Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Enantioselective Cu-Catalyzed 1,4-Additions of Organozinc and Grignard Reagents to Enones: Exceptional Performance of the Hydrido-Phosphite-Ligand BIFOP-H

Eric Brüllingen, Jörg-Martin Neudörfl and Bernd Goldfuss*

University of Cologne

New Journal of Chemistry

Table of Contents

Experimental (general methods)	р. З
X-ray crystal structure (data)	p. 4
HPLC-chromatogram s	p. 6
GC-chromatograms	p. 8
Computational structures (geometries, TS, energies, imaginary frequencies)	p. 11
Additional Computed reaction pathways of the MeCu-catalyzed 1,4-addition	p. 176
Literature	p. 179

Experimental

General procedure for the synthesis of (*R*)-3-ethyl-1,3-diphenylpropan-1-one, (*R*)-1,3diphenylpentan-1-one (15a) or (*R*)-3-methyl-1,3-diphenylpropan-1-one, (*R*)-1,3diphenylbutan-1-one (15b)

CuCl (0.01 mmol, 1.0 mg, 1 mol%) and L (0.02 mmol, s.b., 2 mol%) are dissolved in dry and absolute Et_2O (3.0 mL) and the mixture is stirred at room temperature for 10 min. The mixture is cooled to -78°C and subsequently 1.5 eq. of the corresponding Grignard reagent (EtMgBr or MeMgBr) in solvent are added dropwise. The reaction mixture is stirred at -78°C for another 10 min. Then the chalcone (1.0 mmol, 208 mg, 1.0 eq.) is added portionwise over 1 h. The reaction mixture is stirred for 6 h(full conversionis determined) and quenched with saturated aqueous NH₄Cl solution (3 mL). The mixture is separated and the water layer is extracted with DCM (2×5 mL). The combined organic layers are dried over Na₂SO₄, filtered and the solvent is evaporated under *vacuo*. Purification by flash chromatography over silica gel, using $Et_2O:n$ -hexane1:20 (R_f = 0.1) afforded the desired product.

 $L = PPh_3$, 5.3 mg, racemic product is formed.

L = BIFOP-H, 9.8 mg, enantioselective (*R*)-product is formed.

General procedure for the synthesis of (R)-3-ethylcyclohexanone (16a)

CuCl (0.01 mmol, 1.0 mg, 1 mol%) and L (0.02 mmol, s.b., 2 mol%) are dissolved in dry and absolute Et_2O (3.0 mL) and the mixture is stirred at room temperature for 10 min. The mixture is cooled to -78°C and subsequently 1.5 eq. of the Grignard reagent (EtMgBr) in solvent is added dropwise. The reaction mixture is stirred at -78°C for another 10 min. Then the cyclohexenone (1.0 mmol, 0.1 mL, 1.0 eq.) is added dropwise over 1 h. The reaction mixture is stirred for 6 h (full conversion is determined) and quenched with saturated aqueous NH₄Cl solution (3 mL). The mixture is separated and the water layer is extracted with DCM (2x5 mL). The combined organic layers are dried over Na₂SO₄, filtered and the solvent is evaporated under *vacuo*. Purification by flash chromatography over silica gel, using EtOAc:*n*-hexane 1:2(R_f = 0.35) afforded the desired product (with MeMgBr no product is observed).

 $L = PPh_3$, 5.3 mg, racemic product is formed.

L = BIFOP-H, 9.8 mg, enantioselective (*R*)-product is formed.

General procedure for the synthesis of 2-ethylchroman-4-one (17a) or 2-methylchroman-4-one (17b)

CuCl (0.01 mmol, 1.0 mg, 1 mol%) and **L** (0.02 mmol, s.b., 2 mol%) are dissolved in dry and absolute Et_2O (3.0 mL) and the mixture is stirred at room temperature for 10 min. The mixture is cooled to -78°C and subsequently 1.5 eq. of the corresponding Grignard reagent (EtMgBr or MeMgBr) in solvent are added dropwise. The reaction mixture is stirred at -78°C for another 10 min. Then the chromone (1.0 mmol, 146 mg, 1.0 eq.) is added portionwise over 1 h. The reaction mixture is stirred for 6 h (full conversion is determined) and quenched with saturated aqueous NH₄Cl solution (3 mL). The mixture is separated and the water layer is extracted with DCM (2x5 mL). The combined organic layers are dried over Na₂SO₄, filtered and the solvent is evaporated under *vacuo*. Purification by flash chromatography over silica gel, using $Et_2O:n$ -hexane 1:10 (R_f = 0.25) afforded the desired product.

 $L = PPh_3$, 5.3 mg, or BIFOP-H, 9.8 mg, racemic product is formed.

X-ray crystal structure

Figure 1: Full X-ray crystal structure (CCDC 1862862) of BIFOP-H • CuCl building up dimers in decalin. The hydrogen atoms at the phosphorus moiety are located from difference in electron maps and refined freely by the crystallographer. The C-H-hydrogens are omitted for clarity. The ellipsoids are shown with 50% probability. Two dimer structures are shown together with four (highly disordered) decalin molecules.

Table 1.	Crystal	data and	structure	refinement for	eb214_	_neu3_	_sq (Figure	1).
----------	---------	----------	-----------	----------------	--------	--------	-------------	-----

Identification code	eb214_neu3_sq		
Empirical formula	C84 H118 Cl2 Cu2 O4 P2		
Moiety formula	C64 H82 Cl2 Cu2 O4 P2, C10 H18 [+ C10 H18		
Formula weight	1451.70		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P21		
Unit cell dimensions	a = 15.1193(16) Å a= 90°.		

	b = 31.626(4) Å	b= 90.221(5)°.
	c = 15.4815(17) Å	g = 90°.
Volume	7402.6(15) Å ³	
Z	4	
Density (calculated)	1.303 Mg/m ³	
Absorption coefficient	2.163 mm ⁻¹	
F(000)	3104	
Crystal size	0.200 x 0.200 x 0.020 mm	_n 3
Theta range for data collection	2.854 to 75.926°.	
Index ranges	-18<=h<=14, -38<=k<=38	8, -19<=l<=18
Reflections collected	80865	
Independent reflections	27388 [R(int) = 0.0564]	
Completeness to theta = 67.679°	96.3 %	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.3239 and 0.1972	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	27388 / 1 / 1553	
Goodness-of-fit on F ²	1.048	
Final R indices [I>2sigma(I)]	R1 = 0.0698, wR2 = 0.17	81
R indices (all data)	R1 = 0.0867, wR2 = 0.18	78
Absolute structure parameter	0.095(5)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.662 and -0.412 e.Å ⁻³	

HPLC-spectra

(R)-1,3-diphenylpentan-1-one ((R)-15a) after Enantioselective Cu-Catalyzed 1,4-Addition

(R)-1,3-diphenylbutan-1-one ((R)-15b) after Enantioselective Cu-Catalyzed 1,4-Addition

rac-Standardof 1,3-diphenylbutan-1-one (15b)

100,00

7918724

111680623

100,00

GC-spectra

rac-Standard of 3-ethylcyclohexan-1-one (16a)

(R)-3-ethylcyclohexan-1-one ((R)-16a)

GC7890 9/29/2016 9:39:52 AM SYSTEM

Page 1 of 1

rac-Standard of 3-methylcyclohexan-1-one (16b), 1-methylcyclohexen-1-ol is also present

GC7890 9/28/2016 2:27:32 PM SYSTEM

Page 1 of 1

Computational structures

Table 2. Computed transition structures of the reductive elimination (TS-B) of the chalcone 1•MeCu • BIFOP-H^[a].

TS- B pro(R/S) ^[b]	Imag. freq. [cm ⁻¹]	Hartree	ΔG [kcal/mol]
TS-1 (<i>R</i>)	-377.22	-4070.170920	0.0
TS-1.1 (<i>R</i>)	-376.75	-4070.170295	0.4
TS-1.2 (<i>R</i>)	-365.02	-4070.168599	1.5
TS-1.3 (<i>R</i>)	-361.41	-4070.166708	2.6
TS-2 (<i>S</i>)	-368.08	-4070.165928	3.1
TS-2.1 (<i>R</i>)	-390.64	-4070.164430	4.1
TS-2.2 (<i>R</i>)	-388.90	-4070164400	4.1
TS- 3 (<i>R</i>)	-398.95	-4070.162638	4.9
TS-3.1 (<i>R</i>)	-384.51	-4070.162732	5.1
TS- 4 (<i>S</i>)	-378.86	-4070.162638	5.2
TS-4.1 (<i>S</i>)	-399.72	-4070.161513	5.9
TS- 5 (<i>R</i>)	-402.55	-4070.161423	6.0
TS- 6 (<i>R</i>)	-382.66	-4070.161142	6.1
TS- 7 (<i>S</i>)	-370.94	-4070.160540	6.6
TS-7.1 (<i>R</i>)	-402.44	-4070.158427	7.8
TS-7.2 (<i>R</i>)	-465.11	-4070.152474	11.6
TS- 8 (<i>S</i>)	-405.75	-4070.152390	11.6
TS-8.1 (<i>S</i>)	-393.41	-4070.152372	11.6
TS-8.2 (<i>R</i>)	-404.21	-4070.150382	12.9
TS-8.3 (<i>R</i>)	-436.41	-4070.149969	13.1
TS-8.4 (<i>S</i>)	-420.86	-4070.148164	14.3

[a] M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, solvent = diethylether, T = 293.15 K, p = 1 bar, ZPE scaled by 0.9754 for M06-2X/def2-TZVP and 0.9912 for B3LYP/def2-SVP [1].

Important: The optimized structures are computed in gas phase while the single points are computed in diethylether (scrf=diethylether).

All computations are performed with GAUSSIAN 16 Revision A.03 [1a]. The transitions states are computed by using the B3LYP functional [1b-e] with the def2-SVP basis set [1f]. The energies are refined by using either the M06-2X functional [1g] with the def2-TZVP basis set [1f] or TPSS functional [1h] with def2-TZVP basis set [1f]. Grimme's dispersion (D3) with Becke-Johnson damping (BJ) [1i] is added, too. The ZPE scale factor is for B3LYP/def2-SVP 0.9912, M06-2X/def2-TZVP 0.9871 and TPSS/def2-TZVP 1.0194 [1j]. Everything is implemented in the program package of GAUSSIAN 16.

Optimized separated structure of the hydrido phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2483.313947

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2483.847339 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.331000 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.281236

0	-2.9768	0.03724	-0.84225
0	2.57.00	0.00124	0.04220

- O -1.39335 -1.87388 0.04519
- P -1.40065 -0.4163 -0.72751
- Cu -0.03559 1.08204 0.23715

C	1.11382	2.33935	1.16408
н	0.55417	3.02444	1.82585
н	1.85119	1.81182	1.79795
н	1.67965	2.97165	0.45451
С	2.04099	-1.35992	0.29229
н	1.19847	-2.05206	0.20635
С	2.81393	-1.33682	1.3854
н	3.65062	-0.64154	1.48978
н	2.62178	-2.00427	2.22964
С	3.39592	0.44607	-0.97581
н	3.30795	1.21036	-0.18788
н	4.34292	-0.09455	-0.82394
н	3.399	0.93951 -	1.95547
С	2.21271	-0.48854	-0.90162
с 0	2.21271 1.38551	-0.48854 -0.54735	-0.90162 -1.80109
с о с	2.21271 1.38551 -1.40815	-0.48854 -0.54735 -1.89535	-0.90162 -1.80109 1.46724
с 0 С Н	2.21271 1.38551 -1.40815 -0.93879	-0.48854 -0.54735 -1.89535 -2.83334	-0.90162 -1.80109 1.46724 1.79658
с О С Н	2.21271 1.38551 -1.40815 -0.93879 -0.84553	-0.48854 -0.54735 -1.89535 -2.83334 -1.04317	-0.90162 -1.80109 1.46724 1.79658 1.89009
с О С Н Н	2.21271 1.38551 -1.40815 -0.93879 -0.84553 -2.44355	-0.48854 -0.54735 -1.89535 -2.83334 -1.04317 -1.86458	-0.90162 -1.80109 1.46724 1.79658 1.89009 1.84646
С О С Н Н С	2.21271 1.38551 -1.40815 -0.93879 -0.84553 -2.44355 -3.52693	-0.48854 -0.54735 -1.89535 -2.83334 -1.04317 -1.86458 0.94318	-0.90162 -1.80109 1.46724 1.79658 1.89009 1.84646 0.10631
С О С Н Н С	2.21271 1.38551 -1.40815 -0.93879 -0.84553 -2.44355 -3.52693 -4.24009	-0.48854 -0.54735 -1.89535 -2.83334 -1.04317 -1.86458 0.94318 1.59722	-0.90162 -1.80109 1.46724 1.79658 1.89009 1.84646 0.10631 -0.41588
С О С Н Н С Н	2.21271 1.38551 -1.40815 -0.93879 -0.84553 -2.44355 -3.52693 -4.24009 -4.06202	-0.48854 -0.54735 -1.89535 -2.83334 -1.04317 -1.86458 0.94318 1.59722 0.39462	-0.90162 -1.80109 1.46724 1.79658 1.89009 1.84646 0.10631 -0.41588 0.89958
С О С Н Н Н Н	2.21271 1.38551 -1.40815 -0.93879 -0.84553 -2.44355 -3.52693 -4.24009 -4.06202 -2.74009	-0.48854 -0.54735 -1.89535 -2.83334 -1.04317 -1.86458 0.94318 1.59722 0.39462 1.56596	-0.90162 -1.80109 1.46724 1.79658 1.89009 1.84646 0.10631 -0.41588 0.89958 0.56987

Optimized oxidative addition transition structure of the hydrido phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -27.55 cm⁻¹ Energy: -2483.313194 Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2483.847266 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.330196 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.280794

0 1

0	1.74144 -1.7219 0.343
Р	1.29412 -0.48536 -0.62861
Cu	-0.03565 1.0496 0.3319
С	-0.96564 2.46149 1.29564
Н	-0.32126 2.93746 2.05663
Н	-1.29427 3.2633 0.60788
Н	-1.87012 2.11042 1.82862
С	-2.16154 -0.24044 -1.4626
Н	-1.62849 -0.58928 -2.35255
С	-2.09651 -1.17971 -0.3108
0	-1.30275 -2.10849 -0.34533
С	-2.74058 0.9676 -1.43256
н	-3.24385 1.34893 -0.54151

Н	-2.69983	1.63637	-2.29616
С	-2.97366	-0.93191	0.89347
н	-2.60472	-0.0346	1.41766
н	-4.01941	-0.74649	0.60655
н	-2.91254	-1.79459	1.56856
0	2.71687	0.14628	-1.14504
С	3.42233	1.02314	-0.27372
н	4.10721	1.62437	-0.88742
н	2.7292	1.6963	0.26348
н	4.0078	0.45047	0.4647
С	1.17961	-1.87501	1.64455
н	1.92514	-2.39083	2.26617
н	0.94325	-0.8964	2.09902
н	0.25868	-2.47356	1.58774
н	1.01676	-1.17818	-1.83018

Optimized cuprate structure of the hydrido phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2483.322770

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2483.844563

Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.348023 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.286904

0	-1.44617 0.83294 0.94444
0	-2.39688 -1.26266 -0.32241
Р	-1.15764 -0.20112 -0.29508
н	-1.51285 0.64644 -1.39781
Cu	0.94704 -1.05119 -0.0328
С	1.18106 -2.73673 0.95047
Н	0.56293 -3.51455 0.4695
н	2.22222 -3.09259 0.99719
Н	0.81201 -2.60477 1.98269
С	1.95854 0.5675 -1.01245
н	1.73608 0.49645 -2.08229
С	1.37627 1.75883 -0.36666
0	0.6054 2.48717 -0.98553
С	2.8248 -0.34946 -0.41274
Н	3.25089 -0.17206 0.57748
Н	3.34649 -1.09164 -1.02125
С	1.69169 2.02227 1.09407
Н	2.76965 1.95865 1.30403
Н	1.3175 3.01741 1.3655
Н	1.18142 1.27099 1.72055
С	-2.08359 2.10234 0.78361
Н	-1.4344 2.77848 0.20731
Н	-3.05962 2.00286 0.27934
Н	-2.24573 2.51006 1.79119
С	-3.75025 -0.84908 -0.44688

- H -3.87521 -0.13449 -1.28133
- H -4.35491 -1.74405 -0.64837
- H -4.10607 -0.37954 0.48504

Optimized reductive elimination transition structure of the hydrido phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -417.83 cm⁻¹

Energy: -2483.287612

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2483.823009 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.315083 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.254244

0	-2.21336	0.50099	-1.2434
0	-1.98689	-0.58819	1.12991
Р	-1.51363	-0.73144	-0.43257
Cu	0.6692	-0.76771	-0.41189
С	1.95054	-2.40807	0.12531
н	1.29479	-2.6675	0.97283
н	1.6138	-2.93226	-0.78714
Н	2.95981	-2.76097	0.35689

С	2.09974	0.703 -	0.43585
н	2.27966	1.03555	-1.46347
С	1.48055	1.69622	0.41828
0	1.07428	2.78069	-0.00939
С	2.75012	-0.5265	0.01135
н	3.05737	-0.56469	1.06101
н	3.542 -	0.87806 -	0.65567
С	1.25967	1.35864	1.8974
н	2.10248	0.82082	2.35819
н	1.08114	2.29612	2.44071
н	0.36106	0.72497	2.00707
С	-1.55189	1.78062	-1.27558
н	-0.51036	1.68717	-1.61421
н	-2.12223	2.40903	-1.97141
н	-1.53595	2.24624	-0.2799
С	-3.36248	-0.4173	1.46278
н	-3.95906	-1.28174	1.12058
н	-3.42657	-0.34382	2.55649
н	-3.76952	0.49874	1.00703
н	-2.42056	-1.72195	-0.91454

Optimized product structure of the hydrido phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2483.339758

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2483.885040 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.361946 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.313376

0	-2.246 0.78723 1.21591
0	-2.76591 -1.06218 -0.61365
Р	-1.80207 0.19916 -0.23892
Н	-2.38063 1.20373 -1.08907
Cu	0.35782 -0.26683 -0.3587
С	2.35333 -1.5423 1.81541
Н	2.45651 -0.56598 2.31343
н	1.27535 -1.78197 1.78978
Н	2.85107 -2.29248 2.45315
С	2.29999 -0.53442 -0.5857
н	2.33507 -0.90842 -1.62311
С	2.93272 -1.52793 0.39724
н	2.8099 -2.53882 -0.02693

С	2.75882	0.87392	-0.62652
0	2.61674	1.58841	-1.61455
н	4.0286	-1.37616	0.46329
С	3.39778	1.4702	0.62902
Н	4.25105	0.86682	0.97802
н	3.73253	2.49101	0.40272
н	2.66856	1.50265	1.45438
С	-3.46821	1.46673	1.47281
н	-3.79085	2.05881	0.59749
н	-4.26469	0.75317	1.73934
н	-3.3023	2.14633	2.32029
С	-4.15541	-0.95553	-0.89529
н	-4.74866	-1.0068	0.0321
н	-4.38771	-0.01215	-1.42166
н	-4.43232	-1.80067	-1.54076

Optimized separated structure of the fluoro phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2582.516139

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.847339

Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.671423

0	-2.92716	0.02472	0.08224
0	-1.30583	-1.85271	0.16877
Р	-1.40998	-0.33293	-0.39155
Cu	0.13294	1.1371	0.24862
С	1.3286	2.4067	1.09559
Н	0.79723	3.14055	1.72692
Н	2.0585	1.89114	1.74734
н	1.90265	2.98192	0.34555
С	2.14877	-1.37753	0.33202
н	1.26957	-2.02678	0.29157
С	2.99846	-1.41644	1.36612
н	3.87383	-0.76429	1.42214
Н	2.83751	-2.09563	2.2076
С	3.49895	0.38494	-1.00307
Н	3.52451	1.13228	-0.1946
Н	4.4207	-0.21419	-0.94491
н	3.44867	0.90476	-1.96763
С	2.27123	-0.47993	-0.84867
0	1.36393	-0.45701	-1.6691
С	-1.35099	-2.07689	1.57716
н	-1.1153	-3.13654	1.74056
Н	-0.60844	-1.45486	2.1067
Н	-2.35501	-1.85729	1.97168
С	-3.35182	1.38358	0.18759
Н	-3.82539	1.70863	-0.75205
Н	-4.08559	1.44256	1.00294

H -2.50212 2.05089 0.41636

F -1.62819 -0.70576 -1.92807

Optimized oxidative addition transition structure of the fluoro phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -43.54 cm⁻¹

Energy: -2582.519812

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.156799 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.671910 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.618313

Р	1.33185 -0.14825 0.0091	7
Cu	-0.32836 1.33106 -0.013	78
С	-1.65104 2.74895 0.0287	•
н	-1.21656 3.72961 0.2921	5
н	-2.13557 2.86155 -0.9588	3
н	-2.45473 2.55183 0.7629)1
С	-2.0195 -1.01007 -1.0109	3
Н	-1.17993 -1.47009 -1.5388	37

С	-2.01302	-1.24773	0.45885
0	-1.0799	-1.85012	0.96791
С	-2.93595	-0.28557	-1.66676
н	-3.76395	0.20878	-1.1532
н	-2.86946	-0.13436	-2.74727
С	-3.1527	-0.71542	1.29754
н	-3.13636	0.38592	1.27267
н	-4.12835	-1.04692	0.91034
н	-3.02317	-1.05695	2.33186
0	2.81237	0.41514	-0.36284
С	3.20175	1.71947	0.06868
н	3.95018	2.09482	-0.64193
н	2.33854	2.40808	0.08368
н	3.64419	1.675	1.07661
0	1.26955	-1.44055	-0.93949
С	1.75838	-2.73569	-0.56881
н	2.79517	-2.67768	-0.20547
н	1.10493	-3.16304	0.20433
н	1.72254	-3.35265	-1.47578
F	1.63926	-0.80334	1.45341

Optimized cuprate structure of the fluoro phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2582.531898 Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.156583 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.693446 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.635487

0	-2.44381 -0.96742 0.25728
0	-1.90065 1.10577 -0.96964
Р	-1.20072 0.01168 0.00188
Cu	0.74592 -1.10833 -0.31409
С	0.47937 -3.03142 0.01573
Н	1.37206 -3.64818 -0.17118
Н	0.16661 -3.17999 1.06405
Н	-0.3414 -3.38861 -0.62991
С	2.18331 0.40519 -0.74627
Н	2.01221 0.78256 -1.76001
С	2.00714 1.42633 0.30859
0	1.63246 2.55565 0.02409
С	2.7401 -0.86409 -0.56548
Н	3.17008 -1.17047 0.3912

