Synthesis and evaluation of chiral β-amino acid-based low-molecular-weight organogelators possessing a methyl/trifluoromethyl side chain

Koichi Kodama*, Ryuta Kawamata and Takuji Hirose

Graduate School of Science and Engineering, Saitama University

255 Shimo-ohkubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan

Table of Contents	
Synthesis and characterization of the compounds	S2-S11
Figure S1 and Table S1	S12-S13
References	S14
Copies of ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR charts and IR spectra	S15-S101

Synthesis and characterization of the compounds

Compounds (*S*)- $\mathbf{1}_n$ were synthesized following the reactions shown in Scheme S1. The intermediate (*S*)-**6** was synthesized according to the literature.¹

(*S*)-4-phenyl-2-trifluoromethyl-2-oxazolidineacetic acid ethyl ester ((*S*)-3). Under a nitrogen atmosphere, to a solution of (*S*)-phenylglycinol (2.96 g, 21.6 mmol) in CHCl₃ (50 ml) were added acetic acid (3.89 g, 64.8 mmol) and ethyl 4,4,4-trifluoroacetoacetate (4.02 g, 21.8 mmol) at room temperature. The solution was refluxed for 24 h. To the reaction mixture was added *sat*. Na₂CO₃ *aq*. and the aqueous layer was extracted with CHCl₃ three times. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by Kugelrohr distillation (4.5 mmHg, 150 °C) to obtain (*S*)-**3** (5.10 g, 16.8 mmol, 78%) as colorless liquid. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.50-7.26 (m, 5H), 4.62-4.49 (m, 1H), 4.33-4.18 (m, 3H), 3.89 (d, 1H, *J* = 10.5 Hz), 3.72-3.66 (m, 1H), 3.03 (d, 1H, *J* = 15.3 Hz), 2.84 (d, 1H, *J*=15.3 Hz), 1.30 (t, 3H, *J* = 7.2 Hz). ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -83.7. IR (neat): v (cm⁻¹) 2983, 1731, 1472, 1307, 1203, 1170, 1031, 702.

(S)-2,3,4,7-tetrahydro-3-phenyl-5-trifluoromethyl-1,4-oxazepine-7-one ((S)-4). Under a nitrogen atmosphere, to a solution of (S)-3 (0.754 g, 2.49 mmol) in dry o-xylene (40 ml) was added freshly distilled SnBr₄ (0.334 g, 0.762 mmol) at room temperature. The solution was refluxed for 24 h. To

the reaction mixture was added water at 0 °C and the aqueous layer was extracted with CHCl₃ three times. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent; hexane:EtOAc = 1 : 1) to obtain (*S*)-**4** (0.533 g, 2.07 mmol, 83%) as a white powder. Mp. 119.9-122.2 °C. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.50-7.41 (m, 3H), 7.35-7.29 (m, 2H), 5.31 (d, 1H, *J* = 2.4 Hz), 5.20 (s, 1H), 4.84 (d, 1H, *J* = 7.2 Hz), 4.60 (dd, 1H, *J*₁ = 12.9 Hz, *J*₂ = 7.2 Hz), 4.40 (d, 1H, *J* = 12.9 Hz). ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -70.5. IR (KBr): v (cm⁻¹) 3282, 3107, 3027, 2979, 1677, 1638, 1566, 1495, 1453, 1423, 1389, 1361.

(*S*)-2,3,4,5,6,7-hexahydro-3-phenyl-5-trifluoromethyl-1,4-oxazepine-7-one ((*S*,*S*)-5). Under a nitrogen atmosphere, to a solution of NaBH₃CN (1.05 g, 16.7 mmol) in CH₂Cl₂ (60 ml) was added a solution of (*S*)-4 (3.42 g, 13.3 mmol) in 4M HCl / dioxane (30 ml) and CHCl₃ (30 ml) at -78 °C. The mixture was stirred at room temperature for 2 days. To the reaction mixture was added *sat*. NaHCO₃ aq. at 0 °C and extracted with CHCl₃. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent; CHCl₃) to obtain (*S*,*S*)-5 (2.33 g, 8.99 mmol, 68%) as a white powder. Mp 140.2-143.0 °C. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.44-7.32 (m, 5H), 4.36 (dd, 1H, *J*₁ = 13.2 Hz, *J*₂ = 8.7 Hz), 4.22-4.14 (m, 2H), 3.87-3.65 (m, 1H), 3.08-3.04 (m, 2H), 2.35 (br, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -78.7. IR (KBr): v (cm⁻¹) 3332, 1739, 1602, 1491, 1470, 1454, 1432, 1394, 1321, 1187.

(*S*)-3-amino-4,4,4-trifluorobutyric acid methyl ester hydrochloride ((*S*)-6). To the solution of (*S*,*S*)-5 (1.32 g, 5.09 mmol) in MeOH (30 ml) was added 10% Pd/C (0.557 g) and 4M HCl / dioxane (13 ml). The air inside the flask was replaced with H₂ and the mixture was stirred at room temperature for 1 day. After the solid Pd/C was filtered off by use of celite, the filtrate was concentrated under reduced pressure to obtain (*S*)-6 (0.778 g, 3.75 mmol, 74%) as a white powder. Mp. 93.0-96.0 °C. ¹H NMR (300 MHz, CDCl₃/CD₃OD): δ (ppm) 4.44-4.24 (m, 1H), 3.80 (s, 3H), 3.59 (br, 3H), 3.16-2.92 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -75.4. IR (KBr): v (cm⁻¹) 3395, 2856, 1744, 1588, 1528, 1443, 1389, 1329, 1286, 1203, 1157, 1098, 1069, 908, 655.

N-octanoyl-(*S*)-3-amino-4,4,4-trifluorobutyric acid methyl ester ((*S*)-7₆). Under a nitrogen atmosphere, to a solution of octanoic acid (0.198 g, 1.22 mmol) in CH₂Cl₂ (15 ml) was added *O*-(benzotriazol-1-yl)-*N*, *N*, *N*', *N*'-tetramethyluronium hexafluorophosphate (HBTU) (0.458 g, 1.21 mmol) and the mixture was stirred at 0 °C for 30 min. Then to the mixture was added (*S*)-6 (0.251 g, 1.20 mmol) and ⁱPr₂NEt (0.778 g, 6.02 mmol) and stirred at room temperature for 3 days. Ethyl acetate was added to the reaction mixture and the organic layer was washed with 1 N HCl aq., *sat*. NaHCO₃ aq. and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent;

toluene: EtOAc = 7:1) to obtain (S)-76 (0.108 g, 0.363 mmol, 30%) as a white powder.

Mp: 65-68 °C. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 6.32 (d, 1H, J = 8.7 Hz), 5.11-4.99 (m, 1H), 3.73 (s, 3H), 2.78-2.63 (m, 2H), 2.24 (t, 2H, J = 7.5 Hz), 1.71-1.58 (m, 2H), 1.38-1.22 (m, 8H), 0.88 (t, 3H, J = 6.6 Hz). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 172.8, 170.1, 124.6 (q, J = 280 Hz), 52.4, 47.2 (q, J = 32 Hz), 36.5, 32.9, 31.7, 29.0, 28.9, 25.4, 22.6, 14.0. ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.7. IR (KBr) : v (cm⁻¹) 3288, 3076, 2929, 2853, 1741, 1664, 1549, 1352, 1304, 1234, 1176, 1119, 665. MS(MALDI-TOF): m/z calcd for [C₁₃H₂₂F₃NO₃ + Na]⁺ 320.14, found 320.15.

N-nonanoyl-(*S*)-3-amino-4,4,4-trifluorobutyric acid methyl ester ((*S*)-77). (*S*)-77 was synthesized by the same procedure as (*S*)-76 from nonanoic acid and obtained as a white solid (72%). Mp. 74.0-75.0 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.32 (d, 1H, *J* = 9.5 Hz), 5.11-4.99 (m, 1H), 3.73 (s, 3H), 2.78-2.63 (m, 2H), 2.24 (t, 2H, *J* = 8.0 Hz), 1.68-1.60 (m, 2H), 1.38-1.22 (m, 10H), 0.88 (t, 3H, *J* = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 172.8, 170.1, 124.6 (q, *J* = 280 Hz), 52.4, 47.2 (q, *J* = 32 Hz), 36.5, 32.9, 31.8, 29.2, 29.1, 29.1, 25.4, 22.6, 14.1. ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.7. IR (KBr): v (cm⁻¹) 3293, 2934, 1739, 1666, 1549, 1351, 1303, 1238, 1179, 1119, 921, 665. MS(MALDI-TOF): *m/z* calcd for [C₁₄H₂₄F₃NO₃ + Na]⁺ 334.16, found 334.18.

