Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Kinetics, isotherm and mechanism studies of organic dyes adsorption on poly (4, 4'-oxybisbenzenamine) and copolymer of poly (4, 4'oxybisbenzenamine-pyrrole) macro-nanoparticles synthesized by multifunctional carbon dot

Moorthy Maruthapandi¹, John H. T. Luong², Aharon Gedanken^{1*}

¹Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan

University, Ramat-Gan 52900, Israel

²School of Chemistry, University College Cork, Ireland

* Corresponding authors: gedanken@mail.biu.ac.il, Fax: +972-3-7384053; Tel: +972-3-5318315

Supporting Information

Table 1: Peak identification in the IR absorption frequency region of POBBA and COP (before and after their adsorption with a dye) and the corresponding functional groups

POBBAMajor fu groAbsorption frequency regions (cm ⁻¹)	unctional ups fr	COP Absorption requency regions (cm ⁻¹)	Major functional groups
3424N-H (str vibra2878C-H (str vibra1498vibra1327c=C (str vibra1246C-N (str vibraC-O (strett vibra	retching tion) retching tion) retching tion) retching tion) ether ching tion)	3351 3074 1605 and 1501 1340 1246	N-H (stretching vibration) C=C-H (aromatic stretching vibration) C=C (stretching vibration) C-N (stretching vibration) C-O ether (stretching vibration)

 $\ln \left(q_e - q_t \right) = \ln \left(q_e \right) - k_1 t$

(3)

 $\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$

(4)

Where q_t and $q_e (mg/g)$ represent the amount of the organic dye (adsorbed at equilibrium) and $k_1 (min^{-1})$ is the rate constant of the pseudo-first-order model and $k_2 (g mg^{-1} min^{-1})$ is the pseudo-second-order model rate constant.

Intraparticle diffusion

Herein, if the intraparticle diffusion is the rate controlling factor, the uptake of the adsorbate varies with the square root of the adsorption time as follows:

$$q_t = k_i t^{1/2} + C (5)$$

The adsorption steps are relevant with the intercept, which represents the intercept of C (mg/g) and k_i (mg g⁻¹ min^{-1/2}) is the diffusion rate constant

Langmuir and Freundlich adsorption isotherms

$$\frac{C_e}{q_e} = \frac{1}{q_0 K_L} + \frac{1}{q_0 C_e}$$
(6)

$$lnq_e = lnK_F + \frac{1}{nC_e} \tag{7}$$

The SEM micrographs of POBBA and COP after the adsorption of the organic dyes

Figure 1. (a,b,c and d) are the SEM images of POBBA after the adsorption of C.R, C.V, M.B, and R.B and (e, f, g and h) are SEM images of COP after the adsorption of C.R, C.V, M.B and R.B.