Н	3.05112	-1.45669	-1.42908
С	2.26877	1.03059	1.75031
н	1.61558	0.19242	2.04553
н	3.31013	0.70029	1.89049
Н	2.06331	1.89226	2.39697
С	-1.29748	2.37672	-1.25651
н	-1.50034	3.07917	-0.43434
н	-0.20744	2.29828	-1.37812
Н	-1.7575	2.74504	-2.18255
С	-3.76717	-0.50529	0.55475
Н	-3.75077	0.19218	1.40608
н	-4.20473	-0.00572	-0.32132
н	-4.35773	-1.3922	0.81656
F	-1.13892	0.86064	1.3906

Optimized reductive elimination transition structure of the fluoro phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -411.35 cm⁻¹

Energy: -2582.495134

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.135441

Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.660161 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.594440

0	-1.78303	1.42699	0.04487
0	-2.44316	-0.75788	0.99628
Р	-1.48598	-0.14727	-0.13765
Cu	0.58775	-0.77186	-0.2492
С	1.42423	-2.70933	0.13601
н	0.88711	-2.73511	1.09952
Н	0.79351	-3.14702	-0.65679
н	2.32132	-3.3272	0.23466
С	2.3247	0.21053	0.68798
Н	2.29028	0.49343	-1.74482
С	2.28905	1.31335	0.24779
0	2.06075	2.47873	-0.09342
С	2.68862	-1.15974	-0.33745
н	3.24394	-1.29192	0.59536
Н	3.12681	-1.73777	-1.15586
С	2.53539	1.00972	1.73008
н	3.57624	0.68668	1.89952
н	2.34872	1.92529	2.30554
н	1.88238	0.20432	2.10841
С	-1.11469	2.41899	-0.76241
Н	-0.01944	2.36766	-0.64918
Н	-1.40265	2.29753	-1.81819
Н	-1.46893	3.3928	-0.40224
С	-3.77459	-0.28183	1.24267
Н	-4.36493	-0.29022	0.3139

Н	-4.22346	-0.96834	1.97152
••	1.22010	0.00001	1.07 102

H -3.74631 0.73812 1.65131

F -2.32361 -0.44534 -1.495

Optimized product structure of the fluoro phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2582.546812

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.195206 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.704234 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2583.650430

0	2.17435	-1.07164	0.89524
0	2.30388	1.41492	0.1779
Ρ	1.66645	-0.01208	-0.21047
Cu	-0.51666	0.07591	-0.50919
С	-2.39246	2.23444	0.85222
н	-2.42686	1.64781	1.78317
н	-1.32736	2.42001	0.62364
н	-2.86747	3.2086	1.05819

С	-2.47558	0.14583	-0.7041
н	-2.59922	-0.05787	-1.78115
С	-3.07257	1.50506	-0.31127
н	-3.0187	2.16009	-1.19716
С	-2.89279	-1.08581	0.01032
0	-2.81927	-2.19991	-0.49609
н	-4.15406	1.4124	-0.08845
С	-3.3973	-0.95897	1.44884
н	-4.23661	-0.24929	1.52514
н	-3.71599	-1.94952	1.79875
н	-2.59726	-0.58266	2.10648
С	3.38213	-1.83954	0.89032
н	3.58812	-2.23843	-0.11293
н	4.23589	-1.22926	1.22382
н	3.23339	-2.66843	1.59403
С	3.67979	1.63261	0.50294
н	3.90312	1.23583	1.50557
н	4.33779	1.16173	-0.24356
н	3.84435	2.71752	0.49864
F	2.61424	-0.43971	-1.45807

Optimized separated structure of the methylphosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2522.624479 Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.173884 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.686367 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.634713

0	-2.94352 0.05989 -0.52854
0	-1.40759 -1.55596 0.8551
Р	-1.39073 -0.47282 -0.39482
Cu	0.09588 1.18402 -0.1172
С	1.2819 2.69676 0.15963
Н	0.72871 3.62515 0.39167
н	1.97673 2.52348 1.00322
Н	1.89716 2.91149 -0.73381
С	1.96275 -1.17749 0.81662
Н	1.14195 -1.89938 0.85172
С	2.4787 -0.66435 1.94078
Н	3.28316 0.07494 1.92585
Н	2.09363 -0.95148 2.92286
С	3.60303 0.06294 -0.75562

Н	3.37499	1.06444	-0.36066
н	4.48366	-0.32419	-0.21945
н	3.82298	0.13883	-1.8276
С	2.41045	-0.84422	-0.56497
0	1.80984	-1.31813	-1.51655
С	-1.34983	-1.06988	2.1889
н	-0.93434	-1.86695	2.82216
н	-0.70426	-0.17672	2.2653
н	-2.35833	-0.81509	2.55631
С	-3.34382	1.28208	0.07871
н	-4.08553	1.76329	-0.5752
н	-3.80638	1.09367	1.06222
н	-2.48541	1.96482	0.21154
С	-1.3675	-1.65616	-1.75831
н	-0.37081	-2.11582	-1.79208
н	-2.15493	-2.40702	-1.6008
Н	-1.5465	-1.11232	-2.69682

Optimized oxidative addition transition structure of the methylphosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -35.29 cm⁻¹

Energy: -2522.623812

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.173483 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.684588 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.633900

Р	-1.33538 -0.08284 -0.28105
Cu	0.35171 1.36966 -0.14903
С	1.77026 2.69656 -0.17894
н	1.37651 3.72549 -0.08845
н	2.48093 2.55023 0.6556
н	2.3585 2.66985 -1.11565
С	1.95051 -1.05581 1.18786
н	1.07702 -1.48347 1.68569
С	2.02444 -1.36611 -0.26384
0	1.16709 -2.07576 -0.77123
С	2.83566 -0.30594 1.85718
н	3.69537 0.15767 1.36787
н	2.71373 -0.10596 2.92488
С	3.14605 -0.7774 -1.08867
н	3.0488 0.32003 -1.10105
н	4.13042 -1.02362 -0.66147
н	3.07879 -1.16434 -2.11305
0	-2.85203 0.5635 -0.18374
С	-3.09519 1.57329 0.78885
н	-3.17179 1.13976 1.80029
н	-2.2903 2.32956 0.78677
н	-4.0473 2.05857 0.53283

0	-1.29252	-1.20094	0.92072
С	-1.97501	-2.44715	0.8607
Н	-3.02393	-2.32135	0.54474
Н	-1.45439	-3.13454	0.17555
Н	-1.96121	-2.87415	1.87337
С	-1.57528	-1.00239	-1.83173
Н	-0.70364	-1.65124	-1.99116
Н	-2.50444	-1.58924	-1.80821
н	-1.64089	-0.2655	-2.64555

Optimized cuprate structure of the methylphosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2522.628583

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP):

Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP):

Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP):

01

O 2.42419 1.00057 0.35207

0	1.85654 -0.93091 -1.13968
Р	1.21209 -0.05581 0.10127
Cu	-0.73236 1.06922 -0.25986
С	-0.50921 2.99812 0.07509
н	-1.37609 3.61805 -0.20029
н	-0.29624 3.14783 1.14814
Н	0.37381 3.33838 -0.49177
С	-2.12767 -0.42028 -0.8235
н	-1.82569 -0.83259 -1.79133
С	-2.04809 -1.36921 0.29515
0	-1.52926 -2.47592 0.16204
С	-2.68203 0.86715 -0.75337
Н	-3.23846 1.20437 0.12401
Н	-2.87872 1.42698 -1.67069
С	-2.57882 -0.93178 1.65049
Н	-2.03585 -0.04143 2.01221
Н	-3.64302 -0.6548 1.59168
Н	-2.45108 -1.75307 2.36663
С	1.30957 -2.18885 -1.53681
Н	1.8392 -3.01104 -1.02632
Н	0.2363 -2.27549 -1.30484
Н	1.46229 -2.289 -2.62094
С	3.77927 0.60296 0.53513
Н	3.93414 0.16073 1.53405
Н	4.08712 -0.11895 -0.2365
Н	4.39337 1.50983 0.45184
С	1.29022 -1.22229 1.51331
Н	1.06654 -0.67053 2.43931
н	0.51988 -1.99619 1.36887

Optimized reductive elimination transition structure of the methylphosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -416.02 cm⁻¹

Energy: -2522.594701

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.147852 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.668818 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.605425

01

0	-1.96975	0.93451	-1.11677
0	-1.8111	0.02995	1.32533
Р	-1.48403	-0.35948	-0.23877
Cu	0.65109	-0.81555	-0.30498
С	1.58408	-2.62573	0.40055
н	0.96369	-2.61753	1.31176
н	1.06059	-3.16883	-0.40678
н	2.50728	-3.16984	0.62171
С	2.36565	0.27928	-0.58965

Н

Н	2.53604	0.44074	-1.65906
С	2.03956	1.47566	0.15794
0	1.84366	2.56873	-0.38231
С	2.76163	-1.004 -	0.01459
н	3.13594	-0.98473	1.01371
н	3.40227	-1.6037	-0.66709
С	1.86589	1.36368	1.67771
н	2.63845	0.74677	2.16259
н	1.88603	2.37667	2.10106
н	0.88521	0.91219	1.91391
С	-1.08265	2.0596	-1.2534
н	-0.92095	2.55855	-0.28668
Н	-0.09919	1.75619	-1.6389
Н	-1.56487	2.75574	-1.95174
С	-3.06385	0.57618	1.72944
Н	-3.82819	-0.21356	1.82453
н	-2.91286	1.04425	2.71159
н	-3.41597	1.33725	1.01522
С	-2.82545	-1.49272	-0.73015
н	-2.81196	-2.37519	-0.07339
н	-3.80417	-0.99386	-0.67634
н	-2.64999	-1.81529	-1.76715

Optimized product structure of the methylphosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2522.652875

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.206372 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.710646 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2523.658571

0	2.08519	-0.94768	1.03714
0	2.82259	1.3456	0.32118
Р	1.69176	0.23396	-0.0367
Cu	-0.44546	0.76652	-0.15002
С	-3.46302	1.5437	1.1499
н	-3.33538	0.71576	1.86497
н	-2.60121	2.22075	1.27885
н	-4.37662	2.09098	1.43708
С	-2.28983	0.30062	-0.78244
н	-2.05937	0.46771	-1.84803
С	-3.52867	1.04169	-0.29555
н	-3.68007	1.91261	-0.95471
С	-2.02893	-1.09625	-0.45298
0	-1.10877	-1.74987	-0.98913
н	-4.43999	0.42333	-0.42025
С	-2.8338	-1.77838	0.64762
Н	-3.89291	-1.48194	0.65426
---	----------	----------	----------
н	-2.74637	-2.86576	0.51977
Н	-2.41143	-1.51393	1.63119
С	1.47969	-2.24251	0.96141
н	0.48835	-2.2142	0.47722
н	2.127 -	2.92746	0.38862
Н	1.38207	-2.6215	1.98859
С	4.21468	1.03676	0.36888
н	4.40123	0.16336	1.01158
Н	4.61382	0.84086	-0.64066
Н	4.72347	1.91546	0.78733
С	2.16308	-0.49493	-1.64672
н	1.3552	-1.19561	-1.91291
н	2.19308	0.30152	-2.40628
н	3.12963	-1.01917	-1.60971

Optimized separated structure of the phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2597.792775

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.417123

Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.962211

0	-2.87882	0.02827	0.5724
0	-1.32519	-1.86651	0.24
Р	-1.45241	-0.28889	-0.15772
Cu	0.18661	1.1078	0.42925
С	1.43281	2.4449	1.0814
н	0.91046	3.30332	1.54141
н	2.10623	2.03182	1.85602
н	2.0678	2.85405	0.27459
С	2.05335	-1.38812	0.29937
Н	1.19907	-1.98499	-0.03251
С	2.52951	-1.49471	1.5468
н	3.37169	-0.89469	1.90022
н	2.07705	-2.17877	2.26957
С	3.84715	0.31655	-0.46214
н	3.64193	1.03651	0.34405
н	4.67522	-0.33387	-0.13939
н	4.13505	0.86366	-1.36817
С	2.60625	-0.49283	-0.75551
0	2.0561	-0.44316	-1.84398
С	-1.22315	-2.22276	1.61607
н	-0.90015	-3.27184	1.65772
н	-0.48105	-1.59607	2.14097
н	-2.19839	-2.11635	2.11534
С	-3.37255	1.36414	0.57165
н	-3.8277	1.60867	-0.40202
Н	-4.13725	1.43485	1.35687

- H -2.56724 2.08938 0.78547
- O -1.90218 -0.41643 -1.7055
- C -1.01877 -0.05447 -2.77877
- H -1.42116 -0.52518 -3.68545
- H -1.01048 1.03912 -2.91473
- H 0.00638 -0.40604 -2.59879

Optimized oxidative addition transition structure of the phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -38.09 cm⁻¹

Energy: -2597.795967

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.419116 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.962248 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.902589

0 1			
Р	1.30977	0.01745	0.10198
Cu	-0.43203	1.40314	0.20301
С	-1.89581	2.65496	0.45178
н	-1.54597	3.70332	0.43391

Н	-2.66066 2.55887 -0.34087
н	-2.41194 2.5151 1.42026
С	-1.91924 -0.92605 -1.45707
н	-1.04912 -1.30667 -1.99667
С	-2.01299 -1.40648 -0.05336
0	-1.15527 -2.16041 0.38335
С	-2.77856 -0.07661 -2.035
н	-3.63313 0.34334 -1.49956
н	-2.63976 0.25135 -3.06852
С	-3.15423 -0.92781 0.81546
н	-3.05467 0.1576 0.97805
н	-4.12857 -1.10703 0.33569
н	-3.11514 -1.44867 1.78027
0	2.80494 0.68296 -0.00407
С	3.04571 1.61144 -1.05476
н	3.10132 1.1014 -2.03109
н	2.25417 2.38105 -1.10069
н	4.00658 2.10126 -0.84699
0	1.2892 -1.02087 -1.15096
С	1.92778 -2.29928 -1.10167
н	2.94097 -2.22417 -0.67797
н	1.31954 -2.98815 -0.49835
н	1.98948 -2.66535 -2.13561
0	1.60779 -0.91588 1.39033
С	0.72484 -0.97271 2.51295
н	0.07962 -1.85708 2.42969
н	1.34429 -1.02597 3.41907
н	0.08701 -0.07403 2.56334

Optimized cuprate structure of the phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2597.806321

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.417429 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.983828 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.910221

0	1.15914 1.82318 0.34571
Р	1.09098 0.23353 0.01114
Cu	-0.71694 -1.14057 0.08651
С	-0.2581 -2.96368 -0.53168
н	0.64765 -2.95415 -1.1616
н	-0.05998 -3.61367 0.34022
н	-1.07235 -3.42923 -1.11056
С	-2.34373 0.0574 0.76849
Н	-2.23018 0.25228 1.84003
С	-2.28825 1.27702 -0.06498
0	-2.10712 2.37257 0.44623

С	-2.73183	-1.21159	0.33404
н	-3.11019	-1.37931	-0.67731
н	-2.97146	-1.993	1.05912
С	-2.42972	1.13178	-1.57113
н	-3.38958	0.66345	-1.84042
н	-2.36365	2.12609	-2.02979
н	-1.62811	0.4906	-1.97663
С	0.83471	2.32776	1.64328
н	-0.2456	2.23973	1.83177
н	1.41859	1.80788	2.41965
н	1.10572	3.3918	1.64301
С	2.70483	1.06706	-1.94993
н	3.56207	0.93333	-1.27199
н	2.97534	0.7273	-2.95838
н	2.42639	2.13066	-1.9743
0	2.3963	-0.24133	0.89051
С	2.65125	-1.62748	1.11016
н	3.01016	-2.1139	0.18893
н	3.42882	-1.69506	1.88312
н	1.74647	-2.1554	1.45075
0	1.59435	0.26989	-1.5276

Optimized reductive elimination transition structure of the phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -410.70 cm⁻¹

Energy: -2597.767682

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.393127 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.946784 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.874274

0	-1.7728 1.01461 -0.98374
0	-1.45938 0.34811 1.47795
Р	-1.27539 -0.22418 -0.04112
Cu	0.79311 -0.86381 -0.23291
С	1.68185 -2.67484 0.49737
Н	1.15782 -2.57286 1.46174
Н	1.0487 -3.22974 -0.21783
Н	2.59123 -3.26004 0.66205
С	2.52112 0.11329 -0.74907
Н	2.58655 0.19983 -1.83858
С	2.34526 1.37006 -0.05171
0	2.1486 2.43848 -0.63958

С	2.90328	-1.15665	-0.13424
н	3.38095	-1.09999	0.84877
н	3.43956	-1.83189	-0.80663
С	2.3422	1.36077	1.48153
н	3.14859	0.74884	1.91498
н	2.43978	2.39699	1.83122
н	1.38362	0.95957	1.85733
С	-0.87616	2.1097	-1.24406
н	0.08578	1.76199	-1.64612
н	-1.37858	2.75974	-1.97169
н	-0.66713	2.67526	-0.32387
С	-2.63155	1.01693	1.93822
н	-3.40847	0.28495	2.21279
н	-2.35246	1.59415	2.82998
н	-3.02646	1.70162	1.17131
0	-2.50632	-1.2479	-0.30608
С	-3.8081	-0.906 -(0.78456
н	-4.31192	-1.85045	-1.03051
н	-4.39166	-0.37862	-0.01311
н	-3.74336	-0.27221	-1.68004

Optimized product structure of the phosphite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2597.830158

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.457656 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.995989 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2598.935123

0	-1.98777	-0.28465	1.60749
0	-2.64703	-1.20853	-0.71418
Р	-1.57725	-0.24534	0.03352
Cu	0.58848	-0.5102	-0.3148
С	3.25211	-2.09118	0.74226
Н	3.25719	-1.48158	1.6592
Н	2.26443	-2.5814	0.68301
Н	4.01551	-2.87798	0.86458
С	2.47755	-0.14219	-0.78357
Н	2.33131	0.04061	-1.86199
С	3.50192	-1.24465	-0.50963
Н	3.50489	-1.92087	-1.38096
С	2.57164	1.16972	-0.12383

0	1.95867	2.16454	-0.52931
н	4.52935	-0.83221	-0.4624
С	3.41788	1.30604	1.13884
н	4.43802	0.91701	0.99383
н	3.45751	2.36531	1.42429
н	2.96825	0.72995	1.96336
С	-3.31473	-0.03515	2.06848
н	-3.73378	0.86843	1.59767
н	-3.96564	-0.89806	1.85397
н	-3.26149	0.11327	3.1552
С	-3.86407	-0.80418	-1.34236
н	-4.63289	-0.54999	-0.59521
н	-3.70079	0.06474	-1.99517
н	-4.2105	-1.65927	-1.93812
С	-1.25351	2.36412	-0.39166
н	-0.22159	2.14864	-0.71793
н	-1.69328	3.13393	-1.03879
н	-1.23032	2.73143	0.64648
0	-2.10587	1.20723	-0.49099

Optimized separated structure of the phosphoramidite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2617.230859

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2617.839795 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2618.411076 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2618.347803

0	-2.53605	0.98723	0.55196
0	-1.17653	-0.74276	1.63223
Р	-1.24412	0.01867	0.17314
Cu	0.54119	1.16063	-0.52635
С	1.98823	2.32516	-1.09135
Н	1.63599	3.34812	-1.31723
Н	2.75947	2.42216	-0.30389
Н	2.49277	1.95454	-2.00265
С	2.16326	-0.88962	1.26207
Н	1.23107	-1.32891	1.62711
С	2.93602	-0.13246	2.05116
Н	3.85841	0.3295	1.69018
Н	2.65885	0.07072	3.08913
С	3.7522 -	0.77522	-0.78011

Н	3.79962	0.32376	-0.80287
н	4.61071	-1.14344	-0.19659
н	3.80735	-1.15882	-1.80638
С	2.44762	-1.22059	-0.16193
0	1.62268	-1.85941	-0.79568
С	-0.96708	0.03294	2.80696
н	-0.76141	-0.66766	3.62837
н	-0.10344	0.71183	2.6907
н	-1.85985	0.63103	3.04509
С	-2.93624	1.95796	-0.4037
н	-3.40836	1.48217	-1.2809
н	-3.66647	2.62065	0.08119
н	-2.07738	2.56022	-0.75041
Ν	-1.88885	-1.15014	-0.81739
С	-3.05988	-1.91343	-0.41736
н	-2.78768	-2.93968	-0.11154
Н	-3.55955	-1.41855	0.42574
н	-3.77473	-1.97981	-1.25593
С	-1.16492	-1.63541	-1.982
Н	-0.29406	-0.99624	-2.17737
Н	-0.78434	-2.65835	-1.82542
Н	-1.8238	-1.6268 -	2.86802

Optimized oxidative addition transition structure of the phosphoramidite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -47.62 cm⁻¹ Energy: -2617.227931 Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2617.837450 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2618.410181 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2618.345324

0	-2.33253 1.51484 0.00562
0	-1.7653 -0.33682 1.51666
Р	-1.16765 0.37747 0.15584
Cu	0.79151 1.45248 -0.05084
С	2.21369 2.6902 -0.55465
Н	2.73323 3.10646 0.32795
Н	2.98876 2.24143 -1.2043
Н	1.7893 3.5446 -1.11184
С	2.25126 -0.99522 1.25017
н	1.71412 -1.40594 2.10754

С	2.04433 -1.73227 -0.01855
0	1.21426 -2.62856 -0.0786
С	2.95917 0.14183 1.36323
н	3.51089 0.57756 0.53079
н	3.02162 0.67574 2.31502
С	2.83748 -1.30451 -1.23313
н	2.57191 -0.26596 -1.49515
н	3.9188 -1.31787 -1.02734
н	2.60994 -1.97063 -2.07411
С	-1.11096 -1.43338 2.14611
н	-1.88618 -2.05445 2.61862
н	-0.5406 -2.04596 1.43011
н	-0.42962 -1.06639 2.93118
С	-3.72441 1.22699 0.02322
н	-4.00825 0.58538 -0.8284
н	-4.01556 0.73249 0.96283
н	-4.25527 2.18485 -0.06452
Ν	-1.40279 -0.8347 -0.98778
С	-2.41584 -1.87212 -0.91401
н	-3.11917 -1.80773 -1.76496
н	-1.943 -2.87022 -0.93366
н	-2.98931 -1.78054 0.01664
С	-0.58027 -0.85871 -2.18483
н	0.16785 -0.05246 -2.13798
н	-0.04902 -1.82142 -2.26714
н	-1.18827 -0.70249 -3.09474

Optimized cuprate structure of the phosphoramidite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2617.239665

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2617.834993 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2618.430015 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2618.325897

0	-1.25669	1.80743	-0.89394
Р	-1.05897	0.41207	-0.06626
Cu	0.65625	-1.08591	-0.23076
С	0.12545	-2.82269	0.57518
Н	0.15743	-3.63952	-0.16673
Н	0.82428	-3.09354	1.38593
Н	-0.89192	-2.78747	1.00013
С	2.38135	-0.13991	-1.0535
Н	2.15406	0.21805	-2.06229
С	2.75035	0.92681	-0.10001
0	2.74307	2.10362	-0.43091
С	2.55252	-1.50569	-0.80655
н	3.06187	-1.86733	0.08898