N-decanoyl-(*S*)-3-amino-4,4,4-trifluorobutyric acid methyl ester ((*S*)-7₈). (*S*)-7₈ was synthesized by the same procedure as (*S*)-7₆ from decanoic acid and obtained as a white solid (55%). Mp. 79.5-80.0 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.32 (d, 1H, J = 9.0 Hz), 5.11-4.99 (m, 1H), 3.73 (s, 3H), 2.78-2.63 (m, 2H), 2.24 (t, 2H, J = 7.5 Hz), 1.68-1.59 (m, 2H), 1.38-1.22 (m, 12H), 0.88 (t, 3H, J = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 172.8, 170.1, 124.6 (q, J = 280 Hz), 52.4, 47.2 (q, J = 32 Hz), 36.5, 32.9, 31.9, 29.4, 29.3, 29.2, 29.1, 25.4, 22.7, 14.1. ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.6. IR (KBr): v (cm⁻¹) 3285, 2918, 2851, 1741, 1662, 1550, 1352, 1304, 1235, 1176, 1119, 924, 666. MS(MALDI-TOF): *m*/*z* calcd for [C₁₅H₂₆F₃NO₃ + Na]⁺ 348.18, found 348.21.

N-undecanoyl-(*S*)-3-amino-4,4,4-trifluorobutyric acid methyl ester ((*S*)-7₉). (*S*)-7₉ was synthesized by the same procedure as (*S*)-7₆ from undecanoic acid and obtained as a white solid (68%). Mp. 80.0-82.0 °C. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 6.32 (d, 1H, *J* = 9.0 Hz), 5.11-4.99 (m, 1H), 3.73 (s, 3H), 2.78-2.63 (m, 2H), 2.24 (t, 2H, *J* = 7.2 Hz), 1.71-1.58 (m, 2H), 1.38-1.18 (m, 14H), 0.88 (t, 3H, *J* = 6.6 Hz). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 172.8, 170.1, 124.6 (q, *J* = 280 Hz), 52.4, 47.2 (q, *J* = 32 Hz), 36.6, 32.9, 31.9, 29.5, 29.5, 29.3, 29.1, 25.4, 22.7, 14.1. ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.6. IR (KBr): v (cm⁻¹) 3292, 2917, 2850, 1742, 1666, 1550, 1352, 1300, 1181, 1119, 922, 665. MS(MALDI-TOF): *m/z* calcd for [C₁₆H₂₈F₃NO₃ + Na]⁺ 362.19, found 362.25.

N-dodecanoyl-(*S*)-3-amino-4,4,4-trifluorobutyric acid methyl ester ((*S*)-7₁₀). (*S*)-7₁₀ was synthesized by the same procedure as (*S*)-7₆ from dodecanoic acid and obtained as a white solid

(66%). Mp. 88.0-89.5 °C. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 6.32 (d, 1H, J = 9.3 Hz), 5.11-4.99 (m, 1H), 3.73 (s, 3H), 2.78-2.63 (m, 2H), 2.24 (t, 2H, J = 7.2 Hz), 1.71-1.58 (m, 2H), 1.38-1.20 (m, 16H), 0.88 (t, 3H, J = 6.6 Hz). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 172.8, 170.0, 124.6 (q, J = 280 Hz), 52.3, 47.2 (q, J = 32 Hz), 36.5, 32.9, 31.9, 29.6, 29.4, 29.3, 29.3, 29.1, 25.4, 22.7, 14.1. ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.7. IR (KBr): ν (cm⁻¹) 3285, 2917, 2850, 1741, 1662, 1550, 1353, 1305, 1234, 1185, 1119, 922, 666. MS(MALDI-TOF): m/z calcd for [C₁₇H₃₀F₃NO₃ + Na]⁺ 376.21, found 376.24.

N-octanoyl-(*S*)-3-amino-4,4,4-trifluorobutyric acid ((*S*)-1₆). To the solution of (*S*)-7₆ (52.8 mg, 0.178 mmol) in 1,4-dioxane (13 ml) and H₂O (9.0 ml) was added LiOH·H₂O (75.3 mg, 1.79 mmol) at 0 °C and the solution was stirred for 1 day. Ethyl acetate was added to the reaction mixture and the organic layer was washed with 1M HCl aq. The organic layer was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure to obtain (*S*)-1₆ (50.3 mg, 0.178 mmol, quant) as a white powder. Mp. 118.0-120.0 °C. ¹H NMR (300 MHz, CDCl₃/CD₃OD): δ (ppm) 5.11-4.95 (m, 1H), 2.74 (dd, 1H, *J*₁ = 16.0 Hz, *J*₂ = 4.7 Hz), 2.60 (dd, 1H, *J*₁ = 16.0 Hz, *J*₂ = 7.8 Hz), 2.23 (t, 2H, *J* = 7.7 Hz), 1.70-1.57 (m, 2H), 1.38-1.21 (m, 8H), 0.88 (t, 3H, *J* = 6.6 Hz). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 173.3, 172.2, 124.5 (q, *J* = 280 Hz), 47.2 (q, *J* = 32 Hz), 36.5, 32.7, 31.6, 29.0, 28.9, 25.4, 22.6, 14.0. ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -77.0. IR (KBr): v (cm⁻¹) 3297, 2914, 2849, 1707, 1666, 1548, 1372, 1328, 1204, 1125, 936, 652. MS(MALDI-TOF): *m/z* calcd for [C₁₂H₂₀F₃NO₃ + Na]⁺ 306.13, found 306.17.

N-nonanoyl-(*S*)-3-amino-4,4,4-trifluorobutyric acid ((*S*)-17). (*S*)-17 was synthesized by the same procedure as (*S*)-1₆ from (*S*)-77 and obtained as a white solid (96%). Mp. 125.0-127.5 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.27 (d, 1H, *J* = 9.5 Hz), 5.15-5.04 (m, 1H), 2.84-2.66 (m, 2H), 2.25 (t, 2H, *J* = 7.5 Hz), 1.71-1.58 (m, 2H), 1.38-1.20 (m, 10H), 0.88 (t, 3H, *J* = 6.5 Hz). ¹³C NMR (100 MHz, CDCl₃/CD₃OD): δ (ppm) 173.4, 124.7 (q, *J* = 280 Hz), 47.3 (q, *J* = 32 Hz), 36.4, 31.8, 29.3, 29.1, 29.1, 25.5, 22.6, 14.1.

¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.9. IR (KBr): ν (cm⁻¹) 3295, 2914, 2849, 1705, 1667, 1543, 1372, 1255, 1205, 1124, 939, 651. MS(MALDI-TOF): m/z calcd for $[C_{13}H_{22}F_3NO_3 + Na]^+$ 320.14, found 320.18.

N-decanoyl-(*S*)-3-amino-4,4,4-trifluorobutyric acid ((*S*)-1₈). (*S*)-1₈ was synthesized by the same procedure as (*S*)-1₆ from (*S*)-7₈ and obtained as a white solid (83%). Mp. 125.0-127.5 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.25 (d, 1H, J = 9.5 Hz), 5.15-5.04 (m, 1H), 2.84-2.66 (m, 2H), 2.25 (t, 2H, J = 7.0 Hz), 1.69-1.58 (m, 2H), 1.38-1.20 (m, 12H), 0.88 (t, 3H, J = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃/CD₃OD): δ (ppm) 173.3, 171.5, 124.7 (q, J = 280 Hz), 47.2 (q, J = 32 Hz), 36.5, 32.8, 31.9, 29.4, 29.3, 29.3, 29.1, 25.4, 22.7, 14.1. ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.9. IR (KBr): v (cm⁻¹) 3295, 2916, 2849, 1705, 1667, 1549, 1373, 1204, 1125, 936, 653. MS(MALDI-TOF): *m/z*

calcd for $[C_{14}H_{24}F_{3}NO_{3} + Na]^{+} 334.16$, found 334.22.

