Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic supplementary information

New Journal of Chemistry

Bio-oil: a versatile precursor to produce carbon nanostructures in liquid phase under mild conditions

Fabiane Carvalho Ballotin^a, Lucas Theodoro Perdigão^a, Marcus Vinícius B. Rezende^a, Sugandha Dogra Pandey^a, Márcio José da Silva^b, Ricardo Reis Soares^c, Jair Carlos Checon de Freitas^d, Ana Paula de Carvalho Teixeira^a, Rochel Montero Lago^a*

^aFederal University of Minas Gerais (UFMG), Exact Science Institute, Chemistry Department, Belo Horizonte/ MG, 31270-901, Brazil.

^bFederal University of Viçosa (UFV), Chemistry Department, Viçosa/MG, 36570-000, Brazil.

^cFederal University of Uberlândia (UFU), Chemistry Engineer Department, 38408-102, Uberlândia, MG, Brazil.

^dLaboratory of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo, (UFES), 29075-910, Vitória, ES, Brazil.

*Corresponding author

R. M. Lago, E-mail: rochel@ufmg.br

Table S1. CG/MS results for the organic phase (DCM) of the bio-oil sample

Compounds	Area / %
Carbohydrates and derivates	15
Phenols	17
Furans	4
Guaiacols	30
Syringols	50
Hydrocarbons	0,5

Fig S1. SEM images obtained for the product of the bio-oil reaction with H₂SO₄ (BS_{1.8}) at 120 °C.

Fig S2. Energy dispersive X-ray spectrum obtained for the product of the bio-oil reaction with H_2SO_4 (BS_{1.8}) at 120 °C.

Table S2. Elemental analyses of materials $BS_{1.8}BS_{3.7,}BS_{9.2}$ and $BS_{18.4}$

Materials	% C	% H	% S
Bio-oil	45.5	6.6	
BS _{1.8}	60.1	5.3	2.0
BS _{3.7}	55.0	4.1	2.8
BS _{9.2}	52.3	4.0	3.5
BS _{18.4}	49.2	3.6	4.3

Fig S3. TG curves of materials $BS_{1.8}$, $BS_{3.7}$, $BS_{9.2}$ and $BS_{18.4}$, recorded under air flow.

Fig S4. Infrared spectrum of bio-oil before and after sulfonation with different H₂SO₄:bio-oil ratio at 120°C for 2 hours.

Fig S5. Solid-state ¹³C NMR spectra and of samples BS_{1.8}, BS_{3.7}, BS_{9.2}, BS_{18.4} (CP/MAS spectra).

Fig S6. X-rays diffratograms of samples $BS_{1.8}$, $BS_{3.7}$, $BS_{9.2}$, and $BS_{18.4.}$

Fig S7. TEM images obtained of the sample $BS_{9.2}\,at$ 120 °C after 15 minutes of reaction.

Fig S8. TEM images obtained of the sample $BS_{9.2}$ at 120 °C after 60 minutes of reaction.

Fig S9. TEM images obtained of the sample $BS_{9.2}\,at\,120\ ^\circ C$ after 240 minutes of reaction.

Fig S10. Transmission electron microscopy images obtained of the aqueous fraction after washing the materials.