Н	2.49125	-2.22394	-1.62841
С	3.12989	0.52482	1.31686
н	2.35474	-0.11513	1.77059
н	4.06741	-0.0543	1.3211
н	3.26195	1.43242	1.91871
С	-0.34337	2.90187	-0.77164
н	-0.28229	3.23983	0.27441
н	0.66453	2.63105	-1.11825
Н	-0.7422	3.71547	-1.39286
С	-3.77497	0.4252	-0.07867
Н	-3.58303	1.25812	0.61042
Н	-4.18741	0.83706	-1.01806
Н	-4.53393	-0.23543	0.37445
0	-1.17716	1.0509	1.45345
С	-1.06582	0.18499	2.57484
Н	-1.11041	0.81095	3.47664
Н	-1.89148	-0.54594	2.59587
Н	-0.11399	-0.3726	2.5671
Ν	-2.546 -	0.31909 -	0.30642
С	-2.66049	-1.48609	-1.16325
Н	-3.02873	-1.22288	-2.173
Н	-1.68085	-1.97489	-1.26009
Н	-3.35915	-2.21735	-0.7221

Optimized reductive elimination transition structure of the phosphoramidite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -419.32 cm⁻¹ Energy: -2617.201998 Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2617.812609 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2618.393766 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2618.318555

0	1.45422 -1.36694 -1.05227
0	1.1768 -0.78892 1.43258
Р	1.14659 -0.09699 -0.06749
Cu	-0.81313 0.84474 -0.22349
С	-1.45031 2.79129 0.46126
н	-0.87864 2.64359 1.3929
н	-0.8113 3.26231 -0.30665
н	-2.27109 3.48129 0.67922
С	-2.66984 0.13489 -0.73961
н	-2.74727 0.06112 -1.82938
С	-2.67275 -1.13881 -0.05097

0	-2.63826	-2.21875	-0.64997
С	-2.86762	1.44484	-0.12491
н	-3.33746	1.45444	0.86346
н	-3.31646	2.18516	-0.79319
С	-2.64686	-1.15251	1.48121
н	-3.23412	-0.34606	1.94613
н	-3.02384	-2.12613	1.82237
н	-1.6036	-1.05272	1.83075
С	0.43613	-2.36862	-1.21534
н	-0.50695	-1.93887	-1.58231
н	0.82676	-3.09534	-1.93924
н	0.22378	-2.87546	-0.26158
С	2.27102	-1.57876	1.8814
н	3.17379	-0.95966	2.01814
н	1.98743	-2.0146	2.849
н	2.49962	-2.39065	1.17218
С	3.84373	0.16481	-0.70761
н	4.26936	0.7132	-1.56674
н	4.57918	0.20553	0.11805
н	3.69838	-0.87894	-1.00833
Ν	2.57117	0.75223	-0.32193
С	2.60452	2.15894	0.0345
н	3.22178	2.34571	0.93343
н	3.01881	2.76059	-0.79408
н	1.58558	2.51787	0.24071

Optimized product structure of the phosphoramidite ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2617.259480

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2617.872684 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2618.438126 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2618.374040

0	-1.94545 -0.84501 1.52928
0	-2.40568 -1.14334 -1.05504
Р	-1.40858 -0.45848 0.03911
Cu	0.74673 -0.70229 -0.34696
С	3.61378 -1.90436 0.69665
Н	3.48992 -1.33081 1.62844
Н	2.72231 -2.5467 0.58906
Н	4.49248 -2.55875 0.82557
С	2.57529 -0.06305 -0.80159
Н	2.40927 0.11479 -1.87731
С	3.75865 -0.9891 -0.52304
Н	3.89929 -1.62684 -1.41171
С	2.4107 1.2102 -0.09498

0	1.65522	2.11025	-0.49596
н	4.70175	-0.41456	-0.42909
С	3.13824	1.42623	1.22989
Н	4.18949	1.10263	1.19148
н	3.08255	2.49111	1.49175
н	2.64722	0.84262	2.0258
С	-3.25685	-0.57667	2.02292
н	-3.65467	0.36896	1.62467
н	-3.93754	-1.40165	1.75911
н	-3.18899	-0.50875	3.11765
С	-3.77959	-0.81535	-1.26026
н	-4.41989	-1.53261	-0.72302
н	-4.00373	0.20674	-0.92094
н	-3.98416	-0.89405	-2.33757
С	-1.5526	1.78163	-1.40734
н	-2.12249	2.71948	-1.50786
н	-0.47672	1.99978	-1.53577
н	-1.88227	1.09823	-2.20199
Ν	-1.8213	1.19797	-0.08382
С	-1.32992	2.07025	0.99084
н	-0.27638	2.36052	0.82512
н	-1.94564	2.98436	1.01964
Н	-1.41774	1.56945	1.96402

Optimized separated structure of the phosphine ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2372.288687 Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2372.694697 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2373.138726 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2373.106402

Р	-1.82606	-0.1801	0.08419
Cu	-0.08429	1.2249	-0.06718
С	1.36474	2.50126	-0.2664
Н	1.04729	3.53262	-0.0261
Н	2.20826	2.25793	0.40529
Н	1.76151	2.53063	-1.29919
С	2.19321	-0.91776	1.07865
Н	1.50374	-1.30166	1.83644
С	3.28711	-0.23174	1.43303
Н	3.98468	0.16998	0.69454
Н	3.51274	-0.02787	2.48282
С	2.65215	-0.73618	-1.45783
Н	2.66388	0.3638	-1.44345
Н	3.69147	-1.0904	-1.36722

Н	2.22664	-1.089 -	2.40539
С	1.80925	-1.2547	-0.31641
0	0.8298	-1.96102	-0.51614
С	-1.76005	-1.48521	1.37776
н	-0.89379	-2.1228	1.15263
н	-1.62295	-1.02176	2.36613
н	-2.68037	-2.09053	1.38346
С	-3.44196	0.64417	0.41141
н	-3.39526	1.17095	1.37634
н	-3.63662	1.38985	-0.37385
н	-4.27004	-0.08218	0.43515
С	-2.15296	-1.14174	-1.44776
н	-2.33244	-0.44846	-2.28291
н	-1.25565	-1.73789	-1.66542
н	-3.02525	-1.80409	-1.32947

Optimized oxidative addition transition structure of the phosphine ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -17.96 cm⁻¹

Energy: -2372.286371

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2372.693127 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2373.138630 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2373.106056

Р	-1.6225 -0.36891 0.07637
Cu	-0.28068 1.41906 -0.11502
С	0.8411 3.00107 -0.24689
н	1.25435 3.29143 0.73722
н	1.69965 2.88398 -0.93478
н	0.26195 3.86804 -0.61466
С	2.41193 -0.97766 1.03609
н	2.39599 -1.78258 1.78002
С	1.97657 -1.40726 -0.3185
0	1.39335 -2.47412 -0.44475
С	2.70138 0.28709 1.37289
н	2.67578 1.10449 0.6489
н	2.94269 0.55556 2.4051
С	2.20953 -0.48566 -1.49074
н	1.57081 0.41087 -1.37895
н	3.25084 -0.13257 -1.52966
н	1.9482 -1.00473 -2.42139
С	-1.63004 -1.58557 -1.30232
н	-1.85411 -1.06585 -2.24575
н	-0.63831 -2.05518 -1.37479
н	-2.38784 -2.3659 -1.12809
С	-1.25903 -1.39346 1.56244

Н	-1.74393	-2.38014	1.51679
н	-0.17016	-1.50939	1.62719
н	-1.60074	-0.85448	2.45887
С	-3.41023	0.03268	0.26833
н	-3.76587	0.55029	-0.63506
н	-4.01186	-0.87687	0.42435
Н	-3.54426	0.70956	1.12505

Optimized cuprate structure of the phosphine ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2372.300354

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2372.691822 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2373.159857 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2373.113326

	0 1		
Р	1.49749	-0.34279	-0.01245
Cu	-0.3124	1.06757	-0.11921
С	0.09429	2.88484	0.53273
Н	0.89635	3.31746	-0.09261

Н	-0.76051	3.5793	0.52078
н	0.47683	2.83114	1.56825
С	-1.77659	-0.20681	-0.95718
н	-1.46712	-0.44735	-1.97938
С	-1.74552	-1.35218	-0.03528
0	-1.26147	-2.43062	-0.36941
С	-2.27448	1.0671	-0.65431
н	-2.82454	1.26255	0.26906
н	-2.42908	1.798 -	1.45144
С	-2.28482	-1.15544	1.37286
н	-3.33314	-0.8188	1.35479
н	-2.21279	-2.10407	1.91943
н	-1.70782	-0.3804	1.90597
С	3.10778	0.52645	0.15507
н	3.0805	1.15749	1.05576
н	3.95133	-0.17858	0.22315
н	3.25277	1.18692	-0.7128
С	1.73141	-1.45931	-1.45255
н	0.82867	-2.08444	-1.53146
н	1.83629	-0.8609	-2.36993
н	2.62003	-2.09918	-1.33253
С	1.48945	-1.516	1.40362
н	0.64343	-2.20646	1.27172
н	2.42576	-2.09468	1.44469
н	1.36283	-0.96274	2.34591

Optimized reductive elimination transition structure of the phosphine ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Imaginary frequency: -433.24 cm⁻¹ Energy: -2372.259962 Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2372.668643 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2373.117698 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2373.074243

Р	1.69876 0.17836 0.05362
Cu	-0.39372 0.86216 -0.04542
С	-1.87315 2.35781 0.3812
Н	-1.45531 2.39496 1.40284
Н	-1.34149 3.07434 -0.26859
Н	-2.91817 2.67483 0.4454
С	-1.72007 -0.48712 -0.93245
Н	-1.4317 -0.50242 -1.98851
С	-1.31926 -1.62841 -0.16051
0	-0.56681 -2.52363 -0.58791
С	-2.51831 0.63123 -0.43705
Н	-3.1707 0.41092 0.4138

Н	-3.05597	1.17465	-1.21981
С	-1.81201	-1.72469	1.2899
н	-2.90407	-1.60352	1.37028
н	-1.52692	-2.70731	1.68759
н	-1.35405	-0.94259	1.92261
С	2.03206	-0.69903	-1.52436
н	3.02565	-1.1747	-1.51827
н	1.24561	-1.46719	-1.62259
н	1.96653	0.00262	-2.36886
С	1.89652	-1.17328	1.28265
н	1.67168	-0.81236	2.29666
н	1.18478	-1.96697	1.0055
н	2.92152	-1.57587	1.25598
С	3.17847	1.24346	0.31582
н	4.10786	0.65403	0.26082
н	3.20515	2.03097	-0.45213
Н	3.11479	1.72695	1.3022

Optimized product structure of the phosphine ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)

Energy: -2372.318055

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2372.733496 Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2373.172783 Energy (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2373.139523

Р	2.16724 0.02117 0.08935
Cu	0.00242 0.17362 -0.39187
С	-2.32875 2.20713 0.59909
н	-2.39099 1.66731 1.55677
н	-1.28111 2.53494 0.47779
н	-2.9593 3.10841 0.68676
С	-1.92767 0.05664 -0.8092
н	-1.87492 -0.21455 -1.87754
С	-2.7522 1.32802 -0.58222
н	-2.68137 1.93886 -1.49819
С	-2.22996 -1.18343 -0.06418
0	-1.8696 -2.2948 -0.44824
Н	-3.83035 1.09218 -0.47839
С	-2.98185 -1.07458 1.26436
н	-3.93005 -0.52445 1.1538
н	-3.18047 -2.08693 1.64005
н	-2.37804 -0.52641 2.00537
С	2.78104 1.08566 1.45835
н	3.85114 0.91347 1.65475
Н	2.62463 2.14279 1.19703
Н	2.20498 0.87074 2.37055
С	2.64786 -1.67208 0.62035
Н	2.39289 -2.38494 -0.17758

Н	3.72428	-1.73763	0.84479
н	2.06899	-1.94805	1.51404
С	3.34198	0.38305	-1.27918
н	4.38696	0.23996	-0.96158
н	3.12528	-0.28335	-2.12719
Н	3.20288	1.42118	-1.6156

Optimized cuprate structure of the hydrido phosphine ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP) with the *syn*-methyl-vinyl ketone

Energy: -2483.325979

Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.350866

0 1	
0	-1.38714 1.44642 0.69929
0	-2.63505 -0.50305 -0.52349
Р	-1.22282 0.31704 -0.48072
Н	-1.42724 1.2334 -1.55877
Cu	0.54641 -1.07478 -0.14301
С	0.02839 -2.70124 0.83913
н	-1.03223 -2.92915 0.64348

Н	0.64192	-3.57376	0.56434
н	0.15586	-2.5232	1.92128
С	2.19692	0.0031	-0.92228
н	2.11935	0.06669	-2.01149
С	2.03019	1.24007	-0.13493
0	2.16763	1.25626	1.08429
С	2.57271	-1.1919	-0.30271
н	2.89728	-1.16791	0.74076
н	2.85481	-2.06576	-0.89366
С	1.63057	2.50658	-0.87374
н	1.51294	2.36201	-1.95699
н	0.6865	2.88119	-0.4478
н	2.39433	3.27912	-0.6927
С	-0.95961	1.13247	2.03682
н	-1.16937	0.08037	2.28787
н	0.11706	1.32836	2.14219
н	-1.53002	1.78367	2.71316
С	-3.87683	0.17998	-0.65731
н	-3.90631	0.76653	-1.59342
н	-4.66912	-0.58019	-0.683
н	-4.04702	0.86027	0.19225

Optimized reductive elimination transition structure of the hydrido phosphine ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP) with the *syn*-methyl-vinyl ketone

Imaginary frequency: -371.26 cm⁻¹ Energy: -2483.295708

Energy (TPSS-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -2484.320923

0	-1.78579 1.52289	-0.01308
0	-2.6863 -0.93128	-0.00197
Р	-1.44503 0.00417	-0.52297
Cu	0.55638 -0.73468	-0.04316
С	1.18537 -2.62571	0.65911
Н	0.41453 -2.47292	1.43488
Н	0.78394 -3.24425	-0.1577
Н	2.02475 -3.14363	1.13173
С	2.42815 -0.02727	-0.77237
Н	2.64462 -0.00971	-1.84212
С	2.03903 1.15424	-0.07824
0	1.6682 1.10081	1.13088
С	2.61144 -1.25559	-0.00363
н	2.99404 -1.09815	1.00926

Н	3.11525	-2.05899	-0.54496
С	2.00481	2.48825	-0.79781
н	0.96366	2.84746	-0.84683
н	2.57215	3.22515	-0.20792
н	2.41615	2.44066	-1.81626
С	-1.40168	1.91827	1.31748
н	-1.69124	2.97244	1.42171
н	-1.94699	1.32224	2.06794
н	-0.31442	1.8061	1.46031
С	-4.0332	-0.58539	-0.30882
н	-4.19221	-0.55099	-1.40188
н	-4.67968	-1.36072	0.12417
н	-4.2987	0.39517	0.11734
н	-1.83755	0.23298	-1.87455

Optimized product structure of the hydrido phosphine ligand of the reaction pathway (B3LYP-D3(BJ)/def2-SVP) with the *syn*-methyl-vinyl ketone

Energy: -2483.355115

0	-1.8822 1.40317 0.76888
0	-2.75739 -0.81325 -0.32306
Р	-1.781 0.47272 -0.56864
Cu	0.30532 -0.18346 -0.92395
С	1.12106 -2.10729 1.27123
Н	1.11336 -1.2772 1.99082
Н	0.14154 -2.12638 0.75604
н	1.21823 -3.0542 1.82822
С	2.2103 -0.62916 -0.55233
Н	2.7533 -0.69086 -1.50705
С	2.45736 0.62977 0.14807
0	2.29743 0.79419 1.36498
С	2.26737 -1.91885 0.27103
Н	3.2213 -1.95758 0.83203
Н	2.28494 -2.77612 -0.42321
С	2.91629 1.82291 -0.69189
Н	2.37344 2.72723 -0.37743
Н	3.9847 2.00054 -0.48279
Н	2.7943 1.66894 -1.77416
С	-1.00266 1.14888 1.88125
н	-1.22647 1.9166 2.63284
н	-1.19786 0.15377 2.31092
н	0.06083 1.21545 1.59613
С	-4.11879 -0.63658 0.0645
н	-4.67394 -0.06786 -0.70261
н	-4.56205 -1.63609 0.16494

H -4.18969 -0.1028 1.02502

H -2.60366 1.30515 -1.38297

Optimized "syn"-structure of trans-chalcone of rotational analysis (B3LYP-D3(BJ)/def2-TZVP)

Energy: -654.338973

С	-4.09365300	1.64503600	-0.23444700
С	-2.80882900	1.13307400	-0.18933600
С	-2.58951400	-0.23736300	0.01324500
С	-3.70522400	-1.07007500	0.16659600
С	-4.99375100	-0.55742100	0.12211500
С	-5.19238500	0.80250500	-0.07836300
н	-4.24442000	2.70511100	-0.39256900
н	-1.96738900	1.80098100	-0.31479900
н	-3.55010900	-2.13049000	0.32226900
н	-5.84177100	-1.21872800	0.24331700
н	-6.19554200	1.20690200	-0.11436700
С	-1.26219500	-0.83292400	0.07045500
С	-0.07983200	-0.20936200	-0.02807000
С	1.18202400	-0.97869700	0.03154100
С	2.47742400	-0.22834000	0.01549000
С	2.57250900	1.13830200	0.28819400
С	3.64539100	-0.94511500	-0.26061200
С	3.80774800	1.77351500	0.28556000
н	1.68917900	1.71243700	0.52882600
С	4.87555500	-0.30915300	-0.27736200
н	3.55989800	-2.00445000	-0.45871500

С	4.95993000	1.05325000	-0.00311400
Н	3.86996900	2.83054300	0.50940700
Н	5.77203900	-0.87276900	-0.50131100
Н	5.92152400	1.55026300	-0.01213700
0	1.18364800	-2.19918700	0.07775500
Н	-0.02514100	0.85947300	-0.17282700
н	-1.22861100	-1.90917300	0.20951700

Optimized "anti"-structure of trans-chalcone of rotational analysis

Energy: -654.337405

С	-4.49283500	0.63336900	0.30921900
С	-3.13850200	0.91891300	0.30880200
С	-2.20401800	-0.04698200	-0.09004500
С	-2.67789600	-1.30348200	-0.48630500
С	-4.03552700	-1.59003100	-0.48665100
С	-4.94811600	-0.62174300	-0.08851300
н	-5.20055000	1.39096700	0.61994600
Н	-2.80274200	1.89857200	0.62014200
н	-1.96689100	-2.05916600	-0.79751800
Н	-4.38045600	-2.56754000	-0.79756700
н	-6.00802500	-0.84007500	-0.08718800
С	-0.76491600	0.19326800	-0.10649400
С	-0.13085900	1.33215300	0.20748400
С	1.31994400	1.55794500	0.07268400
С	2.27230700	0.40306300	0.06907200
С	2.09728200	-0.71589500	0.88514600

С	3.41065900	0.48910100	-0.73488000
С	3.04155000	-1.73492100	0.88983400
н	1.23761200	-0.77648300	1.53799800
С	4.34089700	-0.53838000	-0.74616200
н	3.54976300	1.37256200	-1.34295100
С	4.15836000	-1.65296100	0.06734400
н	2.90663500	-2.59072700	1.53857300
н	5.21298200	-0.46999400	-1.38353700
н	4.88932100	-2.45132200	0.06507400
0	1.73987000	2.69732400	-0.05582400
н	-0.67840100	2.22587600	0.48148900
н	-0.16818100	-0.65175800	-0.43107700

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-3** (*R*)

Imaginary frequency: -398.95 cm⁻¹

Energy: -4068.823932

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.162638

Cu	2.01238 -0.85958 -0.65155
С	3.26802 -1.85625 -2.03859
С	3.24542 -1.03378 1.00045
С	3.99662 -1.57739 -0.14302
н	2.99038 -1.038 -2.72842
н	4.27566 -2.17598 -2.313
н	2.57813 -2.70748 -2.13081
С	-3.69123 -1.63392 2.83638
С	-3.42393 -1.9742 1.51125
С	-3.45684 -0.33235 3.26221
С	-2.92719 -1.06963 0.55908
С	-3.09674 0.61861 2.31176
С	-2.88085 0.30894 0.95689
0	-1.39697 -0.62958 -1.22372
0	-0.2829 1.16059 0.32244
С	-3.04599 1.52786 0.0626
С	-4.42467 1.83809 -0.00906
Р	-0.09201 -0.36161 -0.24203
С	-2.12519 2.43207 -0.53375
С	-4.93823 2.93197 -0.69039
С	-2.67989 3.52797 -1.22739
С	-4.04265 3.78255 -1.32893
Н	-2.02422 4.24282 -1.69999
Н	-4.38924 4.65612 -1.88578

Н	-6.01523	3.11128	-0.71655
н	-5.11693	1.16817	0.50134
н	-3.0435	1.6662	2.60589
н	-3.60518	-0.04017	4.30382
н	-4.05683	-2.39729	3.52672
н	-3.59926	-3.00002	1.21968
н	-0.49935	-1.0331	0.9338
С	-2.41668	-1.57653	-0.81763
С	-3.53562	-1.65506	-1.92681
С	-1.78285	-3.10691	-0.92477
С	-2.85112	-1.83484	-3.313
С	-4.08626	-3.07135	-1.66237
С	-2.76442	-3.79187	-1.92955
С	-2.48546	-3.33851	-3.37122
н	-1.98123	-1.17295	-3.40753
н	-3.56041	-1.55801	-4.10696
н	-4.48545	-3.20029	-0.64719
н	-4.88075	-3.34048	-2.3761
н	-2.76927	-4.88459	-1.80363
н	-1.45866	-3.52823	-3.7067
н	-3.15173	-3.88158	-4.05952
С	-4.58236	-0.56033	-1.95018
н	-5.10682	-0.47803	-0.99033
н	-4.14663	0.41693	-2.1929
н	-5.33211	-0.79618	-2.7224
С	-1.67945	-3.96448	0.35263
н	-2.63101	-4.41662	0.65956
н	-0.99394	-4.79929	0.14412
н	-1.25614	-3.41055	1.20028

С	-0.34797	-3.1039	-1.48582
н	-0.18757	-2.4001	-2.3086
н	0.3892	-2.90541	-0.69398
н	-0.11914	-4.11592	-1.85379
С	-0.59976	2.40896	-0.29012
С	0.38868	2.82438	-1.5275
С	1.08503	4.11617	-0.97802
н	1.47181	4.74033	-1.79748
С	-0.28459	3.11155	-2.88575
н	0.48259	3.06542	-3.67379
н	-1.05618	2.36565	-3.12386
н	-0.73357	4.10879	-2.95862
С	1.4485	1.76344	-1.85156
н	1.01915	0.92799	-2.42106
н	2.22866	2.21938	-2.48078
н	1.94315	1.36464	-0.95655
С	0.02067	4.75727	-0.07872
н	0.42174	5.59392	0.51467
н	-0.8748	5.12045	-0.59124
С	-0.19661	3.50677	0.79214
С	-1.14333	3.62918	1.97237
н	-1.14789	2.69511	2.55259
н	-0.8035	4.43709	2.6395
Н	-2.17324	3.85569	1.66195
С	1.26643	3.21629	1.24077
Н	1.46443	3.74803	2.18336
Н	1.41481	2.14894	1.43292
С	2.14192	3.76163	0.0837
н	2.67449	4.67694	0.3838