N-undecanoyl-(*S*)-3-amino-4,4,4-trifluorobutyric acid ((*S*)-19). (*S*)-19 was synthesized by the same procedure as (*S*)-16 from (*S*)-79 and obtained as a white solid (82%). Mp. 127.0-130.0 °C. ¹H NMR (400 MHz, CDCl₃/CD₃OD): δ (ppm) 5.10-4.95 (m, 1H), 2.77-2.57 (m, 2H), 2.23 (t, 2H, *J* = 7.6 Hz), 1.69-1.58 (m, 2H), 1.38-1.20 (m, 14H), 0.88 (t, 3H, *J* = 6.8 Hz). ¹³C NMR (100 MHz, CDCl₃/CD₃OD): δ (ppm) 173.4, 171.5, 124.7 (q, *J* = 280 Hz), 47.3 (q, *J* = 32 Hz), 36.5, 32.9, 31.9, 29.6, 29.5, 29.3, 29.1, 25.5, 22.7, 14.1. ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.6. IR (KBr): v (cm⁻¹) 3294, 2916, 2849, 1706, 1667, 1547, 1371, 1253, 1203, 1124, 936, 651. MS(MALDI-TOF): *m/z* calcd for [C₁₅H₂₆F₃NO₃ + Na]⁺ 348.18, found 348.21.

N-dodecanoyl-(*S*)-3-amino-4,4,4-trifluorobutyric acid ((*S*)-1₁₀). (*S*)-1₁₀ was synthesized by the same procedure as (*S*)-1₆ from (*S*)-7₁₀ and obtained as a white solid (quant.). Mp. 127.0-129.0 °C. ¹H NMR (500 MHz, CD₃OD): δ (ppm) 5.10-4.95 (m, 1H), 2.78 (dd, 1H, $J_1 = 16.0$ Hz, $J_2 = 4.0$ Hz), 2.59 (dd, 1H, $J_1 = 16.5$ Hz, $J_2 = 10.5$ Hz), 2.21 (t, 2H, J = 7.0 Hz), 1.69-1.58 (m, 2H), 1.38-1.20 (m, 16H), 0.89 (t, 3H, J = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃/CD₃OD): δ (ppm) 173.3, 171.5, 124.7 (q, J = 280 Hz), 47.2 (q, J = 32 Hz), 36.5, 32.8, 31.9, 29.6, 29.5, 29.4, 29.3, 29.1, 25.5, 22.7, 14.1. ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.6. IR (KBr): v (cm⁻¹) 3294, 2916, 2849, 1705, 1667, 1543, 1373, 1206, 1125, 937, 652. MS(MALDI-TOF): *m*/*z* calcd for [C₁₆H₂₈F₃NO₃ + Na]⁺ 362.19, found 362.24.

The compound *rac*- 1_6 was synthesized following the reactions shown in Scheme S2. The intermediate *rac*-10 was synthesized according to the literature.²

Scheme S2 Synthesis of rac-16

3-benzylamino-4,4,4-trifluoro-but-2-enoic acid ethyl ester (8). Benzylamine (643 mg, 6.00 mmol)

was added dropwise to the solution of ethyl 4,4,4-trifluoroacetoacetate (1.00 g, 5.45 mmol) and *p*-TsOH·H₂O (47.2 mg / 0.274 mmol) in benzene (20 ml) at room temperature. The mixture was heated using the Dean-Stark apparatus for 1 day to remove water. After filtration, the solvent was removed under reduced pressure and the target product **8** (1.00 g, 3.66 mmol, 67%) was obtained as colorless liquid. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.46 (s, 1H), 7.43-7.28 (m, 5H), 5.18 (s, 1H), 4.49 (d, 2H, *J* = 6.3 Hz), 4.16 (q, 2H, *J* = 7.2 Hz), 1.29 (t, 3H, *J* = 7.2 Hz). ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -67.6. IR (neat): v (cm⁻¹) 2983, 1675, 1635, 1296, 1208, 1139, 1040, 799, 734, 666.

N-benzylidene-3-amino-4,4,4-trifluorobutyric acid ethyl ester (*rac-9*). Triethylamine (16 ml) was added dropwise to **8** (744 mg, 2.72 mmol) at room temperature and the solution was refluxed for 3 days. The mixture was purified by Kugelrohr distillation (9.0 mmHg, 130-135 °C) to obtain *rac-9* (550 mg, 2.01 mmol, 73%) as colorless liquid. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.42 (s, 1H), 7.82-7.75 (m, 2H), 7.50-7.39 (m, 3H), 4.30-4.16 (m, 1H), 4.16-4.05 (m, 2H), 2.91 (d, 2H, *J* = 6.3 Hz), 1.20 (t, 3H, *J* = 7.2 Hz). ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.1. IR (neat): v (cm⁻¹) 2986, 2894, 1736, 1649, 1582, 1453, 1272, 1173, 1129, 1061, 1025, 885, 758, 694.

3-amino-4,4,4-trifluorobutyric acid ethyl ester hydrochloride (*rac*-10). The solution of *rac*-9 (548 mg, 2.01 mmol) in diethyl ether (1.4 ml) was mixed with 1M HCl aq. (3.0 ml) and the solution was stirred for 1 h. Then 6M HCl aq. (0.3 ml) and dioxane (0.3 ml) were added dropwise to the reaction mixture at room temperature. The solution was refluxed for 2 days. The organic layer was removed and the aqueous layer was washed with ether (3×10 ml). The solvent was removed under reduced pressure to obtain crude carboxylic acid (377 mg). Thionyl chloride (247 mg, 2.08 mmol) was added dropwise to ethanol (2.0 ml) at -5 °C and stirred for 10 min. To the solution crude carboxylic acid (306 mg) was added and the mixture was stirred at room temperature for 14 h. The solvent and excess thionyl chloride were distilled off under reduced pressure and the residue was washed with ether to obtain *rac*-10 (245 mg, 1.11 mmol, 68%) as a yellow solid. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.91 (br, 3H), 4.64-4.46 (m, 1H), 4.19 (q, 2H, J = 7.2 Hz), 3.11-2.85 (m, 2H), 1.26 (t, 3H, J = 7.2 Hz). ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.9. IR (KBr): v (cm⁻¹) 3434, 2985, 2609, 1736, 1620, 1525, 1328, 1287, 1203, 1159, 1024, 870.

N-octanoyl-3-amino-4,4,4-trifluorobutyric acid ethyl ester (*rac*-11₆). Under a nitrogen atmosphere, to a solution of octanoic acid (91.0 mg, 0.559 mmol) in CH₂Cl₂ (3.0 ml) was added *O*-(Benzotriazol-1-yl)-*N*,*N*,*N'*,*N'*-tetramethyluronium hexafluorophosphate (HBTU) (211mg, 0.555 mmol) and the mixture was stirred at 0 °C for 30 min. Then to the mixture were added *rac*-10 (121 mg, 0.547 mmol) and ⁱPr₂EtN (366 mg, 2.83 mmol) and the mixture was stirred at room temperature for 3 days. Ethyl acetate was added to the reaction mixture and the organic layer was washed with 1M HCl aq., *sat*. NaHCO₃ aq. and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography

(eluent; toluene:EtOAc = 7 : 1) to obtain *rac*-**11**₆ (124 mg, 0.400 mmol, 74%) as a white solid. Mp. 79.5-80.0 °C. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 6.36 (d, 1H, *J* = 9.0 Hz), 5.12-4.99 (m, 1H), 4.22-4.14 (m, 2H), 2.78-2.60 (m, 2H), 2.24 (t, 2H, *J* = 6.9 Hz), 1.72-1.55 (m, 2H), 1.35-1.22 (m, 11H), 0.88 (t, 3H, *J* = 6.6 Hz). ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.6. IR (KBr): v (cm⁻¹) 3294, 2928, 1736, 1666, 1549, 1421, 1308, 1236, 1121, 1030, 876, 662.

