absorbance for $X=NCH_3$ (grey, open) and $[X=NCH_3]^+$ (blue, closed) as a function of titrated equivalents of In^{3+} .

Figure S15a. UV-visible Zn^{2+} titration into **X=NCH**₃. Initial spectrum in light blue; final spectrum in dark blue.

Figure S15b. Normalized absorbance for $X=NCH_3$ (grey, open) and $[X=NCH_3]^+$ (blue, closed) as a function of titrated equivalents of Zn^{2+} .

Figure S16. UV-visible Li⁺ titration into **X=NCH**₃. Initial spectrum in light blue; final spectrum in dark blue.

Figure S17. UV-visible Na⁺ titration into **X=NCH**₃. Initial spectrum in light blue; final spectrum in dark blue.

Figure S18. UV-visible TBACl titration into **X=NCH**₃. Initial spectrum in light blue; final spectrum in dark blue.

Figure S19a. UV-visible Al³⁺ titration into **X=O**. Initial spectrum in light red; final spectrum in dark red.

Figure S19b. Normalized absorbance for **X=0** (grey, open) and **[X=0]**⁺ (red, closed) as a function of titrated equivalents of Al³⁺.

Figure S20a. UV-visible In^{3+} titration into **X=0**. Initial spectrum in light red; final spectrum in dark red.

Figure S20b. Normalized absorbance for **X=O** (grey, open) and $[X=O]^+$ (red, closed) as a function of titrated equivalents of In^{3+} .

dark red. Feature from 300-350 nm is a lamp artifact, consequence of lamp changeover at 310 nm instead of recommended 350 nm.

Figure S21. UV-visible Zn²⁺ titration into X=0. Figure S22. UV-visible Li⁺ titration into X=0. Initial spectrum in light red; final spectrum in Initial spectrum in light red; final spectrum in dark red.

Figure S23. UV-visible Na⁺ titration into X=0. Initial spectrum in light red; final spectrum in dark red.

Figure S24. UV-visible TBACl titration into X=0. Initial spectrum in light red; final spectrum in dark red.

Figure S25a. UV-visible Al^{3+} titration into **X=S**. Initial spectrum in light orange; final spectrum in dark orange.

Figure S25b. Normalized absorbance for $[X=S]^+$ (orange, closed) as a function of titrated equivalents of Al³⁺.

Figure S26a. UV-visible In³⁺ titration into **X=S**. Initial spectrum in light orange; final spectrum in dark orange.

Figure S26b. Normalized absorbance for $[X=S]^+$ (orange, closed) as a function of titrated equivalents of In^{3+} .

Figure S27. UV-visible Zn²⁺ titration into **X=S**. Initial spectrum in light orange; final spectrum in dark orange.

Figure S28. UV-visible Li⁺ titration into **X=S**. Feature from 300-350 nm is a lamp artifact, consequence of lamp changeover at 310 nm instead of recommended 350 nm. Initial spectrum in light orange; final spectrum in dark orange.

Figure S29. UV-visible Na⁺ titration into **X=S**. Initial spectrum in light orange; final spectrum in dark orange.

Figure S30. UV-visible TBACl titration into **X=S**. Initial spectrum in light orange; final spectrum in dark orange.

Table S3	Isosbestic	Point Data
----------	------------	------------

	Isosbestic Points (nm)
[X=NCH ₃]OTf	233, 269, 325
[X=0]0Tf	236, 245, 274, 295
[X=S]OTf	a

^a No isosbestic points are visible due to the proximity of the UV bands for **X=S** and **[X=S]**⁺

Figure S31. Metal cation-responsivity plot of (a) I/I_0 in absorbance at 424 nm (**X=NCH**₃), 447 (**X=O**) and 493 (**X=S**) following titrations with metal cations. (b) The analogous plot for increase in emission at 500 nm (**X=NCH**₃), 513 nm (**X=O**) and 563 nm (**X=S**).

Section 6 Emission Spectroscopic Titrations with Metal Cations

Figure S32a. Emission Al³⁺ titration into **X=NCH**₃, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S32b. Normalized emission for at 348 nm (grey, open) and 318 nm (black, closed) as a function of titrated equivalents of Al³⁺.

Figure S33a. Emission Al^{3+} titration into **X=NCH**₃, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S33b. Normalized emission for $X=NCH_3$ (grey, open) and $[X=NCH_3]^+$ (blue, closed) as a function of titrated equivalents of Al^{3+} .

Figure S34a. Emission In³⁺ titration into **X=NCH**₃, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S34b. Normalized emission for at 348 nm (grey, open) and 318 nm (black, closed) as a function of titrated equivalents of In^{3+} .

Figure S35a. Emission In³⁺ titration into **X=NCH**₃, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S35b. Normalized emission for $X=NCH_3$ (grey, open) and $[X=NCH_3]^+$ (blue, closed) as a function of titrated equivalents of In^{3+} .

Figure S36a. Emission Zn^{2+} titration into **X=NCH**₃, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S36b. Normalized emission for at 348 nm (grey, open) and 318 nm (black, closed) as a function of titrated equivalents of Zn^{2+} .