Н	2.90692	3.0527	-0.25623
С	2.26194	-1.84977	1.64619
С	5.24364	-0.82748	-0.4789
С	5.20396	0.53567	-0.81449
С	6.48793	-1.47133	-0.44243
С	6.37558	1.23816	-1.09499
н	4.23947	1.04495	-0.86736
С	7.66433	-0.76954	-0.72176
н	6.53326	-2.53223	-0.18338
С	7.61323	0.58758	-1.04784
н	6.3231	2.29812	-1.35622
н	8.62584	-1.28751	-0.68318
н	8.53204	1.13602	-1.26846
н	4.12786	-2.66094	-0.06951
0	1.94297	-2.97786	1.2023
С	1.47999	-1.29254	2.81322
С	1.62048	0.01728	3.29819
С	0.48877	-2.11264	3.37607
С	0.78238	0.49877	4.3054
н	2.3792	0.67832	2.87983
С	-0.34669	-1.63618	4.38561
н	0.39374	-3.12562	2.98238
С	-0.20738	-0.32499	4.84999
н	0.89772	1.52605	4.66004
н	-1.12093	-2.28432	4.80248
н	-0.86998	0.056	5.63094
н	3.55631	-0.07672	1.41528

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-3.1** (*R*)

Imaginary frequency: -384.51 cm⁻¹ Energy: -4068.821521 Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.162732

Cu	1.92381 -0.81074 -0.53159
С	2.92383 -2.06382 -1.97736
С	3.52621 -0.49632 0.71081
С	4.05673 -1.25753 -0.42151
н	2.63244 -1.40747 -2.81233
н	3.84301 -2.58217 -2.26133
н	2.15196 -2.82778 -1.78445
С	-2.88354 2.99224 -3.58096

С	-2.22436	3.16131	-2.36333
С	-3.50172	1.77727	-3.8543
С	-2.14546	2.16758	-1.37451
С	-3.56999	0.82937	-2.83579
С	-2.97124	1.01101	-1.57599
0	-0.77589	0.96289	0.17396
0	-1.29348	-1.2144	-1.14411
С	-3.64827	0.18202	-0.49959
С	-4.90854	0.76794	-0.22891
Р	-0.13257	-0.09492	-0.91559
С	-3.33245	-1.05256	0.12388
С	-5.82662	0.24393	0.66821
С	-4.28325	-1.55268	1.03934
С	-5.49273	-0.93347	1.32931
н	-4.09101	-2.48624	1.54431
н	-6.17277	-1.38949	2.05236
н	-6.7798	0.74762	0.84261
н	-5.1586	1.68924	-0.75626
н	-4.17849	-0.06351	-2.98071
н	-3.98532	1.58994	-4.81564
н	-2.88796	3.80509	-4.31051
н	-1.74104	4.11269	-2.19143
н	-0.33781	0.6143	-2.13151
С	-1.15909	2.31332	-0.18362
С	-1.76026	3.02975	1.08604
С	0.21735	3.20975	-0.40097
С	-0.78803	2.82274	2.28637
С	-1.49585	4.50317	0.71428
С	0.02549	4.36087	0.63979

С	0.33113 3.86782 2.06142
Н	-0.41122 1.79359 2.32766
Н	-1.32855 3.0036 3.2266
Н	-1.97953 4.80909 -0.22382
Н	-1.82731 5.19139 1.50729
Н	0.5872 5.26202 0.35236
Н	1.33854 3.45629 2.18465
Н	0.24012 4.70804 2.76733
С	-3.19336 2.7113 1.4583
Н	-3.88752 2.93591 0.63968
Н	-3.31737 1.65781 1.73972
Н	-3.48502 3.32791 2.32338
С	0.51564 3.82323 -1.78414
Н	-0.06016 4.73103 -2.00163
Н	1.57412 4.12612 -1.79516
Н	0.36824 3.11126 -2.60832
С	1.47287 2.3866 -0.07561
Н	1.38775 1.75978 0.81478
Н	1.74424 1.73246 -0.91889
Н	2.32429 3.06998 0.06419
С	-2.15734 -1.96799 -0.27682
С	-1.37945 -2.77643 0.90679
С	-1.64271 -4.26909 0.51598
Н	-1.51958 -4.93524 1.38229
С	-1.84508 -2.51028 2.35451
Н	-1.057 -2.85942 3.0376
н	-1.99506 -1.43855 2.54605
н	-2.75803 -3.04698 2.63858
С	0.12017 -2.49321 0.94655

Н	0.3246 -1.50405 1.37849
н	0.63095 -3.21748 1.59397
н	0.60186 -2.57039 -0.03395
С	-3.03392 -4.24031 -0.1289
н	-3.29735 -5.19722 -0.60655
Н	-3.85841 -3.97215 0.53808
С	-2.67758 -3.1728 -1.18064
С	-3.74896 -2.80321 -2.19142
н	-3.35626 -2.07561 -2.91693
н	-4.06074 -3.6991 -2.75098
н	-4.64124 -2.37167 -1.71591
С	-1.43839 -3.8446 -1.8426
н	-1.78353 -4.48818 -2.66552
н	-0.75932 -3.1009 -2.27464
С	-0.79502 -4.67745 -0.70244
н	-0.91436 -5.75645 -0.88373
н	0.27948 -4.49628 -0.57815
С	3.05506 -1.20994 1.86578
С	5.05573 -0.56192 -1.28224
С	4.79669 0.70366 -1.83425
С	6.29596 -1.16186 -1.54298
С	5.75208 1.35309 -2.61532
н	3.83046 1.17994 -1.65448
С	7.25668 -0.5123 -2.3231
н	6.511 -2.14677 -1.12053
С	6.98911 0.7479 -2.8623
н	5.53005 2.33653 -3.03742
н	8.21944 -0.99471 -2.50942
н	7.73804 1.25584 -3.47452

Н	4.34088	-2.2693	-0.12196
0	2.9991	-2.45192	1.91691
С	2.50546	-0.41063	3.0273
С	2.72068	0.96475	3.21104
С	1.7065	-1.09275	3.95844
С	2.13759	1.64045	4.28512
н	3.35993	1.51553	2.51995
С	1.10751	-0.41692	5.02182
н	1.57503	-2.16626	3.81642
С	1.31833	0.95552	5.18752
н	2.32246	2.70897	4.41873
н	0.47711	-0.96247	5.72889
н	0.85416	1.48843	6.02106
н	3.70173	0.57698	0.75145

Optimized reductive elimination transition structure of the active catalyst system (MeCu \cdot BIFOP-H \cdot chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-8.3** (*R*)

Imaginary frequency: -436.41 cm⁻¹ Energy: -4068.809011 Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.149969

Cu	-1.91554	0.00861	-0.71445
С	-3.58999	-0.41478	-2.01389
С	-3.06103	0.17875	0.99714
С	-4.03562	-0.18895	-0.0376
н	-3.38259	-1.46759	-2.24455
н	-4.62288	-0.18053	-2.28536
н	-2.9432	0.24483	-2.63068
С	2.71966	2.16512	3.48755
С	2.52971	2.4845	2.14439

С	2.91434	0.83741	3.84723
С	2.51761	1.53453	1.1115
С	3.02847	-0.11241	2.83552
С	2.8808	0.1926	1.47015
0	1.48125	0.75133	-0.89194
0	0.74784	-1.3797	0.47505
С	3.51615	-0.8617	0.57578
С	4.92193	-0.7538	0.68733
Р	0.20138	0.04818	-0.11378
С	2.98832	-1.94548	-0.18263
С	5.81898	-1.58309	0.02886
С	3.9256	-2.75282	-0.85929
С	5.30415	-2.586 -	0.78408
н	3.57694	-3.57778	-1.46073
н	5.96104	-3.25887	-1.34005
н	6.89498	-1.43965	0.14896
н	5.31482	0.04015	1.32266
н	3.30678	-1.13197	3.09915
н	3.02878	0.5439	4.89304
н	2.69197	2.95606	4.24001
н	2.36476	3.52454	1.9027
н	0.19738	0.74569	1.11906
С	2.08157	1.94329	-0.32041
С	3.27289	2.44007	-1.22693
С	1.01932	3.20017	-0.5186
С	2.78671	2.51165	-2.70441
С	3.305	3.93124 -	0.83171
С	1.88452	4.23718	-1.30764
С	2.00191	3.84415	-2.78895

Н	2.17988	1.63291 -2.95785
н	3.65808	2.50933 -3.37565
Н	3.47806	4.09243 0.24059
н	4.07797	4.48475 -1.38771
Н	1.52553	5.26445 -1.1487
н	1.03904	3.75681 -3.30709
н	2.58264	4.6116 -3.32408
С	4.60226	1.72454 -1.1057
Н	4.97487	1.72976 -0.07424
Н	4.53906	0.68433 -1.44837
Н	5.34622	2.24138 -1.73307
С	0.40262	3.87426 0.72488
Н	1.08192	4.5751 1.22611
Н	-0.45723	4.4739 0.38979
Н	0.01374	3.15615 1.4607
С	-0.19963	2.77671 -1.35827
Н	0.03909	2.1476 -2.22098
Н	-0.93464	2.24734 -0.73657
Н	-0.72007	3.67889 -1.71102
С	1.51942	-2.42652 -0.11421
С	0.83893	-3.08143 -1.45229
С	0.59109	-4.5652 -1.00906
Н	0.52482	-5.23623 -1.87849
С	1.67239	-3.0329 -2.74991
Н	0.99808	-3.18517 -3.60656
Н	2.16612	-2.0592 -2.88003
Н	2.43292	-3.81931 -2.82141
С	-0.49883	-2.43543 -1.84068
н	-0.34865	-1.48377 -2.36643

Н	-1.02818	-3.1108	-2.53072
н	-1.16223	-2.25677	-0.98729
С	1.71865	-4.85097	-0.011
н	1.57781	-5.8054	0.52019
н	2.73065	-4.85338	-0.42596
С	1.40504	-3.65105	0.90024
С	2.21996	-3.52269	2.17398
н	1.86891	-2.66751	2.76831
н	2.09672	-4.43023	2.78574
н	3.29256	-3.39211	1.97263
С	-0.10703	-3.89504	1.18792
н	-0.20661	-4.50095	2.10036
н	-0.63177	-2.94936	1.3706
С	-0.6195	-4.65628	-0.06222
н	-0.8167	-5.71385	0.17116
н	-1.54914	-4.24883	-0.47656
С	-2.6541	1.48297	1.44548
С	-4.68607	-1.52699	0.12425
С	-3.94743	-2.6645	0.49057
С	-6.06105	-1.67154	-0.10528
С	-4.56536	-3.90712	0.62305
н	-2.87583	-2.57843	0.67611
С	-6.68554	-2.91444	0.03317
н	-6.65072	-0.79623	-0.39102
С	-5.93972	-4.0381	0.39528
н	-3.96957	-4.77805	0.90698
н	-7.76035	-3.00325	-0.14298
н	-6.42522	-5.01108	0.50099
Н	-4.76251	0.59588	-0.25497

0	-1.83074	1.61856	2.37164
С	-3.19527	2.7559	0.82176
С	-3.592	2.9005 -0).51735
С	-3.2147	3.89548	1.64462
С	-3.99806	4.14189	-1.01735
н	-3.54551	2.05821	-1.20506
С	-3.63724	5.12974	1.15549
н	-2.86812	3.78053	2.67256
С	-4.03038	5.2596	-0.1819
н	-4.28453	4.23322	-2.06817
н	-3.65239	6.00052	1.81605
Н	-4.35297	6.22859	-0.57082
Н	-2.6841	-0.61462	1.64758

Optimized reductive elimination transition structure of the active catalyst system (MeCu \cdot BIFOP-H \cdot chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-8.2** (*R*)

Imaginary frequency: -404.21 cm ⁻¹
Energy: -4068.813337
Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.150382

Cu	2.04841 -0.61298 -0.15817
С	3.2211 -2.01725 -1.30448
С	3.53286 -0.04423 1.15632
С	4.13708 -1.02526 0.23073
Н	2.7796 -1.49253 -2.17058
Н	4.20939 -2.36749 -1.61159
Н	2.60371 -2.88061 -1.02182
С	-3.81088 -2.18047 2.51791
С	-3.49715 -2.29328 1.16275

С	-3.60474 -0.96693 3.16425
С	-2.98667 -1.23677 0.39311
С	-3.24702 0.13768 2.39411
С	-3.00778 0.05974 1.01107
0	-1.28218 -0.51633 -1.11808
0	-0.46519 1.14987 0.65778
С	-3.22426 1.39245 0.31969
С	-4.61825 1.64409 0.28966
Р	-0.12681 -0.32265 0.05628
С	-2.34585 2.40726 -0.13559
С	-5.18144 2.8011 -0.22491
С	-2.9522 3.57135 -0.65655
С	-4.32403 3.77713 -0.72385
н	-2.33037 4.38137 -1.00545
н	-4.71015 4.70973 -1.14161
н	-6.26532 2.93485 -0.23032
н	-5.2775 0.87176 0.68811
н	-3.21912 1.12621 2.85525
н	-3.783 -0.85723 4.23636
н	-4.18688 -3.05149 3.05919
н	-3.64632 -3.25784 0.69895
н	-0.65924 -1.10369 1.10764
С	-2.34428 -1.49401 -0.99966
С	-3.33414 -1.33635 -2.22046
С	-1.6971 -2.98503 -1.33247
С	-2.49875 -1.22727 -3.52836
С	-3.88243 -2.77445 -2.31587
С	-2.52633 -3.43001 -2.57728
С	-2.08078 -2.68447 -3.84398

Н	-1.64643 -0.54983 -3.3946
н	-3.12919 -0.80583 -4.32512
н	-4.38136 -3.10792 -1.39428
н	-4.59245 -2.88857 -3.14987
н	-2.52713 -4.52436 -2.68876
н	-1.01301 -2.79697 -4.07035
н	-2.63323 -3.07644 -4.71206
С	-4.39702 -0.25968 -2.14016
н	-5.02167 -0.36779 -1.2454
н	-3.96227 0.74759 -2.13912
н	-5.05509 -0.34119 -3.02011
С	-1.77173 -4.10413 -0.27553
н	-2.76691 -4.5577 -0.18407
н	-1.09789 -4.91276 -0.59893
н	-1.43426 -3.77548 0.71487
С	-0.20028 -2.88356 -1.66438
н	0.05931 -2.0551 -2.32957
н	0.39545 -2.77843 -0.74633
н	0.12223 -3.82086 -2.14267
С	-0.81803 2.41406 0.08478
С	0.11811 2.89064 -1.16594
С	0.88708 4.10539 -0.5515
н	1.30209 4.75135 -1.34012
С	-0.63366 3.33028 -2.43987
н	0.08884 3.38864 -3.26796
н	-1.41263 2.60858 -2.72347
н	-1.09382 4.32166 -2.36618
С	1.10423 1.82803 -1.66085
Н	0.59059 1.01157 -2.18856

н	1.79888	2.29415	-2.37687
н	1.71595	1.4128	-0.85037
С	-0.14999	4.75321	0.37526
н	0.2865	5.54605	1.00251
н	-1.02251	5.1824	-0.12638
С	-0.41364	3.47797	1.20083
С	-1.38613	3.56875	2.36474
н	-1.45502	2.59612	2.87555
н	-1.02546	4.30541	3.09925
н	-2.39636	3.86617	2.04938
С	1.03688	3.16046	1.66182
н	1.24471	3.73451	2.57645
н	1.1885	2.10962	1.91964
С	1.92701	3.64419	0.48747
н	2.54954	4.50175	0.78446
Н	2.61571	2.8721	0.12452
С	2.77862	-0.2073	2.38069
С	5.25863	-0.43583	-0.57011
С	5.0533	0.68604	-1.3888
С	6.54373	-0.98866	-0.50035
С	6.10715	1.24418	-2.11143
н	4.05401	1.12001	-1.46203
С	7.60265	-0.42958	-1.22219
н	6.71901	-1.86154	0.13415
С	7.38877	0.68896	-2.03011
Н	5.92758	2.11687	-2.74425
н	8.59978	-0.87076	-1.14956
Н	8.21491	1.126	-2.59583
Н	4.42252	-1.98279	0.67436

0	2.68614	0.72134	3.19344
С	1.8945	-1.42624	2.62248
С	2.03575	-2.6899	2.02186
С	0.79218	-1.21626	3.47116
С	1.08513	-3.69396	2.23559
н	2.89219	-2.91615	1.39193
С	-0.16263	-2.2101	3.6737
н	0.70981	-0.23575	3.94173
С	-0.02346	-3.45532	3.05099
н	1.21431	-4.66858	1.75834
н	-1.02876	-2.0116	4.30808
н	-0.77391	-4.23433	3.20393
н	3.92538	0.97154	1.06971

Optimized reductive elimination transition structure of the active catalyst system (MeCu \cdot BIFOP-H \cdot chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-6** (*R*)

Imaginary frequency: -382.66 cm⁻¹

Energy: -4068.822935

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.161142

Cu	-1.44772 -0.60202 -0.46436
С	-1.71624 -2.32271 -1.82928
н	-2.32463 -3.20348 -2.05613
н	-1.87098 -1.58625 -2.63759
н	-0.66234 -2.63097 -1.78374
С	-2.78837 -1.14828 0.96257
н	-2.20103 -1.23191 1.87825
С	-2.71044 -2.28284 0.03098
С	-3.888 -0.21865 1.09544
0	-4.06348 0.44531 2.12483
н	-3.64602 -2.50561 -0.48513
С	-4.87032 -0.00963 -0.03979
С	-6.18175 0.36027 0.29827
С	-4.52484 -0.07849 -1.39669
С	-7.12839 0.62039 -0.69189
н	-6.42814 0.45098 1.35752
С	-5.46448 0.19889 -2.39317
н	-3.5032 -0.32501 -1.68926
С	-6.77305 0.54016 -2.04334
н	-8.14819 0.89657 -0.41162
н	-5.17071 0.15201 -3.44493
н	-7.51202 0.75153 -2.8203
С	-2.0158 -3.49253 0.56437
С	-0.71246 -3.40421 1.08442
С	-2.65523 -4.73868 0.5656

С	-0.07353 -4.53031 1.59946
н	-0.18985 -2.44449 1.06379
С	-2.0167 -5.86924 1.0854
н	-3.66753 -4.82234 0.16145
С	-0.7248 -5.76945 1.60513
н	0.9418 -4.44259 1.99231
н	-2.53346 -6.83219 1.08255
н	-0.22369 -6.65253 2.00862
С	-1.20691 0.90484 3.30791
С	-0.94505 1.81269 2.28317
С	-0.33682 -0.15912 3.50605
С	0.15217 1.70958 1.41736
С	0.82921 -0.21946 2.74579
С	1.13282 0.70289 1.72869
0	1.0112 1.82002 -0.7929
0	1.52023 -0.77266 -0.72901
С	2.62311 0.75754 1.41144
С	3.28591 1.35553 2.50799
Р	0.4095 0.33234 -1.16502
С	3.42527 0.25801 0.3423
С	4.65563 1.57557 2.56367
С	4.80554 0.53409 0.41117
С	5.42347 1.18726 1.47284
Н	5.45186 0.19569 -0.38358
Н	6.50225 1.35728 1.44846
Н	5.10314 2.05288 3.43806
н	2.67131 1.67893 3.34824
Н	1.57746 -0.97284 2.98889
н	-0.53468 -0.91624 4.26793

Н	-2.12481	1.00605	3.88567
н	-1.66412	2.60631	2.14025
н	0.59607	0.4515	-2.55624
С	0.26544	2.6148	0.16529
С	1.00951	3.98209	0.42319
С	-1.10626	3.16043	-0.58818
С	1.40319	4.60188	-0.9488
С	-0.18504	4.86572	0.83833
С	-0.94653	4.70915	-0.47728
С	0.09404	5.23983	-1.4753
н	1.81602	3.83769	-1.61967
н	2.18833	5.35652	-0.79376
н	-0.71685	4.48784	1.72238
н	0.12567	5.90218	1.04276
н	-1.92006	5.21664	-0.54123
н	-0.12633	4.99377	-2.52175
н	0.13503	6.3382	-1.4098
С	2.1681	3.99128	1.39921
н	1.88449	3.57604	2.37431
н	3.02854	3.42942	1.01675
н	2.49175	5.03236	1.55906
С	-2.47203	2.75428	-0.01128
н	-2.51846	1.68539	0.22314
Н	-2.76202	3.31398	0.88545
Н	-3.24583	2.95927	-0.76614
С	-1.16104	2.72616	-2.06614
Н	-1.51246	1.68589	-2.15846
Н	-1.90913	3.34394	-2.58502
Н	-0.21041	2.82207	-2.60036

С	2.95331 -0.78327 -0.69871
С	3.35597 -2.23939 -0.17813
С	3.60025 -0.80599 -2.20116
С	2.5641 -3.28918 -1.00999
С	4.76518 -2.40542 -0.77515
С	4.32627 -2.19477 -2.22699
С	3.31238 -3.34558 -2.3665
н	1.50748 -3.01564 -1.10182
н	2.59565 -4.25708 -0.48908
н	5.504 -1.69173 -0.3974
н	5.15917 -3.41784 -0.5946
н	5.12267 -2.21278 -2.98603
н	2.64954 -3.25941 -3.23576
н	3.85747 -4.29525 -2.47888
С	3.22198 -2.47037 1.31621
н	3.83 -1.77335 1.90865
н	2.17465 -2.36863 1.62866
н	3.54473 -3.49495 1.5588
С	2.55403 -0.75783 -3.32967
н	1.66407 -1.36764 -3.14163
н	2.23875 0.27298 -3.53867
н	3.02673 -1.13581 -4.24946
С	4.59317 0.32212 -2.54897
н	5.60608 0.1567 -2.16229
н	4.69354 0.3763 -3.64382
н	4.24075 1.30163 -2.19473

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-4** (*S*)

Imaginary frequency: -378.86 cm⁻¹

Energy: -4068.823932

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.162638

Cu	-2.01044	-0.0561	-0.63227
С	-3.17872	0.71172	-2.27062
С	-3.50775	-1.04389	0.34522
Н	-3.65645	-0.64771	1.34971
С	-4.15369	-0.38333	-0.79291
С	-2.96953	-2.36356	0.16348
0	-2.96519	-2.95027	-0.93797
С	-2.34536	-3.05288	1.35021
С	-1.77322	-2.35091	2.42271
С	-2.25703	-4.45241	1.33346