N-octanoyl-3-amino-4,4,4-trifluorobutyric acid (*rac*-1₆). To the solution of *rac*-11₆ (56.7 mg, 0.182 mmol) in 1,4-dioxane (1.0 ml) and H₂O (0.7 ml) was added LiOH·H₂O (79.1 mg, 1.89 mmol) at room temperature and the solution was stirred for 1 day. Ethyl acetate was added to the reaction mixture and the organic layer was washed with 1M HCl aq. The organic layer was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure to obtain *rac*-1₆ (50.7 mg, 1.79 mmol, 98%) as a white powder. Mp. 138.1-139.2 °C. ¹H NMR (500 MHz, CD₃OD): δ (ppm) 5.08-4.95 (m, 1H), 2.79 (dd, 1H, J_1 =16.5 Hz, J_2 = 4.0 Hz), 2.60 (dd, 1H, J_1 =16.5 Hz, J_2 = 6.5 Hz), 2.21 (t, 2H, J = 7.5 Hz), 1.65-1.55 (m, 2H), 1.40-1.25 (m, 8H), 0.90 (t, 3H, J = 7.0 Hz). ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -76.9. IR (KBr): v (cm⁻¹) 3354, 2937, 1728, 1627, 1556, 1419, 1302, 1225, 1186, 1122, 639.

The compound (*S*)- 2_6 was synthesized following the reactions shown in Scheme S3. The intermediate (*S*)-14 was synthesized according to the literature.³

Scheme S3 Synthesis of (S)-26

(*S*)-2-[(*tert*-butoxycarbonyl)amino]propyl *p*-toluenesulfonate ((*S*)-13). Under a nitrogen atmosphere, to a solution of *N*-Boc-L-alaninol ((*S*)-12) (0.602 g, 3.43 mmol) in dry CH₂Cl₂ (4.0 ml) were added triethylamine (0.525 g, 5.18 mmol), *p*-toluenesulfonyl chloride (0.919 g, 4.82 mmol) and DMAP (0.126 g, 1.03 mmol) at 0 °C and the mixture was stirred at room temperature for 24 h. To the reaction mixture was added *sat*. NaHSO₄ aq. until pH = 2. The aqueous layer was washed with CH₂Cl₂ (3×10 ml) and the organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent; hexane:EtOAc = 5 : 2) to obtain (*S*)-13 (0.884 g, 2.68 mmol, 78%) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.79 (d, 2H, *J* = 8.0 Hz), 7.35 (d, 2H, *J* = 8.0 Hz), 4.57 (s, 1H), 4.10-3.80 (m, 3H), 2.37 (s, 3H), 1.40 (s, 9H), 1.15 (d, 3H, *J* = 6.5 Hz). IR (KBr): v (cm⁻¹) 3426, 2968, 1726, 1500, 1349, 1232, 1189, 1162, 1080, 966, 820, 673, 555.

(*S*)-3-[(*tert*-butoxycarbonyl)amino]butanenitrile ((*S*)-14). Under a nitrogen atmosphere, a solution of sodium cyanide (0.273 g, 5.57mmol) in dry DMF (1.0 ml) was added dropwise to a solution of (*S*)-13 (0.603 g, 1.83 mmol) in dry DMF (1.0 ml) and the mixture was stirred at room temperature. After 24 h, H₂O (10 ml) was added to the reaction mixture. The aqueous layer was washed with CH₂Cl₂ (3×10 ml). Then the organic layer was washed with sat. NaHCO₃ aq. and brine. The organic layer was combined and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent; hexane:EtOAc = 4 : 1) to obtain (*S*)-14 (0.302 g, 1.51 mmol, 83%) as a white solid. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 4.63 (s, 1H), 4.15-3.88 (m, 1H), 2.75 (dd, 1H, *J*₁ = 16.5 Hz, *J*₂ = 4.8 Hz), 2.53 (dd, 1H, *J*₁ = 16.5 Hz, *J*₂ = 4.2 Hz), 1.45 (s, 9H), 1.33 (d, 3H, *J* = 6.9 Hz). IR (KBr): v (cm⁻¹) 3367, 2988, 1684, 1520, 1365, 1252, 1171, 785, 594.

(*S*)-3-[(*tert*-butoxycarbonyl)amino]butyric acid methyl ester ((*S*)-15). To the solution of (*S*)-14 (0.100 g, 0.500 mmol) in EtOH (1.0 ml) was added dropwise to 2M NaOH aq. (1.0 ml) at room temperature and the solution was refluxed at 90 °C for 1 day. The reaction mixture was concentrated under reduced pressure to obtain crude sodium carboxylate as a white powder. To the solution of crude salt in DMF (1.0 ml) was added dropwise iodomethane (57.0 µl, 0.916 mmol) at room temperature and the solution was stirred for 3 days. The remaining solid was filtered off and H₂O was added to the filtrate. The aqueous layer was washed with EtOAc (20 ml × 3) and the organic layer was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent; hexane:EtOAc = 3 : 1) to obtain (*S*)-15 (48.0 mg, 0.206 mmol, 41%) as a white solid. ¹H NMR (300 MHz, CDCl₃): δ (ppm) 4.93 (s, 1H), 4.20-3.95 (m, 1H), 3.69 (s, 3H), 2.58-2.44 (m, 2H), 1.48 (s, 9H), 1.21 (d, 3H, *J* = 6.9 Hz). IR (KBr): v (cm⁻¹) 3375, 2986, 1741, 1685, 1520, 1440, 1369, 1320, 1205, 1161, 1063, 851, 595.

(*S*)-3-aminobutyric acid methyl ester *p*-toluenesulfonate ((*S*)-16). To ethyl acetate (1.0 ml) were added (*S*)-15 (52.7 mg, 0.226 mmol) and TsOH·H₂O (43.6 mg, 0.229 mmol) at room temperature and the solution was stirred at 50 °C for 30 min. The mixture was stirred at room temperature for 1 day and the precipitate was collected by filtration to obtain (*S*)-16 (52.2 mg, 0.161mmol, 71%) as a white powder. ¹H NMR (500 MHz, CD₃OD): δ (ppm) 7.71 (d, 2H, *J* = 8.5 Hz), 7.23 (d, 2H, *J* = 8.5 Hz), 3.74 (s, 3H), 3.74-3.65 (m, 1H), 2.80-2.65 (m, 2H), 2.37 (s, 3H), 1.35-1.32 (m, 3H). IR (KBr): v (cm⁻¹) 3442, 3032, 2953, 1730, 1626, 1597, 1504, 1451, 1390, 1321, 1227, 1162, 1124, 1035, 1011, 818, 681, 568.

N-octanoyl-(*S*)-3-aminobutyric acid methyl ester ((*S*)-17₆). Under a nitrogen atmosphere, to a solution of octanoic acid (91.0 mg, 0.559 mmol) in CH₂Cl₂ (3.0 ml) were added *O*-(Benzotriazol-1-yl)-*N*,*N*,*N'*,*N'*-tetramethyluronium hexafluorophosphate (HBTU) (74.6 mg, 0.197 mmol) and the mixture was stirred at 0 °C for 30 min. Then to the mixture were added (*S*)-16 (52.2 mg, 0.161 mmol) and ⁱPr₂EtN (0.104 g, 0.807 mmol) and the mixture was stirred at room temperature for 12 h. Ethyl acetate was added to the reaction mixture and the organic layer was washed with 1M HCl aq., *sat*. NaHCO₃ aq. and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent; hexane:EtOAc = 2 : 1) to obtain (*S*)-17₆ (25.2 mg, 0.103 mmol, 64%) as a white solid. Mp. 45.5-48.0 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.02 (s, 1H), 4.50-4.30 (m, 1H), 3.69 (s, 3H), 2.59-2.48 (m, 2H), 2.14 (t, 2H, *J* = 7.5 Hz), 1.68-1.58 (m, 2H), 1.37-1.25 (m, 8H), 1.22 (d, 3H, *J* = 7.0 Hz), 0.88 (t, 3H, *J* = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 172.3, 172.3, 51.6, 41.7, 39.7, 36.9, 31.7, 29.2, 29.0, 25.7, 22.6, 20.0, 14.0. IR (KBr): v (cm⁻¹) 3304, 2926, 1730, 1636, 1550, 1464, 1433, 1377, 1304, 1207, 1144.