Figure S37a. Emission Zn^{2+} titration into **X=NCH**₃, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue.

Figure S37b. Normalized emission for $X=NCH_3$ (grey, open) and $[X=NCH_3]^+$ (blue, closed) as a function of titrated equivalents of Zn^{2+} .

Figure S38. Emission Li⁺ titration into **X=NCH**₃, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not Li⁺ (Figure S43/S44).

Figure S39. Emission Li⁺ titration into **X=NCH**₃, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not Li⁺ (Figure S43/S44).

Figure S40. Emission Na⁺ titration into **X=NCH**₃, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not Na⁺ (Figure S43/S44).

Figure S41. Emission Na⁺ titration into **X=NCH**₃, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not Na⁺ (Figure S43/S44).

Figure S42. Emission TBACl titration into **X=NCH**₃, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not TBACl (Figure S43/S44).

Figure S43. Emission TBACl titration into **X=NCH**₃, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue. Increase is due to additional water present, not TBACl (Figure S43/S44).

Figure S44. Emission CH_3CN titration into **X=NCH**₃, exciting at 286 nm. Initial spectrum in light blue; final spectrum in dark blue. This was done as a control to determine why the negative control TBACl exhibited slight turn-on behaviour. The decrease at 348 nm here is due to formation of **[X=NCH**₃]⁺ in the presence of trace water from dried CH_3CN .

Figure S45. Emission 4L bottle-CH₃CN titration into **X=NCH₃**, exciting at 361 nm. Initial spectrum in light blue; final spectrum in dark blue. This was done as a control to determine why the negative control TBACl exhibited slight turn-on behaviour. The increase at 500 nm here is due to formation of **[X=NCH₃]⁺** in the presence of water from nondried 4L bottle-CH₃CN.

Figure S46a. Emission Al³⁺ titration into **X=O**, exciting at 280 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S46b. Emission Al^{3+} titration into **X=O**, exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S46c. Normalized emission for **X=O** (grey, open) and **[X=O]**⁺ (red, closed) as a function of titrated equivalents of Al^{3+} .

Figure S47a. Emission In^{3+} titration into **X=O**, exciting at 280 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S47b. Emission In^{3+} titration into **X=O**, exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S47c. Normalized emission for X=0 (grey, open) and $[X=0]^+$ (red, closed) as a function of titrated equivalents of In^{3+} .

Figure S48a. Emission Zn^{2+} titration into **X=O**, exciting at 280 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S48b. Emission Zn²⁺ titration into **X=O**, exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S48c. Normalized emission for **X=O** (grey, open) and **[X=O]**⁺ (red, closed) as a function of titrated equivalents of Zn^{2+} .

Figure S49. Emission Li⁺ titration into **X=0**, exciting at 280 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S50. Emission Li⁺ titration into **X=0**, exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S51. Emission Na⁺ titration into **X=O**, exciting at 280 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S52. Emission Na⁺ titration into **X=0**, exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S53. Emission TBACl titration into **X=0**, exciting at 280 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S54. Emission TBACl titration into **X=0**, exciting at 373 nm. Initial spectrum in light red; final spectrum in dark red.

Figure S55a. Emission Al³⁺ titration into **X=S**, exciting at 384 nm. Initial spectrum in light orange; final spectrum in dark orange.

Figure S55b. Normalized emission for $[X=S]^+$ (orange, closed) as a function of titrated equivalents of Al³⁺.

Figure S56a. Emission In³⁺ titration into **X=S**, exciting at 384 nm. Initial spectrum in light (orange, closed) as a function of titrated orange; final spectrum in dark orange.

Figure S56b. Normalized emission for [X=S]⁺ equivalents of In³⁺.

Figure S57. Emission Zn²⁺ titration into X=S, orange; final spectrum in dark orange.

Figure S58. Emission Li⁺ titration into X=S, exciting at 384 nm. Initial spectrum in light exciting at 384 nm. Initial spectrum in light orange; final spectrum in dark orange.

Figure S59. Emission Na⁺ titration into X=S, orange; final spectrum in dark orange.

Figure S60. Emission TBACl titration into X=S, exciting at 384 nm. Initial spectrum in light exciting at 384 nm. Initial spectrum in light orange; final spectrum in dark orange.

Section 7 UV-visible Spectroscopic Regeneration Titrations with N(CH₃)₄OH

Figure S61. UV-visible N(CH₃)₄OH titration into a solution containing $X=NCH_3$ and 1 eq. of Al³⁺. Initial spectrum in light blue; final spectrum in dark blue.

Figure S62. UV-visible N(CH₃)₄OH titration into a solution containing **X=O** and 10 eq. of Al³⁺. Initial spectrum in light red; final spectrum in dark red.

Wavelength I nm **Figure S63.** UV-visible N(CH₃)₄OH titration into a solution containing **X=S** and 20 eq. of Al³⁺. Initial spectrum in light orange; final spectrum in dark orange.