С	-1.12338	-3.03313	3.45304
н	-1.80443	-1.25998	2.43076
С	-1.62332	-5.13707	2.37017
н	-2.68195	-4.98075	0.47842
С	-1.04882	-4.42919	3.43122
н	-0.66358	-2.47237	4.27076
н	-1.56481	-6.22832	2.3471
н	-0.53802	-4.96367	4.23609
н	-2.39172	0.28487	-2.91448
н	-4.12101	0.65637	-2.82063
н	-2.97693	1.76715	-2.03718
н	-4.46927	-1.10955	-1.54658
С	-5.1734	0.65612	-0.47283
С	-4.90334	1.69752	0.43055
С	-6.43997	0.60557	-1.07222
С	-5.87232	2.65459	0.73028
н	-3.91788	1.76208	0.89673
С	-7.41444	1.56118	-0.77158
н	-6.66396	-0.19887	-1.7776
С	-7.13465	2.59002	0.1305
н	-5.64184	3.4576	1.43502
н	-8.39747	1.49993	-1.24502
н	-7.89446	3.33934	0.36479
С	2.67512	1.9421	3.87578
С	2.19459	2.56542	2.72474
С	3.1649	0.64392	3.78827
С	2.17298	1.95621	1.4596
С	3.28725	0.06797	2.52612
С	2.86401	0.70372	1.34458

0	0.97849 1.50418 -0.55949
0	1.04541 -1.04023 0.07378
С	3.58399 0.16246 0.11918
С	4.91406 0.64508 0.14749
Р	0.06573 0.25607 0.03803
С	3.23929 -0.7975 -0.87078
С	5.88583 0.29107 -0.77681
С	4.25 -1.13448 -1.79548
С	5.53586 -0.60759 -1.77858
Н	4.04329 -1.8685 -2.5584
н	6.25913 -0.92439 -2.53345
Н	6.89357 0.70607 -0.70639
Н	5.181 1.33731 0.94644
Н	3.79979 -0.88829 2.42839
н	3.51013 0.10662 4.67443
Н	2.64472 2.47165 4.83059
Н	1.80985 3.57004 2.83151
Н	0.12881 0.53881 1.42889
С	1.38968 2.60308 0.28653
С	2.23078 3.63463 -0.56201
С	0.05461 3.52678 0.6316
С	1.46022 3.94174 -1.87925
С	1.98955 4.92315 0.25054
С	0.47079 4.92528 0.07162
С	0.36991 4.95935 -1.46163
н	1.05205 3.02237 -2.31726
н	2.15567 4.3719 -2.61464
н	2.33237 4.85199 1.2917
Н	2.48117 5.79455 -0.20933

Н	-0.07902	5.7382	0.56864
н	-0.62771	4.72018	-1.85006
н	0.61495	5.97156	-1.81861
С	3.68706	3.30868	-0.8208
н	4.2432	3.16025	0.11279
н	3.80048	2.40951	-1.439
н	4.15351	4.14956	-1.35856
С	-0.3954	3.68165	2.09819
н	0.2072	4.39424	2.67417
н	-1.42084	4.08275	2.09656
н	-0.41544	2.72577	2.64009
С	-1.19855	3.01044	-0.09428
н	-1.02267	2.7047	-1.12866
н	-1.64489	2.15691	0.44074
н	-1.96591	3.79913	-0.09425
С	1.94962	-1.6453	-0.86478
С	1.25287	-2.02798	-2.29331
С	1.30847	-3.59032	-2.2787
н	1.2163	-3.9981 -	3.29651
С	1.93729	-1.48508	-3.56589
н	1.22309	-1.55938	-4.39963
н	2.22264	-0.42834	-3.46309
н	2.82199	-2.0545	-3.87458
С	-0.19729	-1.55345	-2.41494
н	-0.24254	-0.46889	-2.59027
н	-0.66117	-2.04233	-3.28485
н	-0.82173	-1.8175	-1.55637
С	2.6203	-3.89083	-1.54464
н	2.74053	-4.9618	-1.31808

Н	3.53251	-3.55929	-2.05178
С	2.25373	-3.09661	-0.27641
С	3.23763	-3.14399	0.87925
н	2.82067	-2.62799	1.75602
Н	3.41566	-4.19196	1.16703
н	4.20799	-2.69024	0.63184
С	0.89679	-3.7598	0.08396
н	1.08734	-4.63272	0.72462
н	0.25533	-3.08445	0.65529
С	0.29058	-4.17543	-1.28086
Н	0.27449	-5.27134	-1.38616
н	-0.74201	-3.83185	-1.41678

Optimized reductive elimination transition structure of the active catalyst system (MeCu \cdot BIFOP-H \cdot chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-4.1** (S)

Imaginary frequency: -399.72 cm⁻¹

Energy: -4068.823399

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.161513

Cu	-2.0985	-0.41352	-0.74468
С	-3.45193	-0.76899	-2.34701
С	-3.32969	-1.06584	0.78953
н	-3.5852	-0.28603	1.50558
С	-4.12221	-1.17132	-0.44253
С	-2.38341	-2.08768	1.1212
0	-2.15087	-3.06201	0.36816
С	-1.55649	-1.93506	2.37686
С	-1.39689	-0.71208	3.05107
С	-0.83419	-3.04853	2.83105
С	-0.51739	-0.59912	4.12874
н	-1.93833	0.17173	2.71068
С	0.03621	-2.94206	3.91637
н	-0.9629	-3.98965	2.29544
С	0.20616	-1.71375	4.56276
н	-0.38105	0.36746	4.61887
н	0.59408	-3.81921	4.25427
н	0.90271	-1.62308	5.39991
н	-2.8275	-1.56569	-2.77507
н	-4.48456	-0.90564	-2.67479
н	-3.12877	0.227 -	2.70284
н	-4.28049	-2.21121	-0.74359
С	-5.35589	-0.33027	-0.46394
С	-5.29024	1.06323	-0.30336

С	-6.61366	-0.92738	-0.62495
С	-6.45067	1.83686	-0.29487
н	-4.31556	1.54428	-0.19634
С	-7.77841	-0.15446	-0.61477
н	-6.67843	-2.01111	-0.75134
С	-7.70183	1.23018	-0.4491
н	-6.37956	2.92054	-0.1717
н	-8.75058	-0.63856	-0.73654
н	-8.61137	1.83548	-0.44378
С	2.1591	2.18497	3.64204
С	1.69689	2.70307	2.43255
С	2.77906	0.94132	3.65251
С	1.82019	2.03811	1.20211
С	3.04048	0.32267	2.4329
С	2.63456	0.85543	1.19671
0	0.80302	1.37678	-0.86049
0	1.0542	-1.11655	-0.05163
С	3.46305	0.32448	0.03778
С	4.74377	0.92127	0.10305
Р	-0.01988	0.09388	-0.20505
С	3.24351	-0.69052	-0.93457
С	5.7747	0.63908	-0.78182
С	4.3036	-0.93618	-1.83164
С	5.53521	-0.29244	-1.78559
н	4.1839	-1.68616	-2.5978
н	6.30409	-0.54515	-2.51929
Н	6.73964	1.14142	-0.68534
Н	4.91845	1.65203	0.89327
Н	3.64246	-0.58457	2.41849

н	3.11052	0.47966 4.58501
н	2.01127	2.751 4.56447
Н	1.20674	3.66613 2.46363
н	-0.0143	0.47125 1.15793
С	1.05585	2.54867 -0.05101
С	1.85107	3.61855 -0.89415
С	-0.38155	3.35182 0.16172
С	1.14169	3.80059 -2.26773
С	1.44207	4.9095 -0.15548
С	-0.05605	4.76334 -0.42656
С	-0.05725	4.7326 -1.96349
н	0.84388	2.83049 -2.68499
н	1.84182	4.26025 -2.98048
н	1.72255	4.91125 0.90629
н	1.88068	5.8047 -0.62319
н	-0.70862	5.53903 0.00101
н	-1.00246	4.39309 -2.40464
н	0.12394	5.74886 -2.34624
С	3.34426	3.41913 -1.05088
н	3.85112	3.3571 -0.08026
н	3.5763	2.51156 -1.62196
н	3.76673	4.27855 -1.59572
С	-0.94868	3.5062 1.58723
н	-0.46501	4.29658 2.17347
н	-2.00801	3.79453 1.50334
н	-0.90534	2.57094 2.16287
С	-1.53101	2.69752 -0.62889
н	-1.25278	2.35298 -1.62905
н	-1.95089	1.84134 -0.07471

Н	-2.35101 3.42464 -0.72909
С	2.04665 -1.66849 -0.92464
С	1.45297 -2.19655 -2.3501
С	1.77532 -3.73071 -2.29868
н	1.82899 -4.16022 -3.31047
С	2.04424 -1.55838 -3.62434
н	1.35359 -1.74501 -4.46075
н	2.15895 -0.46947 -3.52125
н	3.00924 -1.98011 -3.92972
С	-0.06133 -1.98949 -2.48375
н	-0.29784 -0.94509 -2.73136
н	-0.4232 -2.60566 -3.32179
н	-0.63124 -2.28147 -1.59522
С	3.05475 -3.81477 -1.45534
н	3.30595 -4.85111 -1.1803
н	3.94974 -3.36919 -1.89987
С	2.47597 -3.04605 -0.25321
С	3.34722 -2.92537 0.98406
н	2.78701 -2.43809 1.79521
н	3.63118 -3.93031 1.33395
н	4.27053 -2.35782 0.79838
С	1.18322 -3.86992 0.01887
н	1.41016 -4.65786 0.75252
Н	0.38299 -3.25707 0.44157
С	0.79918 -4.46109 -1.35932
н	0.99834 -5.54309 -1.40365
н	-0.2618 -4.32061 -1.59431

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-8.4 (S)**

Imaginary frequency: -420.86 cm⁻¹

Energy: -4068.812788

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.148164

Cu	-2.13825	-0.37671	-0.232
С	-3.37955	-1.86615	-1.15883
С	-3.5018	0.18885	1.22879
н	-3.83186	1.22602	1.13696
С	-4.20022	-0.77957	0.35872
С	-2.55826	0.02612	2.30802
0	-2.18713	1.00633	2.97838

С	-1.83478	-1.29005	2.56931
С	-2.2581	-2.56895	2.16518
С	-0.60984	-1.19036	3.25675
С	-1.47555	-3.69868	2.42002
н	-3.21197	-2.70797	1.66422
С	0.18253	-2.31196	3.49026
н	-0.30484	-0.20005	3.59538
С	-0.24655	-3.57479	3.07083
н	-1.82835	-4.68181	2.09889
н	1.14095	-2.199	4.00224
н	0.37354	-4.45668	3.24848
н	-2.6469	-2.64263	-0.88875
н	-4.35693	-2.33293	-1.30281
н	-3.10718	-1.3805	-2.11223
н	-4.51349	-1.70889	0.83768
С	-5.32573	-0.16682	-0.41821
С	-5.11603	0.95202	-1.24051
С	-6.6178	-0.70151	-0.33264
С	-6.17108	1.5244	-1.95019
н	-4.11237	1.37651	-1.32524
С	-7.67819	-0.12845	-1.0409
н	-6.79679	-1.57244	0.30365
С	-7.45898	0.9866	-1.85221
н	-5.98769	2.39419	-2.58582
н	-8.68025	-0.55591	-0.95558
н	-8.28601	1.43453	-2.40804
С	2.03716	1.96613	3.74387
С	1.71056	2.54669	2.51745
С	2.57689	0.68591	3.76761

С	1.90121	1.9114	1.28216
С	2.91083	0.08761	2.55419
С	2.65347	0.68624	1.30881
0	0.83663	1.25229	-0.74871
0	1.07155	-1.2075	-0.05017
С	3.54164	0.1066	0.22207
С	4.85603	0.5987	0.42149
Р	0.01425	0.02257	-0.00994
С	3.34244	-0.89512	-0.76182
С	5.95243	0.19884	-0.32501
С	4.484 -	1.29111 -	1.49382
С	5.75504	-0.76473	-1.31027
н	4.39148	-2.07267	-2.23304
н	6.58442	-1.12818	-1.92129
н	6.93981	0.62268	-0.12959
Н	5.00063	1.33604	1.21201
н	3.44741	-0.86295	2.5548
н	2.78825	0.17745	4.71099
н	1.83085	2.50904	4.66843
н	1.25501	3.52581	2.53927
н	0.15637	0.3729	1.34765
С	1.20129	2.4446	-0.00285
С	2.11319	3.37833	-0.88631
С	-0.15738	3.38788	0.12037
С	1.45354	3.56045	-2.2845
С	1.81793	4.73495	-0.21271
С	0.32159	4.72885	-0.52563
С	0.35532	4.62789	-2.05808
н	1.06102	2.60668	-2.66005

Н	2.21219 3.90324 -3.00333		
н	2.06154 4.74468 0.8593		
н	2.36296 5.56107 -0.69568		
н	-0.25852 5.58486 -0.1517		
н	-0.61044 4.36974 -2.50978		
н	0.6555 5.59919 -2.48137		
С	3.58524 3.039 -1.00159		
н	4.06954 2.98395 -0.01968		
н	3.74899 2.0872 -1.52259		
н	4.08961 3.83011 -1.57925		
С	-0.76545 3.68217 1.50587		
н	-0.20304 4.42994 2.08002		
н	-1.7615 4.12141 1.34017		
н	-0.9244 2.78323 2.11809		
С	-1.32673 2.78444 -0.68199		
н	-1.04618 2.39046 -1.66387		
н	-1.81275 1.97936 -0.10964		
н	-2.09284 3.56128 -0.82575		
С	2.0377 -1.69051 -0.98661		
С	1.50243 -1.8021 -2.52399		
С	1.4014 -3.34913 -2.7192		
н	1.36353 -3.61359 -3.78658		
С	2.43656 -1.20288 -3.59463		
н	1.89125 -1.16821 -4.54997		
н	2.73655 -0.17663 -3.34069		
н	3.3442 -1.78821 -3.77645		
С	0.15032 -1.12709 -2.77683		
н	0.23945 -0.03213 -2.74217		
н	-0.1979 -1.39927 -3.78547		
Н	-0.62747	-1.43164	-2.0743
---	----------	----------	----------
С	2.60419	-3.88819	-1.93375
н	2.59471	-4.98651	-1.85097
н	3.5822	-3.60564	-2.33399
С	2.20512	-3.22785	-0.59794
С	3.07494	-3.47065	0.62424
н	2.65134	-2.94722	1.49527
н	3.10686	-4.54596	0.86053
н	4.10699	-3.12143	0.4809
С	0.77843	-3.82807	-0.44022
н	0.87107	-4.81833	0.03049
н	0.14689	-3.22166	0.21339
С	0.24578	-3.94417	-1.89254
н	0.09251	-4.99564	-2.17964
н	-0.71382	-3.43473	-2.04569

Optimized reductive elimination transition structure of the active catalyst system (MeCu \cdot BIFOP-H \cdot chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-8 (S)**

Imaginary frequency: -405.75 cm⁻¹

Energy: -4068.810051

Cu	-1.78352 0.59823 -0.21084
С	-2.87854 1.73685 -1.72867
С	-3.33424 0.42611 1.09561
н	-2.96735 0.86343 2.02785
С	-3.82577 1.35343 0.06516
С	-3.68936 -0.967 1.26527
0	-3.43066 -1.57128 2.31338
С	-4.396 -1.7508 0.17197
С	-4.31213 -1.48115 -1.20278
С	-5.12631 -2.87888 0.58421
С	-4.9404 -2.31061 -2.13708

н	-3.7235	-0.64265	-1.56748
С	-5.76811	-3.6978	-0.34232
н	-5.15167	-3.09727	1.65275
С	-5.67638	-3.4176	-1.71072
н	-4.84848	-2.08972	-3.20364
н	-6.33653	-4.56636	0.00016
н	-6.1714	-4.06338	-2.44032
н	-2.30793	1.02623	-2.35867
н	-3.85395	1.87338	-2.20497
н	-2.35807	2.70026	-1.68447
н	-4.70338	0.98945	-0.47026
С	-3.96247	2.7847	0.47358
С	-2.94969	3.44151	1.19372
С	-5.11074	3.50967	0.12786
С	-3.08345	4.78014	1.55807
н	-2.04503	2.89473	1.46954
С	-5.25065	4.85102	0.49619
н	-5.90722	3.01391	-0.43336
С	-4.2371	5.49238	1.2109
н	-2.28333	5.27165	2.11724
н	-6.15735	5.39609	0.22236
н	-4.34353	6.54128	1.49739
С	3.84483	2.02488	3.19132
С	3.54574	2.31119	1.85947
С	3.72841	0.71615	3.64599
С	3.131	1.34472	0.92913
С	3.45983	-0.28452	2.71508
С	3.22148	-0.02381	1.35358
0	1.59449	0.73767	-0.79908

0	0.72796	-1.15675	0.7521
С	3.51421	-1.23313	0.48226
С	4.91848	-1.40343	0.42901
Р	0.35318	0.33317	0.22417
С	2.69308	-2.22685	-0.11358
С	5.54567	-2.44446	-0.23879
С	3.36287	-3.26527	-0.79506
С	4.74487	-3.38271	-0.88124
н	2.78683	-4.04583	-1.2669
н	5.18225	-4.22099	-1.42833
н	6.6353	-2.51678	-0.25233
н	5.53479	-0.66274	0.93975
н	3.50334	-1.32769	3.02835
н	3.90587	0.46128	4.69314
н	4.14435	2.83182	3.86371
н	3.62945	3.34217	1.54513
н	0.73699	1.04149	1.39346
С	2.54626	1.76949	-0.44617
С	3.62561	1.91133	-1.58812
С	1.78717	3.23792	-0.57596
С	2.89513	2.01222	-2.95913
С	4.07086	3.37047	-1.35933
С	2.69221	3.98338	-1.61017
С	2.42188	3.48467	-3.03842
н	2.07304	1.2878	-3.01799
н	3.60147	1.76882	-3.76618
н	4.47948	3.54717	-0.35506
н	4.82694	3.68814	-2.09414
н	2.61522	5.07531	-1.50133

Н	1.37954 3.59591 -3.36145
Н	3.03734 4.06077 -3.74659
С	4.7524 0.89971 -1.62219
н	5.31257 0.88159 -0.67975
н	4.38566 -0.11399 -1.82685
н	5.45591 1.17284 -2.42491
С	1.61992 4.11601 0.68083
н	2.52976 4.65682 0.96854
н	0.86473 4.88551 0.45762
н	1.26334 3.54842 1.55186
С	0.3565 3.08903 -1.12065
н	0.25613 2.36867 -1.93709
н	-0.34481 2.79394 -0.32685
н	0.01024 4.06979 -1.47989
С	1.17193 -2.36193 0.11525
С	0.24644 -2.84359 -1.14112
С	-0.34734 -4.1945 -0.61618
н	-0.67513 -4.83354 -1.44986
С	0.96953 -3.06051 -2.48692
н	0.21436 -3.08352 -3.28728
Н	1.6722 -2.24509 -2.71103
Н	1.51058 -4.01131 -2.55421
С	-0.88862 -1.87087 -1.47693
Н	-0.51322 -0.98677 -2.01327
Н	-1.60785 -2.37456 -2.13915
Н	-1.45287 -1.55584 -0.59055
С	0.76386 -4.75982 0.27735
Н	0.42911 -5.63565 0.85468
н	1.68912 -5.04201 -0.23401

С	0.86751	-3.51175	1.1745
С	1.83051	-3.57321	2.34705
н	1.76984	-2.64818	2.93904
н	1.55772	-4.40985	3.00896
н	2.8733	-3.71667	2.02889
С	-0.6168	-3.37136	1.62635
н	-0.76593	-3.96549	2.53959
н	-0.89204	-2.3418	1.87603
С	-1.43594	-3.94537	0.44233
н	-1.90706	-4.90304	0.71045
н	-2.24778	-3.28758	0.11911

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-2.1** (*R*)

Imaginary frequency: -390.64 cm⁻¹

Energy: -4068.829003

Cu	1.70066 0.8773 -0.41554
С	2.72664 2.42134 -1.47668
н	1.70327 2.82308 -1.39497
н	3.42781 3.19881 -1.16067
н	2.90438 2.08196 -2.5013
С	3.33889 -0.42485 -0.30997
н	3.34475 -0.86153 0.687
С	3.84412 0.93404 -0.49899
С	3.17173 -1.23748 -1.47997
0	3.24232 -0.76176 -2.63011
н	4.46837 1.02639 -1.38937
С	2.87926 -2.70945 -1.3236
С	2.42701 -3.4095 -2.45359
С	3.07594 -3.42017 -0.12955
С	2.1661 -4.77826 -2.39218
н	2.30496 -2.84739 -3.3807
С	2.83146 -4.79357 -0.06933
н	3.44261 -2.9049 0.75886
С	2.37216 -5.47728 -1.19854
н	1.80846 -5.30607 -3.27998
н	3.00228 -5.33369 0.86532
н	2.1774 -6.55151 -1.14882
С	4.38069 1.64833 0.69432
С	3.71236 1.63589 1.93129
С	5.58545 2.36133 0.59903
С	4.23129 2.31268 3.03457
н	2.7698 1.09189 2.02643

С	6.11069 3.03672 1.70346
н	6.11724 2.3809 -0.35566
С	5.43511 3.01685 2.926
н	3.69323 2.2915 3.98562
н	7.05322 3.58142 1.60747
н	5.84276 3.547 3.78995
С	0.1984 1.61835 -3.63979
С	-0.69954 2.19963 -2.73897
С	0.57057 0.28857 -3.47798
С	-1.27768 1.49046 -1.67977
С	-0.13053 -0.48427 -2.54851
С	-1.1155 0.05773 -1.70773
0	-1.61334 1.31853 0.65504
0	-0.39772 -0.90454 0.96047
С	-2.17809 -0.93558 -1.27193
С	-2.96555 -1.23294 -2.41197
Ρ	-0.09305 0.68405 0.84561
С	-2.49717 -1.57878 -0.04644
С	-4.09091 -2.04237 -2.38229
С	-3.67603 -2.35503 -0.04206
С	-4.47232 -2.5815 -1.15813
н	-3.98 -2.84728 0.86882
н	-5.36646 -3.20225 -1.06624
н	-4.66415 -2.22715 -3.2932
н	-2.68138 -0.76383 -3.35498
н	0.04059 -1.56158 -2.51063
н	1.36289 -0.16337 -4.07291
н	0.64721 2.23272 -4.4229
н	-0.91506 3.25373 -2.85266