N-octanoyl-(*S*)-3-aminobutyric acid ((*S*)-2₆). To the solution of (*S*)-17₆ (25.2 mg, 0.103 mmol) in 1,4-dioxane (10.0 ml) and H₂O (8.0 ml) was added LiOH·H₂O (46.7 mg, 1.11 mmol) at room temperature and the solution was stirred for 1 day. Ethyl acetate was added to the reaction mixture and the organic layer was washed with 1M HCl aq. The organic layer was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure to obtain (*S*)-2₆ (50.7 mg, 1.79 mmol, quant.) as a white powder. Mp. 82.6-84.3 °C. ¹H NMR (500 MHz, CD₃OD): δ (ppm) 4.28-4.21 (m, 1H), 2.53 (dd, 1H, *J*₁ =15.5 Hz, *J*₂ = 6.5 Hz), 2.38 (dd, 1H, *J*₁ = 15.0 Hz, *J*₂ = 7.0 Hz), 2.14 (t, 2H, *J* = 7.5 Hz), 1.65-1.55 (m, 2H), 1.39-1.25 (m, 8H), 1.18 (d, 3H, *J* = 6.5 Hz), 0.90 (t, 3H, *J* = 6.5 Hz). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 175.3, 173.1, 41.9, 39.9, 36.9, 31.6, 29.2, 29.0, 25.7, 22.6, 20.0, 14.0. IR (KBr): v (cm⁻¹) 3316, 2923, 1739, 1645, 1540, 1469, 1392, 1249, 1206, 696.

The compound rac-26 was synthesized following the reactions shown in Scheme S4.

Scheme S4 Synthesis of rac-26

N-octanoyl-*rac*-3-aminobutyric acid methyl ester (*rac*-17₆). Thionyl chloride (425 µl, 5.86 mmol) was added dropwise to methanol (7.0 ml) at -5 °C and stirred for 10 min. Rac-3-aminobutyric acid (0.500 g, 4.85 mmol) was added and the mixture was stirred at room temperature for 12 h. The solvent and excess thionyl chloride were distilled off under reduced pressure and the residue was washed with ether to obtain crude ester (0.740 g) as a colorless liquid. Under a nitrogen atmosphere, to a solution of octanoic acid (192 mg, 1.18 mmol) in CH₂Cl₂ (6.0 ml) was added O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU) (451 mg, 1.19 mmol) and the mixture was stirred at 0 °C for 30 min. Then to the mixture were added crude ester (202 mg) and ⁱPr₂EtN (759 mg, 5.87 mmol) and the mixture was stirred at room temperature for 12 h. Ethyl acetate was added to the reaction mixture and the organic layer was washed with 1M HCl aq., sat. NaHCO₃ aq. and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent; toluene:EtOAc = 7 : 1) to obtain *rac*-**17**₆ (238 mg, 0.979 mmol, 74%) as a white solid. Mp. 44.1-46.8 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.02 (s, 1H), 4.42-4.30 (m, 1H), 3.69 (s, 3H), 2.58-2.47 (m, 2H), 2.14 (t, 2H, J = 7.5 Hz), 1.65-1.53 (m, 2H), 1.32-1.23 (m, 11H), 1.22 (d, 3H, J = 7.0 Hz), 0.88 (t, 3H, J = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 172.3, 172.2, 51.6, 41.7, 39.7, 36.9, 31.7, 29.2, 29.0, 25.7, 22.6, 20.0, 14.0. IR (KBr): v (cm⁻¹) 3303, 2927, 2854, 1744, 1637, 1544, 1436, 1378, 1308, 1207, 1149, 999, 889, 723.

N-octanoyl-*rac*-3-aminobutyric acid (*rac*-2₆). To the solution of *rac*-17₆ (85.5 mg, 0.351 mmol) in 1,4-dioxane (2.0 ml) and H₂O (1.4 ml) was added LiOH·H₂O (154 mg, 3.66 mmol) at room temperature and the solution was stirred for 6 h. Ethyl acetate was added to the reaction mixture and the organic layer was washed with 1M HCl aq. The organic layer was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure to obtain *rac*-2₆ (80.7 mg, quant.) as a white powder. Mp. 78.1-80.0 °C. ¹H NMR (500 MHz, CD₃OD): δ (ppm) 7.89 (d, 1H, *J* = 3.9 Hz), 4.30-4.20 (m, 1H), 2.51 (dd, 1H, *J*₁ =15.5 Hz, *J*₂ = 6.5 Hz), 2.38 (dd, 1H, *J*₁ = 15.5 Hz, *J*₂ = 7.0 Hz), 2.14 (t, 2H, *J* = 7.5 Hz), 1.65-1.55 (m, 2H), 1.40-1.30 (m, 8H), 1.18 (d, 3H, *J* = 6.5 Hz), 0.91 (t, 3H, *J* = 6.5 Hz). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 175.5, 173.3, 41.9, 39.8, 36.8, 31.6, 29.1, 28.9, 25.7, 22.6, 20.0, 14.0. IR (KBr): ν (cm⁻¹) 3296, 2931, 1703, 1645, 1551, 1405, 1241, 926.

Figure S1. XRD patterns of the xerogels (*S*)- 1_n (n = 6-10).

	C ₆ -β-Ala (needle-like)	C ₆ -β-Ala (plate-like)	<i>rac</i> -1 ₆
empirical formula	C ₁₁ H ₂₁ NO ₃	C ₁₁ H ₂₁ NO ₃	$C_{12}H_{20}FNO_3$
formula weight	215.29	215.29	283.29
temperature (K)	150	100	100
crystal size (mm)	$0.33 \times 0.08 \textbf{ \times } 0.03$	$0.17\times0.14 \textbf{ \times } 0.01$	$0.33\times0.05 \textbf{ x } 0.02$
crystal system	monoclinic	monoclinic	monoclinic
space group	P2 ₁ /c	P2 ₁	<i>P</i> 2 ₁ /n
a (Å)	26.831(6)	5.288(3)	14.394(2)
b (Å)	4.8360(10)	7.448(5)	13.015(2)
c (Å)	9.328(2)	30.857(19)	22.744(4)
α (°)	90	90	90
β (°)	98.963(3)	92.940(7)	94.508(2)
γ (°)	90	90	90
V (Å ³)	1195.5(4)	1213.7(13)	4247.7(12)
Ζ	4	4	12
<i>Dc</i> (g/cm ³)	1.196	1.178	1.329
μ (Mo _{Ka}) (mm ⁻¹)	0.086	0.085	0.119
$\theta_{\min/\max}$ (°)	1.537/24.996	1.322/27.474	1.619/24.998
$R1\left[F_{0}>2\sigma(F_{0})\right]$	0.0465	0.0791	0.0538
$wR2$ (all F_0^2)	0.1241	0.1206	0.1384
GOF	1.009	0.890	0.961
measured refins	5245	6722	19960
independent reflns	2084	4270	7450
observed refins	1618	1702	5455
refins used	2084	4270	7450
parameters	145	279	532
CCDC number	1865320	1865321	1865322

Table S1. Summary of crystallographic data.

<u>References</u>

1) Ishida, Y.; Iwahashi, N.; Nishizono, N.; Saigo, K. Tetrahedron Lett. 2009, 50, 1889.

2) Soloshonok, V. A.; Kukhar, V. P. Tetrahedron 1996, 52, 6953.

3) Sutherland, A.; Willis, C. L. J. Org. Chem. 1998, 63, 7764.

1H

7.459 7.453 7.446	7.331 7.331 7.331 7.331 7.331 7.316 7.316 7.316 7.306 7.306	6.300 5.198 4.854 4.638 4.638 4.614 4.595 4.4571 4.571 4.379		BRUKER
				EXPNO 16011204 PROCNO 1 Date_ 20160112 Time 12.03 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zg30 TD 65536 SOLVENT CDC13 NS 8 DS 2 SWH 6188.119 FIDRES 0.094423 AQ 5.2953587 DW 80.800 DE 6.50 DE 6.50 DI 1.0000000 Sec TE D1 1.0000000
				$\begin{array}{c} \begin{tabular}{c} \begin$
98	6 7 <u>3031</u>	4 25 1.025 1.025 1.000 1.000 1.000 1.000	3 2 1 <u> <u> </u> </u>	ppm Ph ^v O (S)-4

(S,S)-5

=0

1H

1H

 ACCEPTANCE - System: AV300 OrderNo.: JH033009 Customer: Saitama University Engineer: IKD P/N Console: Z108356/162 Shim system: BOSS I original dataset: 104275_0150snf 3 1 Probe: 5 mm PABBO BB-1H/D Z-GRD Z104275/0150 Sample depth:20 Gas: air Sensitivity test for 19F (additional test); Sample: 0,05% TFT in CDC13 (P/N: Z10234)

Sino= 243:1 (signal= -61 - -65 ppm noise= -59.08 - -60.08 ppm [1 ppm] noise range= 4.5 ppm) P1= 15usec PL1= -0.3dB

5

ö

Q

2

-76.0

ppm

-76.2 -76.4 -76.6 -76.8 -77.0

- ACCEPTANCE - System: AV300 OrderNo.: JH033009 Customer: Saitama University Engineer: IKD P/N Console: Z108356/162 Shim system: BOSS I original dataset: 104275_0150snf 3 1 Probe: 5 mm PABBO BB-1H/D Z-GRD Z104275/0150 Sample depth:20 Gas: air Sensitivity test for 19F (additional test); Sample: 0,05% TFT in CDC13 (P/N: Z10234)

Sino= 243:1 (signal= -61 - -65 ppm noise= -59.08 - -60.08 ppm [1 ppm] noise range= 4.5 ppm) P1= 15usec PL1= -0.3dB

$F_{3}C_{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,$	-45 -50	0 -55 -60	-65 -70	-75	-80 ppm	GB 0 PC 1.00
$F_{3}C_{,,,,-} (-) CH_{3}$ $O_{-} NH O$ $(CH_{2})_{9}CH_{3}$ $(S)-7_{9}$ $(S)-7_{9}$ $(S)-7_{9}$ $MME AlGme211:k Market AlGme211:k Market AlGme211:k Market AlGme211:k Market AlGme21:k Market $	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	WDW EM SSB 0 TLB 2.00 Hz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				F2 - Processing parameters SI 16384 SF 282.4046271 MHz
$ \begin{array}{c} F_{3}C_{1,1} \longrightarrow OCH_{3} \\ F_{3}C_{1,1} \longrightarrow OCH_{3} \\ O_{1} \longrightarrow NH O \\ (CH_{2})_{9}CH_{3} \\ (S)-7_{9} \end{array} \\ \begin{array}{c} F_{2} - \lambda cquisition Parameters \\ Date_{-} & 20161220 \\ Time \\ PROBHD 5 mm PABBO BB \\ PULPROG & zgfhigqn \\ TD & 32766 \\ SOLVENT & CDC13 \\ NS & 1 \\ DS & 1 \\ SWH & 12019.230 Hz \\ AQ & 1.3631988 sec \\ RG & 2013 \\ DW & 41.600 usec \\ DE & 6.50 usec \\ TE & 296.7 K \\ D1 & 10.0000000 sec \\ D11 & 0.0000000 sec \\ D11 & 0.0002000 sec \\ D12 & 0.0002000 sec \\ D11 & 0.0000000 sec \\ D11 & 0.00000000 sec \\ D11 & 0.00000000 sec \\ D11 & 0.00000000 sec \\ D11 &$						CHANNEL f2 f2 CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 PL2 0.58 PL12 16.50 PL2W 9.45079708 PL12W 0.24180678 SFO2 300.1300000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						CHANNEL fl 1 NUC1 19F P1 15.00 usec PL1 -0.30 dB PL1W 10.09325600 W SF01 282.3865635 MHz
			F ₃ C,,,,OC ONHO (CH ₂) ₉ CH ₃ (S)-7 ₉	H ₃ 9 ⁷ -		NAME Al6mc21lrk EXPNO 16122002 PROCNO 1 F2 - Acquisition Parameters Date_ Date_ 20161220 Time 10.12 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgfhigqn TD 32768 SOLVENT CDC13 NS 1 DS 0 SWH 12019.230 Hz FIDRES 0.366798 Hz AQ 1.3631988 sec RG 203 DW 41.600 usec DE 6.50 usec TE 296.7 K D1 0.0300000 sec D11 0.0300000 sec D12 0.00002000 sec TD0 1

ACCEPTANCE - System: AV300 OrderNo.: JH033009 Customer: Saitama University Engineer: IKD P/N Console: Z108356/162 Shim system: BOSS I original dataset: 104275_0150snf 3 1
 Probe: 5 mm PABBO BB-1H/D Z-GRD Z104275/0150 Sample depth:20 Gas: air
 Sensitivity test for 19F (additional test); Sample: 0,05% TFT in CDCl3 (P/N: Z10234)

Sino= 243:1 (signal= -61 - -65 ppm noise= -59.08 - -60.08 ppm [1 ppm] noise range= 4.5 ppm) P1= 15usec PL1= -0.3dB

655

76.

		$\boldsymbol{\times}$							
	->í		\geq		_	_			
	SKL						K		
		\checkmark		ι.	١				
					J)			
	NAME		A1	6m	C2	21	1rk		
	EXPNO			17	06	51	302		
	PROCNO						1		
	Date_			20	17	70	613		
	Time					11	.33		
	INSTRUM	5 mm	τı	<u>7</u> D	פ סמ	sp	PD		
	PROBED	5 mui	P	70	DC Fl	, . 	aan		
	TD				1	32	768		
	SOLVENT				Ċ	CD	C13		
	NS						1		
	DS						0		
	SWH		1	20	19		230	Hz	
•	FIDRES		.,	0 <u>;</u>	36	56	798	Hz	
	AQ		1	.3	63	51	988	sec	
	RG				41	1	600	11500	
	DE				4	6	.50	usec	
	TE				2	29́	6.0	ĸ	
	D1	1	Ο.	00	00	00	000	sec	
	D11		Ο.	03	0(00	000	sec	
	D12		Ο.	00	00)2	000	sec	
	000						- 1		
	100						1		
	100	CUAN	NF	 т	f1	1			
		CHAN	NE	L	f1	1	י 19ד		
	NUC1	CHAN	NE	L	f1	1	19F	usec	
	NUC1 P1 PL1	CHAN	NE	L	f1 1	1 15 -0	19F .00 .30	usec dB	
	NUC1 P1 PL1 PL1W	CHAN	NE 0.	L 09	f1 1 32	15-025	19F .00 .30 600	usec dB W	
	NUC1 P1 PL1 PL1W SF01	CHAN 1 2	NE 0. 82	L 09 .3	f1 32 86	15-025	19F .00 .30 600 635	usec dB W MHz	
	NUC1 P1 PL1 PL1W SF01	CHAN 1 2	NE 0. 82	L 09 .3	f1 32 86	15-025	19F .00 .30 600 635	usec dB W MHz	
	NUC1 P1 PL1 PL1W SF01	CHAN 1 2 CHAN	NE 0. 82 NE	L 09 .3 L	f1 32 f2	15-0255	19F .00 .30 600 635	usec dB W MHz	
	NUC1 P1 PL1 PL1W SF01 CPDPRG2 NUC2	CHAN 1 2 CHAN	NE 0. 82 NE	L 09 .3 L W	f1 32 f2 al	15-0255 2255	19F .00 .30 600 635 z16	usec dB W MHz	
	NUC1 P1 PL1 PL1W SF01 CPDPRG2 NUC2 PCPD2	CHAN 1 2 CHAN	NE 0. 82 NE	L 09 .3 L W	f1 3286 f2 al	15-0255 2255 21t	19F .00 .30 600 635 z16 1H 00	usec dB W MHz	
	NUC1 PL1 PL1 PL1W SF01 CPDPRG2 NUC2 PCPD2 PL2	CHAN 1 2 CHAN	NE 0. 82 NE	L 09 .3 L W	f1 328 f2 al	15-0255 2255 21t 300	19F .00 .30 600 635 z16 1H .00 .58	usec dB W MHz usec dB	
	NUC1 PL1 PL1W SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12	CHAN 1 2 CHAN	NE 0. 82 NE	L 09 .3 L W	f1 3286 f2 al	150255 21t 30016	19F .00 600 635 z16 .00 .58 .50	usec dB W MHz usec dB dB	
	NUC1 P1 PL1 PL1W SF01 CPDPRG2 NUC2 PCPD2 PL2 PL2W	CHAN 1 2 CHAN	NE 0. 82 NE 9.	L 09.3 L W	f1 328 f2 al 8 07	1 -0 255 2 1 3 0 16 7 9	19F .00 .30 635 z16 .00 .58 .50 708	usec dB W MHz usec dB dB W	
	NUC1 P1 PL1 PL1W SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL2W PL12W PL12W	CHAN 1 2 CHAN	NE 0. 82 NE 9.	L 09.3 L W 4524	f1 328 f2 al 86 18	15055 21t 3006790	19F .00 .30 600 635 z16 1H .00 .58 .50 708 678	usec dB W MHz usec dB dB W W	
	NUC1 P1 PL1 PL1W SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL2W PL12W SF02	CHAN 1 2 CHAN 3	NE 0. 82 NE 9. 0.	L 09.3 L ¥ 45 24.	f1 38 f2 a1 8 10 8 30	15-255 21t 30069300	19F .00 .30 600 635 216 1H .00 .58 .50 708 678 000	usec dB W MHz usec dB dB W W W MHz	
	NUC1 P1 PL1 PL1 VC2 PCPD2 PL2 PL12 PL12 PL12 VC2 PC2 VC2 PC2 VC2 VC2 VC2 VC2 VC2 VC2 VC2 VC2 VC2 V	CHAN 1 2 CHAN 3	NE 0.2 NE 9.00	L 09.3 L W 4524 .1	f1 326 f2 10 10 10 10 10 10 10 10 10 10 10 10 10	1 5025 2t 3069306	19F .00 .30 600 635 216 1H .00 .58 .50 708 678 000 384	usec dB W MHz usec dB dB W W W MHz	
	NUC1 P1 PL1 PL1W SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12 PL12W SF02 SI SF0 SI SF	CHAN 1 2 CHAN 3 2	NE 0. 82 NE 9. 00 82	L 09.3 L W 4524 .1	f1 328 f2 al 8 10 18 30 04	1 5025 2 t 30690066	19F .00 600 635 216 1H .00 558 708 678 000 384 228	usec dB WMHz usec dB dB W W MHz MHz	
	ID0 P10 P11 PL1W SF01 CPDPRG2 NUC2 PCPD2 PL12 PL2W PL12W SF02 SI SF WDW	CHAN 1 2 CHAN 3 2	NE 82 NE 9. 00 82	L 09.3 L W 4524.1	f 1 38 f21 8 1018 018 018 04	1 5055 2t 30690066	19F .00 .30 635 z16 1H .00 .58 678 000 384 286 678 000 384	usec dB WMHz usec dB dB WW MHz MHz	
	NUC1 P1 PL1 PL1 SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12 PL12 SF02 SI SF WDW SSB	CHAN 1 2 CHAN 3 2	NE 0. 82 NE 9. 00 82	L 09.3 L W 4524.1	f1 328 f2 al 8 10 18 30 10 4	1 5055 2t 306900166 2	19F .00 .600 635 z16 1H .00 .58 678 000 384 286 678 000 384 286 000 000	usec dB W MHz usec dB dB W W MHz MHz	
	NUC1 P1 PL1 PL1 SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL2W PL12W SF02 SI SF WDW SSB LB GB	CHAN 1 2 CHAN 3 2	NE 0. 82 NE 9. 00 82	L 09.3 L ¥ 45 24 .1	f1 326 f2 36 f2 10 18 01 8 01 8 01 8 04	1 5055 2t 30690066 2	19F.00 .30 600 635 216 1H .58 50 708 678 000 384 286 EM 00 00 00 00	usec dB W MHz usec dB dB W W MHz MHz Hz	
	NUC1 P1 PL1 PL1 SF01 CPDPRG2 NUC2 PCPD2 PL12 PL12 PL12 PL12W SF02 SI SF WDW SSB LB GB PC	CHAN 1 2 CHAN 3 2	NE 0.2 82 NE 9.0 00 82	L 09.3 L W 454 .1	f1 328 f2 a 10 18 30 4	1 5025 2t 300690166 2 1	19F.00 .30 600 635 216 1H .58 50 708 678 000 384 286 EM 0 .00 0 .00	usec dB W MHz usec dB dB W W MHz MHz Hz	
	NUC1 P1 PL1 PL1W SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12W SF02 SI SF5 WDW SSB LB GB PC	CHAN 1 2 CHAN 3 2	NE 0.82 NE 9.00 82	L 09.3 L W 4524 .1	f1 326 f2 al 8 107 30 18 07	1 5055 2t 30690066 2 1	19F .00 .30 600 635 216 1H .00 .58 .50 7078 0000 384 286 000 384 286 0.00 000 .00	usec dB MHz usec dB dB dB W W MHz MHz Hz	