Н	0.09006	1.05439	2.20129
С	-1.92504	2.19022	-0.45902
С	-3.49953	2.3764	-0.52603
С	-1.43988	3.71014	-0.02413
С	-4.03661	2.51789	0.92196
С	-3.60483	3.83134	-1.02116
С	-2.80732	4.43851	0.13336
С	-3.59925	3.9399	1.35425
н	-3.65131	1.72544	1.57258
н	-5.13302	2.42513	0.90071
н	-3.15674	3.985 ·	2.01408
н	-4.65203	4.16953	-1.06156
н	-2.68072	5.53087	0.1147
н	-3.01383	3.95233	2.28286
н	-4.47074	4.59175	1.52014
С	-4.3059	1.38358	-1.34147
н	-3.8995	1.25464	-2.35295
н	-4.35682	0.40037	-0.86042
н	-5.33725	1.75937	-1.43825
С	-0.60234	4.55995	-0.99965
н	0.34445	4.08757	-1.28375
н	-1.14276	4.84283	-1.91169
н	-0.35042	5.49968	-0.48468
С	-0.62796	3.70051	1.28055
н	0.3851	3.30104	1.10801
Н	-0.50266	4.73605	1.63254
н	-1.09499	3.12758	2.08714
С	-1.55854	-1.71507	1.17184
С	-0.97463	-3.20387	1.22204

С	-2.18189	-1.55583	2.66348
С	0.27403	-3.19468	2.14824
С	-1.97182	-3.92391	2.15218
С	-1.82263	-2.93257	3.31339
С	-0.30944	-3.05211	3.57907
н	0.97951	-2.40428	1.87457
н	0.79879	-4.15215	2.02322
н	-2.98693	-4.03265	1.7593
н	-1.6141	-4.93322	2.41006
н	-2.44323	-3.12767	4.20103
н	0.10911	-2.2066	4.13926
н	-0.1146	-3.95387	4.17967
С	-0.68754	-3.81989	-0.13639
н	-1.59071	-3.91701	-0.7538
н	0.04617	-3.21409	-0.68761
н	-0.24865	-4.82 -(0.01111
С	-1.56933	-0.3975	3.46087
н	-0.47607	-0.39373	3.45026
н	-1.92907	0.57152	3.08802
н	-1.88655	-0.48713	4.51164
С	-3.70479	-1.32515	2.74239
н	-4.30029	-2.23036	2.57517
н	-3.95413	-0.97665	3.75624
н	-4.03959	-0.55712	2.03161

Optimized reductive elimination transition structure of the active catalyst system (MeCu \cdot BIFOP-H \cdot chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-1.3** (*R*)

Imaginary frequency: -361.41 cm⁻¹

Energy: -4068.830081

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.166708

Cu	-1.67921 -0.89025 -0.36087
С	-2.71354 -2.61683 -1.06044
Н	-2.3781 -3.27707 -0.2486
Н	-3.6603 -3.00056 -1.44708
Н	-1.99052 -2.5833 -1.89192
С	-3.27598 0.43382 -0.35033
Н	-3.33206 0.88378 0.63947
С	-3.82286 -0.90814 -0.55328
С	-3.05054 1.23896 -1.51926
0	-3.08042 0.7618 -2.66884

Н	-4.30702	-0.99098	-1.52797
С	-2.76606	2.71279	-1.35977
С	-2.30683	3.41204	-2.48762
С	-2.97689	3.42577	-0.16967
С	-2.05525	4.78246	-2.42865
н	-2.1721	2.84683	-3.41102
С	-2.74016	4.80073	-0.11154
н	-3.34732	2.91193	0.71782
С	-2.27562	5.48376	-1.23891
н	-1.69297	5.30958	-3.31495
н	-2.9216	5.34248	0.82011
н	-2.08763	6.55927	-1.19069
С	-4.58296	-1.50636	0.58013
С	-5.88341	-1.98997	0.38079
С	-4.02835	-1.59045	1.86884
С	-6.61626	-2.53208	1.4406
н	-6.32646	-1.93261	-0.61677
С	-4.75593	-2.13163	2.92758
н	-3.00759	-1.23498	2.03463
С	-6.05631	-2.60449	2.71785
н	-7.63056	-2.89943	1.26574
н	-4.30627	-2.18962	3.92206
н	-6.62717	-3.03014	3.54649
С	-0.13658	-1.72811	-3.6126
С	0.73287	-2.29565	-2.67536
С	-0.49307	-0.38883	-3.49646
С	1.29755	-1.56401	-1.62433
С	0.19903	0.39993	-2.5743
С	1.15892	-0.13097	-1.69835

0	1.63139 -1.31844 0.70502
0	0.44665 0.92633 0.94211
С	2.23645 0.85592 -1.28264
С	3.03791 1.10095 -2.42571
Р	0.11931 -0.66026 0.87838
С	2.56312 1.52858 -0.07501
С	4.18056 1.88617 -2.41365
С	3.75822 2.27951 -0.08747
С	4.56593 2.4549 -1.2044
н	4.06863 2.79139 0.81016
н	5.4728 3.05872 -1.12531
н	4.76326 2.02964 -3.32601
н	2.74989 0.60917 -3.35586
н	0.04362 1.48021 -2.57132
н	-1.26246 0.05851 -4.12354
н	-0.57313 -2.35685 -4.39155
н	0.93805 -3.35517 -2.75542
н	-0.06948 -0.98375 2.24457
С	1.91894 -2.237 -0.37612
С	3.48274 -2.4772 -0.44137
С	1.38861 -3.72713 0.1003
С	4.01471 -2.64408 1.00747
С	3.52731 -3.93187 -0.9485
С	2.72573 -4.51834 0.21389
С	3.56518 -4.06811 1.42052
н	3.63001 -1.85711 1.66604
н	5.11151 -2.55651 0.99537
н	3.05783 -4.06037 -1.93508
н	4.55977 -4.31014 -1.00822

Н	2.55083 -5.60388 0.18516
н	3.01322 -4.09507 2.36901
н	4.42985 -4.73946 1.53767
С	4.32223 -1.5077 -1.25106
н	3.9331 -1.37782 -2.26897
н	4.38574 -0.52174 -0.77624
н	5.3468 -1.90547 -1.33031
С	0.4618 -4.53285 -0.82836
н	-0.43571 -3.97921 -1.1217
н	0.96391 -4.9013 -1.7321
н	0.12971 -5.42498 -0.27522
С	0.63981 -3.66003 1.44104
н	-0.36636 -3.23184 1.30299
н	0.49794 -4.68246 1.82351
н	1.15966 -3.0815 2.2107
С	1.62507 1.71705 1.13711
С	1.07387 3.21818 1.14945
С	2.245 1.58309 2.63307
С	-0.17092 3.26086 2.0805
С	2.08986 3.9422 2.05585
С	1.92393 2.98696 3.24463
С	0.41554 3.15112 3.51303
Н	-0.8919 2.4756 1.83388
н	-0.6787 4.22332 1.92791
н	3.10527 4.01977 1.65692
н	1.75397 4.96536 2.28719
н	2.55371 3.19157 4.12364
н	-0.02072 2.33511 4.10258
н	0.24561 4.07674 4.0842

С	0.79464	3.80119	-0.22491
н	1.69857	3.86552	-0.84557
н	0.05075	3.19149	-0.75765
н	0.37231	4.81153	-0.1276
С	1.60205	0.46658	3.46555
н	0.50907	0.48926	3.45222
н	1.93921	-0.52236	3.12558
н	1.91943	0.58265	4.51369
С	3.76064	1.31029	2.71688
н	4.38268	2.19185	2.52268
н	4.00178	0.9839	3.74004
н	4.07005	0.51213	2.02794

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-1.2** (*R*)

Imaginary frequency: -365.02 cm⁻¹

Energy: -4068.831997

Cu	-1.66164	0.02651	-0.46859
С	-1.8765	0.16011	-2.55132
н	-1.64284	-0.91835	-2.55569
Н	-2.55536	0.36068	-3.38251
н	-0.96267	0.763 -	2.65004
С	-3.31687	1.13937	0.12348
н	-4.06383	0.60631	0.70891
С	-3.35889	1.0078	-1.34272
С	-2.46509	2.12098	0.71663
0	-1.63767	2.78443	0.04011
н	-3.15663	1.95601	-1.8486
С	-2.47981	2.31258	2.21341
С	-1.68223	3.33814	2.74649
С	-3.20222	1.4976	3.10126
С	-1.60184	3.54189	4.12448
н	-1.1302	3.96456	2.04518
С	-3.12152	1.69746	4.48018
н	-3.8223	0.68624	2.71869
С	-2.31933	2.71945	4.99821
н	-0.97622	4.34611	4.52035
н	-3.68607	1.04961	5.15563
н	-2.2554	2.87339	6.07829
С	-4.5295	0.25763	-1.88211
С	-5.37783	0.85336	-2.826
С	-4.81613	-1.04979	-1.45578
С	-6.48922	0.16712	-3.32371

Н	-5.16569 1.86978 -3.16748
С	-5.92344 -1.7374 -1.95149
н	-4.15436 -1.53431 -0.73364
С	-6.76703 -1.13049 -2.8883
н	-7.14132 0.65068 -4.05535
н	-6.1281 -2.75498 -1.60912
н	-7.63392 -1.66893 -3.27857
С	-0.38447 -3.44087 -2.45327
С	-0.16428 -3.32062 -1.08217
С	0.31498 -2.61495 -3.32536
С	0.73294 -2.40117 -0.51474
С	1.28728 -1.76698 -2.80186
С	1.55905 -1.65546 -1.42527
0	1.24617 -0.85484 1.20821
0	1.18568 1.05572 -0.62055
С	2.9472 -1.07453 -1.16072
С	3.90608 -2.04704 -1.52578
Р	0.29368 0.31324 0.50779
С	3.42144 0.21874 -0.78358
С	5.2791 -1.85107 -1.45544
С	4.81895 0.37661 -0.70362
С	5.74099 -0.61913 -1.00941
н	5.22331 1.33495 -0.41601
н	6.80996 -0.41163 -0.92236
н	5.9657 -2.65036 -1.74264
н	3.53709 -3.01192 -1.87323
н	1.91735 -1.20403 -3.48841
н	0.1449 -2.65546 -4.40328
н	-1.11014 -4.16806 -2.82386

Н	-0.72726 -3.97558	-0.43152
н	0.30525 1.18955	1.60222
С	0.80311 -2.21204	1.02292
С	1.78923 -3.21922	1.73346
С	-0.55833 -2.44053	1.9416
С	2.04128 -2.72288	3.18707
С	0.8414 -4.41365	1.96731
С	-0.14516 -3.64608	2.84728
С	0.79224 -3.1878	3.97607
н	2.18766 -1.63539	3.2065
н	2.96197 -3.18242	3.5754
н	0.4164 -4.82112	1.04038
н	1.34555 -5.23637	2.49783
н	-1.02342 -4.20596	3.20181
н	0.36674 -2.41248	4.62442
н	1.02975 -4.04786	4.62121
С	3.08043 -3.5679	1.02239
н	2.89815 -3.96296	0.01504
н	3.74772 -2.70147	0.94161
н	3.60698 -4.34668	1.59705
С	-1.88086 -2.76937	1.22402
н	-2.0534 -2.12064	0.34958
н	-1.9646 -3.81283	0.89653
н	-2.71076 -2.594	1.92512
С	-0.8806 -1.20619	2.80784
н	-1.4086 -0.4365	2.22885
н	-1.57236 -1.50759	3.60865
н	-0.00575 -0.74339	3.27369
С	2.54278 1.48782	-0.70626

С	2.63669	2.2857	-2.08332
С	2.90045	2.67731	0.35985
С	1.47621	3.32561	-2.11279
С	3.84638	3.20248	-1.83065
С	3.25019	3.87506	-0.59008
С	1.97272	4.47744	-1.2031
н	0.52893	2.89383	-1.76843
н	1.32858	3.66388	-3.1494
н	4.79184	2.67292	-1.67252
н	3.99671	3.9079	-2.66303
н	3.88845	4.61227	-0.0799
н	1.22413	4.79508	-0.46858
н	2.24069	5.36711	-1.794
С	2.67195	1.43639	-3.34087
н	3.49963	0.71291	-3.34109
н	1.72601	0.88959	-3.46055
н	2.79106	2.08838	-4.22049
С	1.72013	3.07959	1.26434
н	0.7483	3.10594	0.75938
н	1.64614	2.42283	2.14166
н	1.92254	4.09003	1.65325
С	4.06782	2.40908	1.33081
н	5.06059	2.55518	0.88725
н	3.99987	3.12582	2.16342
Н	4.02293	1.3958	1.75623

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-1** (*R*)

Imaginary frequency: -377.22 cm⁻¹

Energy: -4068.831603

0 1	1
-----	---

Cu	1.71091	0.27022	0.49538
С	2.73361	-0.4421	2.21911
н	3.02766	-1.42704	1.83309
н	3.39897	-0.17165	3.04133
н	1.70417	-0.46948	2.61562
С	3.01649	1.81944	0.02076
н	3.50546	1.72495	-0.94786
С	3.59092	1.14369	1.18885
С	1.9805	2.783 0	.23671
0	1.47613	2.98886	1.36416
Н	3.49887	1.76023	2.08659

С	1.42936 3.54285 -0.94373
С	0.73222 4.73382 -0.68956
С	1.5187 3.0822 -2.26734
С	0.15175 5.45655 -1.73206
Н	0.65097 5.06076 0.34821
С	0.92424 3.79573 -3.31033
н	2.03491 2.14484 -2.48158
С	0.24062 4.98681 -3.04661
н	-0.38312 6.38566 -1.51913
н	0.98946 3.41763 -4.33377
н	-0.22465 5.54458 -3.8631
С	4.93035 0.51575 1.00914
С	5.21174 -0.30753 -0.09379
С	5.94609 0.74061 1.94928
С	6.47153 -0.88351 -0.25427
Н	4.4287 -0.50451 -0.82842
С	7.21078 0.16787 1.78982
Н	5.7413 1.37935 2.81245
С	7.47865 -0.64737 0.68777
Н	6.66975 -1.52247 -1.11863
Н	7.99058 0.36112 2.53068
Н	8.46611 -1.09801 0.56276
С	0.86982 -3.38321 2.61264
С	0.66453 -3.37206 1.23403
С	0.08407 -2.57118 3.42227
С	-0.31152 -2.58598 0.60207
С	-0.96822 -1.87042 2.8382
С	-1.23746 -1.89579 1.45716
0	-0.96499 -1.18299 -1.19582

0	-1.30278 0.82 0.49069
С	-2.69389 -1.56411 1.1481
С	-3.48212 -2.65741 1.57865
Р	-0.23799 0.14743 -0.52078
С	-3.36739 -0.40369 0.66612
С	-4.86575 -2.70479 1.48142
С	-4.77004 -0.49611 0.55835
С	-5.51766 -1.60697 0.93332
н	-5.3253 0.35175 0.18962
н	-6.60385 -1.59101 0.81814
н	-5.41384 -3.58512 1.82394
н	-2.9612 -3.51771 1.99931
н	-1.66719 -1.33465 3.47949
н	0.24877 -2.51811 4.50051
н	1.66031 -4.00582 3.03673
н	1.30685 -4.00024 0.63165
н	-0.32366 0.94142 -1.67659
С	-0.3611 -2.4652 -0.94222
С	-1.1986 -3.60384 -1.64632
С	1.04563 -2.55126 -1.81452
С	-1.48524 -3.17083 -3.11337
С	-0.10446 -4.67282 -1.84285
С	0.79585 -3.80068 -2.71821
С	-0.16713 -3.47041 -3.86959
н	-1.78235 -2.11548 -3.15754
н	-2.32354 -3.76239 -3.50962
н	0.35156 -5.00807 -0.90148
н	-0.49069 -5.56076 -2.3671
н	1.74195 -4.25365 -3.04991

Н	0.17012 -2.64677 -4.51098
н	-0.27443 -4.35388 -4.51778
С	-2.44876 -4.09633 -0.94678
н	-2.23823 -4.43724 0.07465
н	-3.22237 -3.32036 -0.90145
н	-2.86075 -4.95061 -1.50757
С	2.371 -2.7374 -1.05579
н	2.46397 -2.04901 -0.20507
н	2.53705 -3.75907 -0.69398
н	3.1988 -2.51935 -1.74771
С	1.26395 -1.29336 -2.67982
н	1.67345 -0.46374 -2.08084
н	2.01995 -1.52121 -3.44651
н	0.36193 -0.93843 -3.18723
С	-2.72532 0.99226 0.49627
С	-3.01939 1.87631 1.78929
С	-3.25837 1.98626 -0.68663
С	-2.07855 3.11812 1.75447
С	-4.36506 2.52944 1.42494
С	-3.85394 3.18141 0.13495
С	-2.72977 4.0614 0.71011
н	-1.03886 2.85837 1.52146
н	-2.07184 3.57581 2.75502
н	-5.1983 1.8296 1.3055
н	-4.66476 3.27242 2.18061
н	-4.59549 3.73823 -0.45775
н	-2.02173 4.42998 -0.03986
н	-3.17394 4.94637 1.19201
С	-2.94231 1.13835 3.11383

Н	-3.6324 0.28398 3.16419
н	-1.91865 0.77655 3.2876
Н	-3.19381 1.82747 3.93507
С	-2.14412 2.50396 -1.61095
н	-1.22248 2.78146 -1.09357
н	-1.90534 1.77508 -2.39711
н	-2.51021 3.40708 -2.12176
С	-4.32245 1.41691 -1.64805
н	-5.34185 1.42452 -1.24336
н	-4.3503 2.04968 -2.54824
н	-4.08235 0.39186 -1.96608

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-1.1** (*R*)

Imaginary frequency: -376.75 cm⁻¹

Energy: -4068.832571

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.170295

Cu	1.47115	-0.71389	0.48655
С	1.28005	-2.78985	0.92122
Н	0.53878	-2.73653	0.10677
Н	1.80102	-3.74657	0.84046
Н	0.79691	-2.69073	1.90153
С	3.44934	-0.46545	1.02198
Н	4.09666	-0.06423	0.24515
С	3.17989	-1.9101	1.0378
С	3.04257	0.32669	2.14536
0	2.30594	-0.13417	3.0475
Н	3.21093	-2.33205	2.04588
С	3.41909	1.78758	2.18974
С	2.74896	2.59972	3.11789
С	4.3549	2.38226	1.32863
С	2.98282	3.97394	3.16645
Н	2.03666	2.11324	3.78653
С	4.59502	3.75678	1.37821
Н	4.90527	1.77049	0.61283
С	3.90391	4.55949	2.29171
Н	2.44567	4.59394	3.889
Н	5.3274	4.20454	0.70156
Н	4.08919	5.63602	2.32641
С	3.89755	-2.71682	0.0108
С	4.56838	-3.89387	0.37415
С	3.92109	-2.32442	-1.33744

С	5.24963 -4.65467 -0.57987
н	4.55878 -4.21196 1.41992
С	4.59757 -3.08284 -2.29213
н	3.38798 -1.42192 -1.63973
С	5.26679 -4.25301 -1.91773
н	5.7706 -5.56571 -0.27499
н	4.60204 -2.76086 -3.33693
н	5.79721 -4.84784 -2.66512
С	1.10621 -1.61752 -3.23974
С	0.78829 -0.29081 -2.94597
С	0.32512 -2.63896 -2.7132
С	-0.29856 0.08453 -2.1417
С	-0.83194 -2.2959 -2.01763
С	-1.20554 -0.96447 -1.75723
0	-1.11336 1.41972 -0.36342
0	-1.53633 -0.66985 1.11209
С	-2.69667 -0.81588 -1.49434
С	-3.37938 -1.08511 -2.7045
Р	-0.38998 0.41937 0.73993
С	-3.47484 -0.553 -0.33062
С	-4.75684 -1.00601 -2.852
С	-4.86596 -0.43314 -0.52754
С	-5.50886 -0.63293 -1.74454
н	-5.49947 -0.20479 0.31499
н	-6.59407 -0.52432 -1.80602
н	-5.22255 -1.21442 -3.8175
н	-2.77599 -1.33985 -3.57636
н	-1.51832 -3.08363 -1.70573
н	0.58194 -3.6874 -2.87642

Н	1.97814	-1.84126 -3.85691
н	1.42872	0.4781 -3.35551
н	-0.40232	1.30238 1.83504
С	-0.47273	1.5479 -1.65349
С	-1.35087	2.44512 -2.61047
С	0.85168	2.52481 -1.4651
С	-1.76829	3.73084 -1.83891
С	-0.25608	2.98277 -3.55488
С	0.54622	3.68739 -2.46136
С	-0.51661	4.6406 -1.89522
н	-2.08298	3.48735 -0.81617
н	-2.62967	4.19285 -2.3434
н	0.28861	2.18704 -4.08313
н	-0.66837	3.67165 -4.30857
н	1.4678	4.195 -2.78165
н	-0.24652	5.07907 -0.92671
н	-0.66688	5.47768 -2.59471
С	-2.53038	1.80568 -3.31427
н	-2.23648	0.91458 -3.88264
н	-3.32381	1.52557 -2.61098
н	-2.95539	2.53131 -4.02629
С	2.24961	1.96226 -1.77951
н	2.42341	0.99244 -1.29421
н	2.46115	1.8764 -2.8531
н	2.99344	2.66097 -1.36914
С	0.95811	3.04456 -0.0205
н	1.38141	2.27809 0.64093
н	1.67041	3.88201 0.00894
н	0.00915	3.38638 0.40331

С	-2.96587	-0.67053	1.12499
С	-3.35874	-2.11227	1.68921
С	-3.58927	0.29888	2.27734
С	-2.53619	-2.36224	2.98704
С	-4.75154	-1.85078	2.29082
С	-4.28655	-0.73121	3.23119
С	-3.24673	-1.50251	4.0646
н	-1.47983	-2.10649	2.84992
н	-2.58269	-3.43355	3.23268
н	-5.51938	-1.56903	1.56413
н	-5.12334	-2.73167	2.83754
н	-5.06796	-0.24779	3.83653
н	-2.5622	-0.86183	4.63297
н	-3.76847	-2.13662	4.79772
С	-3.22262	-3.25384	0.69617
н	-3.85201	-3.11825	-0.19422
н	-2.17567	-3.35264	0.37283
н	-3.51272	-4.2011	1.17716
С	-2.52133	1.09179	3.04861
н	-1.64134	0.5029	3.32532
н	-2.1928	1.97083	2.47711
н	-2.97497	1.46669	3.97936
С	-4.60088	1.36752	1.81368
н	-5.61521	0.98208	1.65391
н	-4.68883	2.13132	2.6013
н	-4.27005	1.87082	0.89374

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-7.1** (*R*)

Imaginary frequency: -402.44 cm⁻¹

Energy: -4068.819540

Cu	-1.51404	-0.33461	0.75003
С	-3.04882	-0.57087	2.28841
н	-2.62799	-1.59157	2.34368
н	-2.58535	0.07308	3.04877
н	-4.11841	-0.65251	2.50368
С	-2.70424	0.58183	-0.64478
н	-2.2363	1.55425	-0.81069
С	-3.5476	0.44069	0.55256
С	-2.80331	-0.18245	-1.86033
0	-2.32134	0.22087	-2.92987
н	-4.41143	-0.21068	0.40732

С	-3.5034	-1.52535	-1.87673
С	-4.11559	-1.92436	-3.07539
С	-3.49427	-2.4254	-0.80234
С	-4.72076	-3.1757	-3.18799
Н	-4.08338	-1.23112	-3.91776
С	-4.08587	-3.68609	-0.91299
н	-2.98599	-2.16504	0.1266
С	-4.70815	-4.06326	-2.10546
н	-5.1994	-3.46714	-4.1265
н	-4.05161	-4.37768	-0.0673
н	-5.17547	-5.04716	-2.19464
С	-3.89349	1.72399	1.23712
С	-5.22355	2.02081	1.56093
С	-2.9013	2.66624	1.55905
С	-5.55807	3.23067	2.17751
н	-6.00761	1.29851	1.31859
С	-3.23027	3.87159	2.17559
н	-1.85833	2.44672	1.32203
С	-4.56394	4.1609	2.48679
н	-6.60272	3.44611	2.41528
н	-2.44221	4.59038	2.41416
н	-4.82429	5.10619	2.96868
С	-0.38907	-3.31865	-1.81311
С	0.3947	-3.22839	-0.66277
С	-0.43778	-2.24071	-2.68773
С	1.16432	-2.09972	-0.33978
С	0.40526	-1.15809	-2.45713
С	1.25848	-1.07441	-1.34417
0	1.92975	-0.53206	1.27191

0	0.72543 1.44413 -0.00387
С	2.45667 -0.16476 -1.59656
С	3.31961 -0.83345 -2.49642
Р	0.53315 0.34361 1.16679
С	2.78437 1.17312 -1.23062
С	4.50794 -0.30104 -2.97633
С	4.01057 1.67333 -1.71451
С	4.8712 0.9709 -2.55079
н	4.30826 2.67777 -1.45741
н	5.80172 1.43676 -2.88309
н	5.13257 -0.87533 -3.6639
н	3.02883 -1.83337 -2.81892
н	0.44082 -0.35957 -3.1948
н	-1.101 -2.23407 -3.55195
н	-0.98866 -4.21301 -1.99209
н	0.38773 -4.07475 0.011
н	0.74791 1.09518 2.34246
С	1.83298 -1.95839 1.04946
С	3.26484 -2.61244 1.15152
С	1.10182 -2.63348 2.37231
С	3.96056 -2.08999 2.44185
С	2.88052 -4.04879 1.56215
С	2.18439 -3.64717 2.86311
С	3.33333 -2.92575 3.58527
н	3.80811 -1.00952 2.55813
н	5.04457 -2.25904 2.36396
н	2.23514 -4.55193 0.82949
н	3.76887 -4.67946 1.72199
н	1.73679 -4.46276 3.4503

Н	3.01297 -2.32557 4.44593
Н	4.04699 -3.67206 3.96725
С	4.17043 -2.51897 -0.05913
Н	3.69216 -2.9269 -0.95811
Н	4.47023 -1.48425 -0.26501
Н	5.0849 -3.10367 0.13061
С	-0.23099 -3.37769 2.17127
Н	-0.92619 -2.8153 1.53403
Н	-0.11586 -4.38268 1.74826
Н	-0.70989 -3.50532 3.15417
С	0.80528 -1.58631 3.46431
Н	-0.10982 -1.02115 3.23144
Н	0.61113 -2.11145 4.41179
Н	1.61909 -0.8742 3.63173
С	1.81042 2.178 -0.57761
С	1.14271 3.08239 -1.71188
С	2.38361 3.31999 0.43806
С	-0.07716 3.82097 -1.08876
С	2.14981 4.24407 -1.8095
С	2.04894 4.64352 -0.33185
С	0.5455 4.96423 -0.24815
Н	-0.70173 3.13719 -0.50596
Н	-0.70701 4.21058 -1.90124
Н	3.14807 3.95605 -2.15344
Н	1.78375 5.03333 -2.48456
Н	2.69708 5.4702 -0.00375
Н	0.1531 5.02039 0.77493
Н	0.35796 5.94536 -0.71059
С	0.76625 2.36886 -2.99958

Н	1.6135	1.83022	-3.44657
н	-0.06554	1.66692	-2.83612
Н	0.41738	3.11191	-3.73413
С	1.68371	3.31665	1.80799
Н	0.5976	3.18936	1.75359
Н	2.09676	2.53639	2.46178
Н	1.87959	4.28223	2.29961
С	3.88759	3.26669	0.77737
Н	4.53306	3.69845	0.00316
Н	4.06348	3.86403	1.68527
н	4.22642	2.24025	0.97926

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-2.2** (*R*)

Imaginary frequency: -388.90 cm⁻¹

Energy: -4068.827153

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.164400

Cu	-1.70657	0.32967 0.104	43
С	-2.16799	1.43923 -1.7224	45
н	-1.12317	1.76658 -1.5942	27
н	-2.21951	0.57575 -2.3953	31
н	-2.74448	2.267 -2.14514	4
С	-3.54563	0.52726 1.0041	I
н	-4.12688	-0.39112 1.1076	67
С	-3.67114	1.22955 -0.2796	66
С	-3.03003	0.97565 2.2775	52
0	-3.25316	0.32475 3.3098	34
н	-3.77304	2.31374 -0.2117	76
С	-2.06018	2.15306 2.4047	74
С	-1.41767	2.27382 3.6507	77
С	-1.69099	3.05748 1.3901	15
С	-0.43015	3.23248 3.8710)9
н	-1.72187	1.57196 4.4282	21
С	-0.70191	4.02252 1.6094	1
н	-2.15649	3.02812 0.4107	72
С	-0.06241	4.1123 2.8469	9
Н	0.05859	3.29476 4.8468	32
н	-0.43317	4.70753 0.8018	33
н	0.71412	4.86282 3.0132	28
С	-4.66585	0.64489 -1.228	11
С	-5.55832	1.47842 -1.916	13
С	-4.72525	-0.73823 -1.464	75

С	-6.49317 0.94733 -2.80927
н	-5.52348 2.55768 -1.7442
С	-5.65306 -1.27058 -2.35843
н	-4.0267 -1.3994 -0.95039
С	-6.54371 -0.42974 -3.0352
н	-7.18523 1.61408 -3.32951
н	-5.68263 -2.34983 -2.52958
н	-7.27208 -0.84711 -3.73445
С	-1.82781 -2.7313 -2.0623
С	-1.14204 -2.90351 -0.85879
С	-1.3382 -1.83417 -3.00457
С	0.04678 -2.22727 -0.54318
С	-0.10198 -1.23576 -2.77106
С	0.64374 -1.44992 -1.5977
0	1.31088 -0.99955 1.03882
0	1.24664 1.1446 -0.40627
С	2.12972 -1.19101 -1.80548
С	2.62254 -2.20618 -2.66199
Р	0.4029 0.34701 0.73049
С	3.02302 -0.15424 -1.4147
С	3.94277 -2.30092 -3.07577
С	4.3635 -0.29838 -1.83082
С	4.8365 -1.33718 -2.62353
н	5.0842 0.4541 -1.55259
н	5.89261 -1.36744 -2.90093
н	4.26051 -3.11675 -3.72843
н	1.91809 -2.96966 -2.99305
н	0.3489 -0.62167 -3.55177
н	-1.88238 -1.63556 -3.93009

Н	-2.75394 -3.28125	-2.24018	
н	-1.56504 -3.5867	-0.13499	
н	0.68318 1.06349	1.90672	
С	0.64707 -2.27706	0.88739	
С	1.67749 -3.4508	1.11062	
С	-0.34593 -2.49245	2.19591	
С	2.48929 -3.15573	2.4048	
С	0.72093 -4.56418	1.5845	
С	0.21787 -3.81007	2.81514	
С	1.53855 -3.55967	3.55845	
н	2.79637 -2.10288	2.44264	
н	3.4065 -3.76311	2.40255	
н	-0.05753 -4.80939	0.84779	
н	1.2626 -5.49128	1.82912	
н	-0.54087 -4.32139	3.42502	
н	1.46301 -2.80509	4.35091	
н	1.87196 -4.49367	4.03706	
С	2.57919 -3.84188	-0.04303	
н	2.00827 -4.07685	-0.95013	
н	3.30403 -3.05422	-0.28201	
н	3.14599 -4.74399	0.23805	
С	-1.85824 -2.66311	1.96544	
н	-2.26119 -1.90253	1.28471	
н	-2.13658 -3.66133	1.60166	
н	-2.37284 -2.51546	2.92525	
С	-0.23076 -1.32104	3.18829	
н	-0.8339 -0.46322	2.86381	
н	-0.66816 -1.63166	4.14825	
н	0.7963 -0.98884	3.36943	
С	2.6177	1.20866	-0.80705
---	---------	---------	----------
С	2.63198	2.32616	-1.94838
С	3.57964	1.88733	0.31977
С	1.84184	3.55987	-1.42298
С	4.06834	2.87489	-1.85588
С	3.98205	3.23521	-0.36673
С	2.79785	4.22015	-0.39531
н	0.87534	3.27418	-0.99486
н	1.64071	4.23108	-2.27138
н	4.85453	2.16183	-2.1214
н	4.19977	3.76076	-2.49718
н	4.89342	3.65525	0.08449
н	2.33336	4.38362	0.58463
н	3.14731	5.20182	-0.75009
С	2.13399	1.85791	-3.30564
н	2.73666	1.03492	-3.71414
н	1.0894	1.51832	-3.23226
н	2.16395	2.69191	-4.02431
С	2.86388	2.15601	1.65061
н	1.88452	2.62768	1.54281
н	2.74735	1.22957	2.23063
н	3.48884	2.83613	2.25055
С	4.84563	1.09994	0.71733
н	5.66826	1.1812	-0.00319
н	5.22833	1.51275	1.66303
н	4.62951	0.03452	0.88013

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-5** (*R*)

Imaginary frequency: -402.55 cm⁻¹

Energy: -4068.823835

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.161423

0	1
_	-

Cu	-1.78138	0.31402	-0.02893
С	-3.19624	0.92483	1.4931
н	-2.23348	0.96937	2.03456
н	-3.49691	1.9273	1.16551
н	-3.93877	0.54009	2.19707
С	-3.04614	-1.00505	-0.98341
н	-3.23479	-0.60696	-1.98429
С	-3.83006	-0.46832	0.13773
С	-2.3109 -	2.2397 -	0.9808
0	-1.83916	-2.74783	-2.01155
н	-3.99623	-1.20677	0.92495

С	-2.08618	-2.97937	0.3246
С	-2.25948	-4.37186	0.3304
С	-1.60694	-2.36046	1.48663
С	-1.99252	-5.11904	1.47728
н	-2.58666	-4.8565	-0.5914
С	-1.31714	-3.10672	2.63145
н	-1.39708	-1.28759	1.50139
С	-1.51873	-4.48864	2.63388
н	-2.14204	-6.20175	1.46864
н	-0.92491	-2.6039	3.51866
н	-1.29817	-5.07497	3.52928
С	-5.08056	0.2581	-0.24114
С	-6.30893	-0.11866	0.31691
С	-5.05988	1.3147	-1.16612
С	-7.49111	0.53263	-0.04833
н	-6.33964	-0.93816	1.03985
С	-6.23611	1.96796	-1.53032
н	-4.10691	1.63255	-1.59698
С	-7.45941	1.57776	-0.97329
н	-8.44059	0.21973	0.39304
н	-6.2003	2.78822	-2.2516
н	-8.38168	2.08924	-1.25864
С	-0.29012	1.8532	3.55996
С	0.14309	2.52953	2.41872
С	0.08559	0.52743	3.74969
С	0.94908	1.94015	1.43372
С	1.00101	-0.03716	2.86327
С	1.49848	0.64631	1.74066
0	1.39913	1.5434	-0.85814

0	0.921 -	1.01909 -0.50247
С	2.83393	0.11632 1.24404
С	3.82476	0.45062 2.19386
Р	0.21571	0.37787 -0.93128
С	3.22431	-0.64305 0.10238
С	5.17869	0.19375 2.01834
С	4.60971	-0.81792 -0.0814
С	5.57826	-0.40526 0.83012
н	4.9643	-1.33578 -0.95936
н	6.63345	-0.58901 0.61536
н	5.9009	0.48579 2.78365
н	3.50366	0.97285 3.09609
н	1.40394	-1.02746 3.07229
н	-0.27601	-0.04489 4.60691
н	-0.93955	2.36224 4.2751
н	-0.18519	3.55234 2.29123
н	0.17165	0.31968 -2.33358
С	1.19794	2.63062 0.06675
С	2.44689	3.59725 0.04541
С	0.03963	3.631 -0.57038
С	2.81231	3.89831 -1.43679
С	1.78068	4.91829 0.48051
С	0.80624	4.98499 -0.69512
С	1.78394	4.96785 -1.87996
н	2.77731	2.98334 -2.04134
н	3.84207	4.28166 -1.48518
н	1.30407	4.85913 1.46926
н	2.49966	5.752 0.49896
Н	0.11319	5.83924 -0.70732

Н	1.30919	4.74962	-2.84476
н	2.25731	5.95728	-1.97578
С	3.66585	3.20805	0.85613
н	3.41573	3.00772	1.90544
н	4.16525	2.32462	0.44142
н	4.38737	4.04067	0.83615
С	-1.25189	3.86865	0.22928
н	-1.69136	2.9315	0.5886
н	-1.12545	4.54808	1.08117
н	-1.98715	4.34533	-0.43747
С	-0.43962	3.14531	-1.95208
н	-1.17578	2.33095	-1.8529
н	-0.96274	3.97303	-2.45462
н	0.36484	2.80188	-2.60936
С	2.25259	-1.51446	-0.72775
С	2.28736	-2.99027	-0.12324
С	2.55274	-1.82452	-2.30057
С	1.10534	-3.79444	-0.73622
С	3.47744	-3.60058	-0.88694
С	2.88251	-3.3606	-2.27941
С	1.59297	-4.19091	-2.14932
н	0.1853	-3.21062	-0.77742
н	0.89826	-4.67129	-0.10616
н	4.44256	-3.12444	-0.69064
н	3.58588	-4.67214	-0.65765
н	3.51322	-3.64212	-3.13632
н	0.83777	-4.00032	-2.91965
н	1.84811	-5.26084	-2.20419
С	2.32191	-3.09058	1.3917

Н	3.18547	-2.57702	1.83644
н	1.39842	-2.67936	1.82112
Н	2.36881	-4.15122	1.68352
С	1.34239	-1.58674	-3.22804
Н	0.37395	-1.88783	-2.81015
н	1.28857	-0.53771	-3.54881
Н	1.50265	-2.17617	-4.14395
С	3.70719	-1.02642	-2.93924
Н	4.70362	-1.42975	-2.72019
н	3.59995	-1.06589	-4.03393
Н	3.6863	0.03138	-2.63672

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-7.2** (*R*)

Imaginary frequency: -465.11 cm⁻¹

Energy: -4068.813130

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.152474

Cu	-1.30965	-0.90626	0.5831
С	-3.07884	-2.03909	0.83436
н	-3.86158	-1.9455	0.07425
н	-2.26995	-2.67131	0.39375
н	-3.45501	-2.56482	1.71925
С	-2.8537	0.86346	0.30906
н	-1.91456	1.41917	0.36421
С	-3.15399	-0.07008	1.38109
С	-3.51111	1.00506	-0.94693
0	-2.99342	1.59278	-1.92053
Н	-4.20581	-0.30081	1.55477
С	-4.88004	0.39873	-1.16373
С	-5.16653	-0.16177	-2.4182
С	-5.89632	0.43192	-0.19681
С	-6.41305	-0.73071	-2.68079
н	-4.39265	-0.11683	-3.18675
С	-7.15243	-0.12048	-0.46163
н	-5.71203	0.92728	0.75851
С	-7.40962	-0.71816	-1.69875
н	-6.61542	-1.17526	-3.65883
н	-7.93719	-0.07609	0.29808
н	-8.38929	-1.15723	-1.90357
С	-2.4037	0.16169	2.68286
С	-2.15273	-0.86638	3.61124
С	-1.91149	1.44523	2.98498

С	-1.41065	-0.63035	4.76919
н	-2.51516	-1.87383	3.40919
С	-1.16599	1.68336	4.14322
н	-2.12014	2.26311	2.29701
С	-0.90221	0.64515	5.0382
Н	-1.22198	-1.45263	5.46382
Н	-0.7906	2.69059	4.34063
н	-0.31112	0.82591	5.939
С	-1.08796	-2.90771	-2.26679
С	0.12872	-3.04345	-1.59128
С	-1.58398	-1.63398	-2.52628
С	0.90474	-1.94609	-1.19372
С	-0.75944	-0.5304	-2.29321
С	0.52247	-0.66433	-1.72897
0	2.09149	-0.77427	0.50478
0	0.66878	1.36695	0.40614
С	1.50833	0.41031	-2.1613
С	1.82319	0.14792	-3.5177
Р	0.68496	-0.10963	1.06878
С	2.10669	1.53899	-1.53808
С	2.74844	0.87469	-4.25159
С	3.07155	2.22953	-2.30177
С	3.40972	1.91757	-3.61295
н	3.57093	3.08323	-1.87099
н	4.16605	2.51139	-4.13118
н	2.95348	0.61756	-5.29286
н	1.32342	-0.69541	-3.99635
н	-1.10754	0.46022	-2.59218
н	-2.57789	-1.48748	-2.94998

Н	-1.66098 -3.79868 -2.53175
Н	0.4557 -4.04437 -1.33886
Н	1.07152 0.15142 2.40075
С	2.03272 -2.06998 -0.13686
С	3.44727 -2.4271 -0.73233
С	1.89333 -3.20904 1.04879
С	4.52815 -2.13618 0.34697
С	3.37593 -3.96756 -0.69344
С	3.17749 -4.06693 0.82078
С	4.43381 -3.33672 1.3222
н	4.35035 -1.16751 0.83048
н	5.51516 -2.08373 -0.13576
н	2.55156 -4.37975 -1.29223
н	4.31282 -4.42961 -1.04159
н	3.06393 -5.08096 1.23182
н	4.38306 -3.04289 2.37814
н	5.30639 -4.00008 1.21881
С	3.80729 -1.83254 -2.07979
н	3.05607 -2.06666 -2.84454
н	3.91679 -0.74177 -2.02875
н	4.7701 -2.25211 -2.41287
С	0.66457 -4.13572 1.04343
н	-0.2733 -3.57317 0.94692
н	0.69498 -4.90941 0.26727
н	0.63414 -4.66609 2.00769
С	1.88566 -2.57071 2.45063
Н	0.89511 -2.15141 2.68934
Н	2.07633 -3.35715 3.19693
Н	2.63477 -1.78497 2.58797

С	1.63422	2.21172	-0.23074
С	0.8233	3.54407	-0.58188
С	2.74692	2.7667	0.81563
С	0.01531	3.95566	0.68128
С	1.92922	4.61903	-0.5359
С	2.39292	4.28884	0.88878
С	1.07882	4.52165	1.65863
н	-0.54769	3.11387	1.09134
н	-0.71428	4.72487	0.38918
н	2.69773	4.5354	-1.30984
Н	1.49896	5.62972	-0.61505
Н	3.24001	4.87679	1.27349
Н	1.05554	4.04939	2.64899
н	0.93765	5.6013	1.82039
С	-0.04945	3.46885	-1.82481
н	0.5267	3.21912	-2.72665
н	-0.86365	2.73518	-1.7117
н	-0.52568	4.44781	-1.99419
С	2.64822	2.11573	2.20263
н	1.63085	2.08663	2.60345
н	3.05152	1.09306	2.18542
н	3.26305	2.69723	2.9074
С	4.22244	2.58699	0.40533
н	4.56611	3.30574	-0.34779
н	4.85435	2.74709	1.29234
н	4.41956	1.57248	0.03049

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-2** (S)

Imaginary frequency: -368.08 cm⁻¹

Energy: -4068.831421

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.165928

Cu	1.38017	1.05005	0.56085
С	0.95796	2.58669	2.01743
н	-0.02842	2.09881	1.93159
Н	1.44998	2.29561	2.95094
н	0.81149	3.66845	1.95657
С	3.34226	1.6056	0.15903
С	2.67081	2.75397	0.76859
С	1.60122	-0.85438	2.71726
С	1.36788	-1.53053	1.51728
С	0.51845	-0.39255	3.4598
С	0.07991	-1.7942	0.99811

С	-0.7608	-0.59439	2.96244
С	-1.01812	-1.25079	1.74007
0	-0.65908	-1.15671	-1.14321
0	-1.72925	0.90558	-0.02943
С	-2.49611	-1.43587	1.50237
С	-3.02251	-2.36892	2.42591
Р	-0.3324	0.38576	-0.6844
С	-3.39313	-0.7605	0.62631
С	-4.35285	-2.75725	2.45245
С	-4.72591	-1.22755	0.64094
С	-5.20882	-2.20332	1.5056
н	-5.44894	-0.78446	-0.02516
н	-6.25977	-2.49653	1.45288
н	-4.70312	-3.49189	3.18045
н	-2.32415	-2.82804	3.12705
н	-1.61785	-0.22357	3.52523
н	0.66901	0.14427	4.39821
н	2.62629	-0.6545	3.02929
н	2.24084	-1.84781	0.96874
н	-0.35467	0.91716	-1.99416
С	-0.05498	-2.3051	-0.4622
С	-0.98111	-3.58233	-0.80448
С	1.28329	-2.65833	-1.31751
С	-1.65869	-3.28034	-2.16313
С	0.02697	-4.6484	-1.28973
С	0.7233	-3.73471	-2.29123
С	-0.46453	-3.24285	-3.15209
н	-2.24803	-2.35927	-2.14778
н	-2.34138	-4.11356	-2.39173

н	0.67321 -5.05271 -0.50188
н	-0.50862 -5.49121 -1.75285
н	1.53387 -4.17833 -2.88697
н	-0.2971 -2.24012 -3.56717
н	-0.61903 -3.9241 -4.0027
С	-1.94274 -4.14544 0.22586
н	-1.50015 -4.18615 1.22995
н	-2.88001 -3.58588 0.27575
н	-2.19693 -5.17747 -0.06528
С	2.44999 -3.34913 -0.55266
н	3.24244 -2.6443 -0.27754
н	2.14157 -3.88169 0.35458
н	2.9222 -4.08471 -1.22113
С	1.87851 -1.45901 -2.05857
н	2.19984 -0.67284 -1.35986
н	2.77467 -1.78437 -2.6074
н	1.18287 -1.01817 -2.78337
С	-3.12691 0.59044 -0.09232
С	-3.81152 1.76486 0.75558
С	-3.77761 0.84331 -1.5655
С	-3.21174 3.11907 0.27763
С	-5.21132 1.85954 0.1201
С	-4.69934 2.08246 -1.30892
С	-3.87389 3.3663 -1.10332
н	-2.11763 3.09493 0.24187
н	-3.49713 3.89772 1.00059
н	-5.84389 0.97801 0.25973
н	-5.76789 2.7269 0.50872
н	-5.46802 2.17377 -2.09093