2

ppm

-66 -68 -70 -72 -74 -76 -78 -80

Т

-64

1H

.

(S)-1₆

					•		
. 1	LH	• • • • • •	6.287 6.268	5.117 5.117 5.107 5.098 5.073	2.236 2.252 2.790 2.716 2.716 2.790 2.684 2.684 2.552 2.252	2.175 1.637 1.637 1.607 1.607 1.208 0.22 1.283 0.890 0.890	NAME A16mc211rk
							EXPNO 17091203 PROCNO 1 Date_ 20170912 Time 18.05 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zg30 TD 65536 SOLVENT CDC13 NS 8 DS 2 SWH 10330.578 FIDRES 0.157632 AQ 3.1719923 DW 48.400 DE 6.50 USE 0.157
							Ib 1.00000000 sec TD0 1 ====== CHANNEL fl ====== NUC1 1H P1 11.80 usec PL1 2.40 dB PL1W 15.17711735 W SFO1 500.0330885 MHz SI 32768 SF 500.0300108 MHz
							$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	9	8	7 6		4 3 2 1401- 1401- 1200- 120- 12	1 3 1 3 1 1 1 1 1 1 1 1 1 1	ppm (CH ₂) ₇ CH ₃ ppm (S)-1 ₇

(S)-1₈

1H CPQNP

8

7

6

5

1.00

4

-5.066 -5.053 -5.047 -5.035 -5.029

ÉR BRU K

<u>15.57</u> 3.26	(CH ₂) ₉ CH ₃ (S)-1 ₉
•••••• 1 	ppm O NH O
JUI	F ₃ C _{//,} OH
	LB 0.30 Hz GB 0 PC 1.00
	SI 32768 SF 400.1300025 MHz WDW EM SSB 0
	F2 - Processing parameters
	NUC1 1H P1 15.00 usec PLW1 5.19999981 W SF01 400.1324708 MHz
	TD0 1
	DE 10.00 usec TE 300.0 K D1 1.00000000 sec
	RG 7.21 DW 60.200 usec
	SWH 8305.647 Hz FIDRES 0.126734 Hz AQ 3.9453173 sec
	NS 4 DS 2
	PROBHD 5 mm CPQNP 1H/ PULPROG zg30 TD 65536
	Date 20170914 Time 21.01 INSTRUM spect
	PROCNO 12 PROCNO 1
	Current Data Parameters NAME kodama

2

2.11

2.17 15.57

11

1.04

	Sind	b= 243:1	(signal=	= -616	55 ppm 1	noise= -5 P1= 15usec	9.0860 PL1= -0.	.08 ppm [1 3dB	ppm] r	noise range	= 4.5 pp	m)	$\langle \rangle$	$\overline{\mathbf{i}}$
			•		•		F ₃ C/,	ОН	620)])		NAÌ EXI PRO	ME PNO DCNO	A16mc211rk 17091305 1
							0、 _NI	l ∬ H O	- ⁷ - ⁷			Da ^t Tir IN	te ne STRUM	20170913 13.48 spect
			•				(CH ₂) ₉ CH ₃				PRO PUI TD SOI	DBHD 5 LPROG LVENT	mm PABBO BB- zgfhigqn 32768 CDC13
			•				(S)-1。				NS DS		1 0
								,				SWI FII AQ	DRES	12019.230 Hz 0.366798 Hz 1.3631988 se
	. · ·	· · · ·	,		•							RG DW DE TE		203 41.600 us 6.50 us 297.0 K
						•				•		D1 D1 D1 TD	1 2 0	10.00000000 se 0.03000000 se 0.00002000 se 1
										•		m == 1	===== C	CHANNEL fl ======
				•			•					P1 PL PL SF	1 1 1 W 0 1	19F 15.00 us -0.30 dB 10.09325600 W 282.3865635 MF
												CP	C	CHANNEL f2 ====== waltz16
												NU PC PL PL PL	22 PD2 2 12 2W	1H 80.00 us 0.58 dB 16.50 dE 9.45079708 W
,			,									PL SF SI SF	12W 02	0.24180678 W 300.1300000 MH 16384 282.4046264 ME
		ւ յանում նվերությո	ليفرادون والمعالة	الفياء فيسألسه عاد		مناعق معناق الم	هد دراند. بعد اله		where a	. is had sent and a date	L	WD SS JUUUUU TR	B	EM 0 2.00 Hz
	WARK			h harden han der hande harden h	de du ndere	and Alburth Reichlander	un Peruna dalaman dalampan da	an har a far a		Andrew and a standard and the stand	AND AND AND AND AND A	PC		0

	ACCEPTANCE - Sy P/N Console Probe	vstem: AV300 Ord e: Z108356/162 S : 5 mm PABBO BB-1	derNo.: JH03300 Shim system: BC H/D Z-GRD Z104	09 Customer: Sai DSS I original da 275/0150 Sample	tama University taset: 104275_0 depth:20 Gas:	Engineer: I 150snf 3 1 air		\sim
Si	sensitivity no= 243:1 (si	test for 19F (ad gnal= -6165 p	pm noise= -5 P1= 15usec	; Sample: 0,05% 1 9.0860.08 ppm PL1= -0.3dB	[1 ppm] noise	range= 4.5 ppr	NAME EXPNO	A16mc211rk 17091302
				$F_3C_{/,}$ OF ONH O	76.6		PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS	1 20170913 12.40 spect 5 mm PABBO BB- zgfhiggn 32768 CDC13 1
				(S)-1 ₁₀			DS SWH FIDRES AQ RG DW DE TE D1 D1.1 D1.2 TD0	0 12019.230 Hz 0.366798 Hz 1.3631988 sec 203 41.600 usec 6.50 usec 297.0 K 10.00000000 sec 0.0300000 sec 0.00002000 sec 1
							NUC1 P1 PL1 PL1W SF01	CHANNEL f1 19F 15.00 usec -0.30 dB 10.09325600 W 282.3865635 MHz
							CPDPRG2 NUC2 PCPD2 PL12 PL22 PL12 PL2W SFO2 SI	CHANNEL f2 ======= waltz16 1H 80.00 usec 0.58 dB 16.50 dB 9.45079708 W 0.24180678 W 300.1300000 MHz 16384
ł		k History History Handler and Handre Hand			un and the state of the state o	alay and a second to be a second a second	SF WDW SSB LB GB PC	282.4046264 MHz EM 0 2.00 Hz 0 1.00
	-55	-60	-65	-70	-75	-80	ppm	

 ACCEPTANCE - System: AV300 OrderNo.: JH033009 Customer: Saitama University Engineer: IKD P/N Console: Z108356/162 Shim system: BOSS I original dataset: 104275_0150snf 3 1 Probe: 5 mm PABBO BB-1H/D Z-GRD Z104275/0150 Sample depth:20 Gas: air Sensitivity test for 19F (additional test); Sample: 0,05% TFT in CDC13 (P/N: Z10234)

Sino= 243:1 (signal= -61 - -65 ppm noise= -59.08 ~ -60.08 ppm [1 ppm] noise range= 4.5 ppm) P1= 15usec PL1= -0.3dB

rac-9

KD.				
				• :
	2 þí		źp	
m)	PR			
	Co			
	NAME EXPNO PROCNO Date_ Time INSTRUM	A12 1	TA020rk 6033002 1 0160330 10.31 spect	
	PROBAD PULPROG TD SOLVENT NS DS	5 mm PA. Z	gfhigan 32768 CDC13 1 0	
1 - 4. X	SWH FIDRES AQ RG DW DE	12 0 1.	019.230 .366798 3631988 203 41.600 6.50	Hz Hz sec usec usec
	D1 D11 D12 TD0	10.00 0.00 0.00	290.7 0000000 3000000 0002000 1	sec sec sec
	NUC1 P1 PL1 PL1W SFO1	10.09 282.1	19F 15.00 -0.30 9325600 3865635	usec dB W MHz
	CPDPRG2 NUC2 PCPD2 PL12 PL12 PL12W SF02 SI SF0 WDW SSB LB GB PC	9.4 9.4 0.2 300. 282.4	f2 ==== waltz16 1H 80.00 0.58 16.50 5079708 4180678 1300000 16384 4046286 EM 0 2.00 0 1.00	usec dB dB W W MHz MHz Hz
ppm				

71

-74

-76

-78

-80

-82

-62

-64

-68

-66

-70

-72

- ACCEPTANCE - System: AV300 OrderNo.: JH033009 Customer: Saitama University Engineer: IKD P/N Console: Z108356/162 Shim system: BOSS I original dataset: 104275_0150snf 3 1 Probe: 5 mm PABBO BB-1H/D Z-GRD Z104275/0150 Sample depth:20 Gas: air Sensitivity test for 19F (additional test); Sample: 0,05% TFT in CDC13 (P/N: Z10234)

Sino= 243:1 (signal= -61 - -65 ppm noise= -59.08 - -60.08 ppm [1 ppm] noise range= 4.5 ppm) P1= 15usec PL1= -0.3dB

rac-10

		\frown			/						
	3ŘĹ	JK	Š.		Í			R			
		\times									
	NAME EXPNO PROCNO		A:	16	mc 6 (22)5	11	Lr 00	k 5 1		
	Date_ Time			2	01	16 1	05 3.	51 .2	02		
	INSTRUM PROBHD PULPROG	5 mm	۱ I	PA z	BI af	s 30 Eh	pe I ic	BB	t - n		
	TD SOLVENT	۰.		-	5-	3 C	2 D	76	8		
	NS DS SWH			12	01	19	. 2	23	1 0 0	Hz	
	FIDRES			0	36	86 53	67	79	8	Hz sec	:
	DW DE				4	1	. e	20 50 . 5	3 0 0	use use	ec ec
	TE D1 D11	. 1	0	.0	00	2	96	5.	3	K sec	2
	D12 TD0		õ	.0	00	00	20	00	0 1	sec	
	NUC1	CHAN	IN]	EL	f	1	-	==	== F		
	P1 PL1 PL1W	1	n	Ő	9:	1-22	5 0 5	0	0	use dB W	C
	SFO1	2	82	2.	38	36	56	53	5	MHz	5
	CPDPRG2 NUC2	CHAN	1111	510	wa	1	t2	z1 1	== 6 H		
	PCPD2 PL2 PL12					8	0. 0. 6.	.0.5	0 8 0	use dB dB	c
	PL2W PL12W	2	9	.4	50 41	07	97	70	8	W W	
	SI SF	2	8:	2.	40	1)4	63	88 27	4 9	MH2	5
	WDW SSB LB						2	E	M 0 0	Hz	
dir ci staa	GB PC						1.	. 0	0		

-60

-65

-50

-45

-55

74

-75

-80

ppm

-70

- ACCEPTANCE - System: AV300 OrderNo.: JH033009 Customer: Saitama University Engineer: IKD P/N Console: Z108356/162 Shim system: BOSS I original dataset: 104275_0150snf 3 1 Probe: 5 mm PABBO BB-1H/D Z-GRD Z104275/0150 Sample depth:20 Gas: air Sensitivity test for 19F (additional test); Sample: 0,05% TFT in CDC13 (P/N: Z10234) ER - 25 Sino= 243:1 (signal= -61 - -65 ppm noise= -59.08 - -60.08 ppm [1 ppm] noise range= 4.5 ppm) P1= 15usec PL1= -0.3dB S 94 NAME A16mc211rk EXPNO 16051005 6. PROCNO 5 20160510 Date_ .OH F₃C Time 13.22 INSTRUM spect PROBHD 5 mm PABBO BB-NH 0 PULPROG 0. zgfhigqn TD32768 SOLVENT CDC13 NS $(CH_2)_6CH_3$ DS SWH 12019.230 Hz FIDRES 0.366798 Hz rac-1₆ AQ 1.3631988 sec RG 203 DW 41.600 usec DE 6.50 usec TE 296.3 K D1 10.00000000 sec D11 0.03000000 sec D12 0.00002000 sec TD0====== CHANNEL f1 ======= 19F NUC1 Р1 15.00 usec PL1 -0.30 dB 10.09325600 W PL1W SFO1 282.3865635 MHz ======= CHANNEL f2 ======== waltz16 CPDPRG2 NUC2 PCPD2 80.00 ·usec PL2 0.58 dB PL12 16.50 dB PL2W 9.45079708 W PL12W 0.24180678 W SFO2 300.1300000 MHz SI 16384 SF 282.4046279 MHz WDW ΕM SSB LB 2.00 Hz GB PC 1.00 T -45 -55 -60 -65 -70 -75 -80 -50 ppm

1

1

0

1

1 H

0

0