Н	-3.15104	3.56457 -1.90416
н	-4.55163	4.233 -1.06976
С	-3.72697	1.60122 2.26393
н	-4.21848	0.68481 2.6185
н	-2.67539	1.57725 2.58718
н	-4.20822	2.45906 2.75927
С	-2.73389	1.1598 -2.64429
н	-2.01957	1.93266 -2.34795
н	-2.17949	0.25649 -2.93548
н	-3.2587	1.52702 -3.54005
С	-4.61531	-0.30656 -2.16548
н	-5.63519	-0.36721 -1.76689
н	-4.72312	-0.1317 -3.24657
н	-4.13314	-1.28453 -2.03314
С	4.10555	0.73167 1.00165
0	4.11092	0.83549 2.24329
н	3.46094	1.58091 -0.9227
С	4.86662	-0.41119 0.36967
С	5.35255	-1.41612 1.22184
С	5.10018	-0.53349 -1.00952
С	6.02711	-2.52555 0.71138
н	5.18418	-1.29303 2.2928
С	5.78439	-1.6371 -1.52261
н	4.75026	0.2389 -1.69482
С	6.24393	-2.64162 -0.66534
н	6.38934	-3.30281 1.38911
н	5.95926	-1.71407 -2.59874
н	6.77328	-3.50832 -1.06882
н	3.14949	3.07946 1.69386

С	2.24982	3.86419	-0.13188
С	2.43501	5.19813	0.26281
С	1.65128	3.61945	-1.38071
С	2.03328	6.25418	-0.55878
н	2.90155	5.40636	1.22904
С	1.24351	4.67118	-2.20075
н	1.49896	2.58956	-1.70943
С	1.43176	5.99595	-1.79292
Н	2.19072	7.28493	-0.23157
Н	0.77725	4.45631	-3.16573
н	1.113	6.82073 -	2.43459

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-7** (*S*)

Imaginary frequency: -370.94 cm⁻¹

Energy: -4068.820674

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.160540

Cu	1.43609 0.62923 -0.1934
С	1.34259 1.8995 1.56111
н	1.19723 0.91797 2.04577
н	1.92324 2.52994 2.24051
н	0.36999 2.36442 1.36001
С	3.0847 1.45365 -1.06848
С	2.75784 2.3256 0.07017
С	1.45384 -2.03872 2.83251
С	1.12476 -2.49683 1.55703
С	0.58607 -1.17323 3.48752
С	-0.04746 -2.12936 0.87771
С	-0.63629 -0.87726 2.88778
С	-1.01071 -1.3583 1.61981
0	-1.0997 -1.47206 -1.14114
0	-1.61026 0.89776 -0.09199
С	-2.52366 -1.33572 1.4201
С	-3.0874 -2.32707 2.25661
Р	-0.52929 0.0677 -0.97562
С	-3.41627 -0.48512 0.70122
С	-4.44823 -2.58481 2.35053
С	-4.78795 -0.7946 0.79576
С	-5.3117 -1.81886 1.57751
Н	-5.50196 -0.19009 0.25861
н	-6.39074 -1.98774 1.59508
н	-4.81621 -3.37438 3.00909

н	-2.40213 -2.93399 2.84826
Н	-1.36857 -0.29466 3.44505
Н	0.82701 -0.76602 4.4718
Н	2.39539 -2.35031 3.28795
Н	1.82824 -3.15895 1.07235
н	-0.81258 0.47711 -2.29271
С	-0.25873 -2.52416 -0.60705
С	-0.95673 -3.92522 -0.80348
С	1.05216 -2.69956 -1.61109
С	-1.46318 -4.02212 -2.27181
С	0.2802 -4.84638 -0.83506
С	0.92028 -4.18961 -2.0573
С	-0.19807 -4.36717 -3.09534
н	-1.94248 -3.0853 -2.58289
Н	-2.22237 -4.81512 -2.3412
н	0.88354 -4.79593 0.08214
Н	0.00011 -5.89849 -1.0001
Н	1.89 -4.59576 -2.37925
Н	-0.0736 -3.74704 -3.99147
Н	-0.21956 -5.4149 -3.4332
С	-2.02363 -4.33741 0.19004
Н	-1.65809 -4.29803 1.22407
Н	-2.91919 -3.7096 0.11181
Н	-2.3234 -5.37684 -0.01888
С	2.45885 -2.47932 -1.02922
Н	2.5154 -1.5815 -0.40184
Н	2.83323 -3.33045 -0.44573
Н	3.16897 -2.31504 -1.85115
С	0.978 -1.75785 -2.8293

н	1.32128	-0.74574	-2.56609
н	1.68302	-2.12057	-3.59146
н	-0.01557	-1.69372	-3.28511
С	-3.03051	0.86954	0.06271
С	-3.357	2.04636	1.08988
С	-3.81567	1.3992	-1.26941
С	-2.63864	3.33666	0.59354
С	-4.81677	2.37844	0.73201
С	-4.52941	2.69164	-0.74086
С	-3.5243	3.84568	-0.57197
н	-1.60329	3.1384	0.29457
н	-2.60054	4.06301	1.41852
н	-5.52543	1.56407	0.91206
н	-5.17618	3.25856	1.2879
н	-5.39891	2.94917	-1.36398
н	-2.95555	4.08644	-1.47813
н	-4.06749	4.76018	-0.28877
С	-3.05204	1.74988	2.5473
н	-3.58622	0.86433	2.91903
н	-1.97285	1.59472	2.68794
н	-3.34758	2.61031	3.16787
С	-2.87397	1.76847	-2.42936
н	-1.97264	2.3063	-2.11697
н	-2.57548	0.87832	-2.99885
н	-3.42473	2.42012	-3.12522
С	-4.84541	0.43998	-1.90111
н	-5.81657	0.43171	-1.39158
н	-5.04792	0.77161	-2.931
н	-4.46845	-0.5919	-1.94861

С	4.143 0.4729 -1.15111
0	4.50163 -0.00109 -2.23655
н	2.75479 1.77985 -2.05861
С	4.85134 -0.02732 0.09426
С	6.17575 -0.46917 -0.06087
С	4.25298 -0.14865 1.35721
С	6.89173 -0.98182 1.01974
н	6.61551 -0.40954 -1.05779
С	4.96219 -0.67739 2.43986
н	3.21298 0.13683 1.50764
С	6.28737 -1.08638 2.27811
н	7.92518 -1.31023 0.88183
н	4.47254 -0.76893 3.41274
н	6.84545 -1.49262 3.12549
н	3.53897 2.37955 0.83007
С	2.1698 3.65803 -0.26299
С	2.63508 4.8189 0.36867
С	1.117 3.77954 -1.18731
С	2.0689 6.066 0.08679
н	3.45219 4.74323 1.09094
С	0.54512 5.01937 -1.46527
н	0.73481 2.8853 -1.68486
С	1.01933 6.17173 -0.82782
н	2.45032 6.95904 0.58807
н	-0.27683 5.08824 -2.18244
Н	0.57217 7.14466 -1.0445

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • chalcone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-8.1** (*S*)

Imaginary frequency: -393.41 cm⁻¹ Energy: -4068.816126 Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -4070.152372

Cu	-1.55896	0.37057	-0.01411
С	-2.14403	1.78604	-1.57491
Н	-1.05249	1.69446	-1.71774
н	-2.67044	1.21907	-2.35195
Н	-2.39716	2.84859	-1.62984
С	-3.3955	0.37158	0.97138
С	-3.3985	1.53088	0.07227
Н	-4.18959	1.53243	-0.6734
С	-3.23739	2.86702	0.72464

С	-4.09667	3.92113	0.38119
С	-2.23981	3.10981	1.68385
С	-3.96835	5.17834	0.97782
н	-4.8776	3.75199	-0.36512
С	-2.10498	4.36443	2.27721
н	-1.55873	2.30482	1.96519
С	-2.96995	5.40666	1.92722
н	-4.65236	5.98323	0.69747
н	-1.31984	4.5305	3.0192
н	-2.86527	6.38961	2.39238
н	-3.02449	0.51744	1.98902
С	-4.00901	-0.91638	0.76905
0	-3.78817	-1.88251	1.51971
С	-4.96269	-1.15542	-0.38412
С	-5.93042	-0.22341	-0.78824
С	-4.95372	-2.41818	-0.99844
С	-6.83026	-0.52636	-1.81432
н	-6.01026	0.73208	-0.26774
С	-5.83568	-2.71755	-2.03665
н	-4.24768	-3.16487	-0.63028
С	-6.77389	-1.76697	-2.45427
н	-7.58525	0.20724	-2.10836
н	-5.80299	-3.70024	-2.5141
н	-7.4715	-2.00071	-3.26232
С	-1.66819	-1.67245	-1.91182
С	-1.00771	-2.10706	-0.75932
С	-0.94605	-1.05107	-2.92674
С	0.38558	-1.96763	-0.55707
С	0.41435	-0.85468	-2.74238

С	1.10052 -1.2632 -1.57886
0	1.35889 -0.8782 1.28259
0	1.5204 1.22246 -0.18687
С	2.58472 -1.02319 -1.69015
С	3.14715 -1.89661 -2.64971
Р	0.5015 0.44323 0.8197
С	3.41501 -0.02923 -1.09799
С	4.49672 -1.92455 -2.96478
С	4.79177 -0.13246 -1.39522
С	5.339 -1.05123 -2.28383
н	5.48304 0.56391 -0.94811
н	6.41695 -1.05211 -2.46058
н	4.88037 -2.62927 -3.70537
н	2.47705 -2.60875 -3.13347
н	0.99195 -0.35157 -3.51812
н	-1.43854 -0.70099 -3.83576
н	-2.74422 -1.81896 -1.99788
н	-1.61875 -2.55356 0.01142
н	0.6391 1.1359 2.04428
С	0.96861 -2.22763 0.85978
С	2.26625 -3.16709 1.04736
С	0.00253 -2.79417 2.04216
С	3.10999 -2.52695 2.17605
С	1.72636 -4.38429 1.83149
С	1.03977 -3.55941 2.91239
С	2.20023 -2.67298 3.42339
н	3.39616 -1.49448 1.95657
н	4.03354 -3.11724 2.28237
Н	1.0603 -5.03552 1.2533

Н	2.56357 -4.99684 2.20007
н	0.53547 -4.11533 3.7153
н	1.85193 -1.7034 3.80311
н	2.72291 -3.17668 4.25082
С	3.10113 -3.59475 -0.1463
н	2.4825 -3.87636 -1.00884
н	3.81463 -2.82799 -0.458
н	3.68691 -4.48233 0.14249
С	-1.07317 -3.84406 1.63345
н	-2.06586 -3.38621 1.52994
н	-0.83736 -4.39493 0.71439
н	-1.15949 -4.58598 2.44222
С	-0.72179 -1.70136 2.8304
н	-1.43763 -1.15921 2.19974
н	-1.32054 -2.17159 3.62494
н	-0.03503 -0.989 3.30449
С	2.93296 1.28873 -0.43144
С	3.0708 2.47822 -1.49627
С	3.77825 1.89134 0.82582
С	2.22901 3.68371 -0.98663
С	4.488 3.01252 -1.21622
С	4.24193 3.28121 0.27405
С	3.06647 4.27152 0.17957
н	1.21775 3.38382 -0.69297
н	2.1291 4.40794 -1.80886
н	5.29929 2.31356 -1.43937
н	4.68555 3.93536 -1.78409
н	5.09894 3.66859 0.84513
н	2.49962 4.3801 1.11238

Н	3.452	5.27125 -	0.0724
С	2.72554	2.10163	-2.92733
н	3.37232	1.30661	-3.3232
н	1.68093	1.7614	-2.99108
Н	2.83012	2.98218	-3.58046
С	2.93629	2.06704	2.09592
Н	1.98838	2.58377	1.92319
н	2.7311	1.09789	2.57201
Н	3.51107	2.67186	2.81452
С	5.01105	1.08533	1.2891
н	5.90094	1.23924	0.66684
н	5.28722	1.42165	2.29978
Н	4.80703	0.00751	1.3417

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • cyclohexenone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-9** (*R*)

Imaginary frequency: -429.13 cm⁻¹

Energy: -3723.660165

Cu	-2.10664	-0.85074	0.80099
С	-3.59083	-0.49258	2.31407
н	-3.08713	0.48694	2.20416
Н	-4.67011	-0.3066	2.27127
Н	-3.30757	-0.90658	3.28972
С	-1.37296	2.24463	3.28964
С	-1.25782	2.62811	1.95278
С	-0.53559	1.2517	3.78687
С	-0.32613	2.06598	1.06772
С	0.49663	0.78581	2.97413
С	0.67734	1.21414	1.64731
0	0.15332	1.11818	-1.05259
0	0.76762	-1.15625	0.06266
С	2.11201	1.0677	1.16121
С	2.89346	2.04072	1.8274
Р	-0.475 -	0.34405 -	0.57131
С	2.77357	0.14894	0.29785
С	4.2539	2.21638	1.61614
С	4.14634	0.3814	0.07615
С	4.88167	1.38778	0.69339
Н	4.6905	-0.27257	-0.58743
Н	5.94525	1.49441	0.468
Н	4.80137	2.99343	2.15385
н	2.38384	2.70269	2.52871
Н	1.24678	0.11657	3.3959
Н	-0.63688	0.88748	4.81144

Н	-2.13844	2.70283	3.91929
н	-1.9444	3.38089	1.58859
н	-0.63168	-0.88694	-1.85795
С	-0.41642	2.3033	-0.46288
С	0.3575	3.58267	-0.96694
С	-1.8979	2.55574	-1.15838
С	0.50713	3.49289	-2.51305
С	-0.74811	4.64786	-0.81894
С	-1.7272	3.97684	-1.78314
С	-0.87566	3.92443	-3.06127
н	0.80031	2.48068	-2.81882
н	1.30421	4.17632	-2.84067
н	-1.11604	4.75242	0.21137
н	-0.41052	5.63858	-1.16098
н	-2.69772	4.47655	-1.91971
н	-1.27254	3.2533	-3.8331
н	-0.82839	4.92951	-3.50831
С	1.66905	3.92839	-0.29153
н	1.55727	4.02681	0.79546
н	2.44224	3.17718	-0.49393
н	2.02864	4.89445	-0.68082
С	-3.14975	2.5491	-0.26304
н	-3.17145	1.67855	0.40479
н	-3.27222	3.4596	0.33593
н	-4.03555	2.48856	-0.91429
С	-2.199	1.51046 -	2.24998
н	-2.55337	0.56717	-1.80607
н	-3.02271	1.88344	-2.87752
н	-1.3492	1.285 -2	2.90109

С	2.17892 -1.19498 -0.1797
С	2.71522 -2.36669 0.76051
С	2.5647 -1.77351 -1.65421
С	1.8284 -3.62302 0.51808
С	4.00544 -2.79036 0.03405
С	3.31338 -3.10328 -1.29836
С	2.32247 -4.18805 -0.83693
н	0.75798 -3.39437 0.49015
н	1.99912 -4.33502 1.34001
н	4.78652 -2.02421 -0.00578
н	4.44685 -3.68609 0.4987
н	3.96869 -3.42028 -2.12388
н	1.49544 -4.37918 -1.52928
н	2.86377 -5.13804 -0.7048
С	2.82862 -2.01707 2.23442
н	3.49359 -1.16185 2.42075
н	1.83595 -1.78457 2.64783
н	3.22319 -2.88234 2.78975
С	1.3458 -2.08691 -2.53875
н	0.5305 -2.60868 -2.02514
н	0.95881 -1.17185 -3.01065
н	1.68511 -2.7409 -3.35774
С	3.46389 -0.87384 -2.5266
н	4.52756 -0.91227 -2.26092
н	3.39908 -1.22343 -3.56815
н	3.13762 0.17631 -2.50449
0	-1.15458 -3.792 -0.97093
С	-2.19937 -3.23658 -0.59502
С	-2.50698 -2.92457 0.77173

Н	-1.86447	-3.38511	1.52898
С	-3.71228	-2.22225	1.21145
н	-4.1544	-2.63722	2.12161
С	-3.26663	-2.8772	-1.63904
н	-3.16125	-3.60127	-2.4604
н	-3.03013	-1.88439	-2.06901
С	-4.67544	-2.86519	-1.04744
н	-4.93407	-3.88068	-0.70157
н	-5.42243	-2.58691	-1.80954
С	-4.74347	-1.88529	0.12434
н	-5.75071	-1.85706	0.56909
н	-4.5636	-0.87015	-0.26982

Optimized reductive elimination transition structure of the active catalyst system (MeCu • BIFOP-H • cyclohexenone) of the reaction pathway (B3LYP-D3(BJ)/def2-SVP)**TS-10 (S)**

Imaginary frequency: -463.18 cm⁻¹

Energy: -3723.656037

Energy (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP): -3724.802586

Cu	0.20455	-2.53549	-0.41386
С	-0.70915	-4.33202	0.35015
н	-1.36935	-4.52884	-0.50773
н	-0.5655	-5.26368	0.90397
н	-1.18422	-3.61897	1.04524
С	-2.03879	-1.98493	2.92006
С	-2.59622	-1.33208	1.81814
С	-0.77661	-1.61112	3.36857
С	-1.94558	-0.30014	1.12845
С	-0.17943	-0.48351	2.80517
С	-0.75784	0.23187	1.74449
0	-1.23737	0.63008	-0.93181
0	1.26415	0.36203	-0.28807
С	-0.318	1.68122	1.6599
С	-0.85123	2.37045	2.773
Ρ	0.04244	-0.43094	-1.00773
С	0.47862	2.41005	0.732
С	-0.75604	3.74545	2.94364
С	0.47209	3.81123	0.88314
С	-0.1327	4.48158	1.94324
н	0.99291	4.42305	0.16283
н	-0.0801	5.57164	1.99124
н	-1.1966	4.22681	3.81924
н	-1.40629	1.78742	3.50934
н	0.74113	-0.09122	3.23904
Н	-0.28736	-2.14222	4.18784
Н	-2.58499	-2.80253	3.39513

Н	-3.56586	-1.66858 1.47604	4
н	0.2979	-0.26404 -2.37976	;
С	-2.43735	0.20457 -0.25444	4
С	-3.46907	1.40062 -0.18732	2
С	-3.24367	-0.82858 -1.26704	4
С	-3.53687	2.07038 -1.58936	6
С	-4.79787	0.61932 -0.14838	8
С	-4.5951	-0.08256 -1.49041	
С	-4.4278	1.12195 -2.42898	;
н	-2.53205	2.20761 -2.00752	2
н	-3.98895	3.0683 -1.49076	;
н	-4.87708	-0.05773 0.71463	3
н	-5.66797	1.29397 -0.13343	3
н	-5.38904	-0.77686 -1.80312	2
н	-3.99859	0.86475 -3.4056	
н	-5.41332	1.57257 -2.62392	2
С	-3.31232	2.42485 0.91817	7
н	-3.26661	1.95792 1.90992	2
н	-2.41655	3.04113 0.77968	3
н	-4.18475	3.0979 0.90419	
С	-3.55574	-2.25248 -0.7790	7
н	-2.67534	-2.74949 -0.3604	
н	-4.37059	-2.2967 -0.04545	5
н	-3.89023	-2.84442 -1.64518	8
С	-2.49229	-1.02449 -2.5964	4
н	-1.65901	-1.736 -2.47751	
н	-3.18056	-1.47359 -3.3287	
н	-2.09618	-0.09904 -3.0250	1
С	1.54599	1.76894 -0.18732	2

С	2.95242	1.86954	0.55523
С	1.90443	2.46565	-1.6113
С	3.99098	1.01177	-0.22886
С	3.40734	3.28601	0.1579
С	3.35338	3.02354	-1.3544
С	4.38901	1.88993	-1.44067
н	3.59952	0.04302	-0.55263
н	4.85188	0.81218	0.42699
н	2.77568	4.09633	0.52997
н	4.43284	3.48431	0.50672
н	3.57078	3.88229	-2.00748
н	4.38602	1.33297	-2.38416
н	5.39827	2.31385	-1.32162
С	2.92252	1.53542	2.03725
н	2.27297	2.20974	2.61255
н	2.57144	0.5033	2.18796
н	3.93948	1.60462	2.45366
С	1.94262	1.46882	-2.78757
н	2.38258	0.49423	-2.54377
н	0.93754	1.31544	-3.20278
н	2.54281	1.91735	-3.59403
С	0.95327	3.58859	-2.07262
н	1.15245	4.56288	-1.61012
н	1.08042	3.73704	-3.15584
н	-0.0994	3.32605	-1.88953
0	3.4263	-1.82763	-1.68881
С	1.86046	-3.52961	-1.19982
н	1.66182	-3.65489	-2.26938
С	2.88523	-2.5773	-0.86309

С	3.34804	-2.52814	0.60033
Н	3.51065	-1.47621	0.87145
Н	4.34266	-3.00873	0.62596
С	2.40303	-3.21232	1.58723
Н	1.49552	-2.5922	1.7269
Н	2.87002	-3.29021	2.58274
С	1.98364	-4.58849	1.07502
Н	1.3718	-5.12024	1.81835
Н	2.88677	-5.20213	0.90001
С	1.25538	-4.46272	-0.25198
Н	0.97465	-5.42011	-0.70086

Computed reaction pathways of the MeCu-catalyzed 1,4-addition

Full-optimized structures (B3LYP-D3(BJ)/def2-SVP)

Energy Table 1 of full-optimized structures (B3LYP-D3(BJ)/def2-SVP)

Energy Table 1. Computed reaction pathway of the MeCu-catalyzed 1,4-addition to methylvinyl ketone with six different phosphorus ligands (T = 293.15 K, B3LYP-D3(BJ)/def2-SVP, solvent = diethylether, ZPE scaled by 0.9912 for B3LYP-D3(BJ)/def2-SVP [1].

(MeO) ₂ P-X) or	E _a [kcal/mol]	E _H [kcal/mol]	E _a [kcal/mol]	E _H [kcal/mol]
PMe ₃	oxidative addition	cuprate	reductive	product
	‡		elimination ‡	
X = H	0.5	-5.5	22.0	-16.2
V F	0.0	0.0	00.4	10.0
X = F	-2.3	-9.9	23.1	-19.2
X = Me	0.4	-2.6	21.3	-17.8
X = OMe	-2.0	-8.5	24.2	-23.5
$X = NMe_2$	1.8	-5.5	22.6	-18.0
DMos	1 5	7.0	25.2	10 /
PIVIe3	1.5	-7.3	20.3	-18.4

Singlepoint structures (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP)

Energy Table 2 of singlepoint structures (B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP)

Energy Table 2. Computed reaction pathway of the MeCu-catalyzed 1,4-addition to methylvinyl ketone with six different phosphorus ligands (T = 293.15 K, B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, solvent = diethylether, ZPE scaled by 0.9896 for B3LYP-D3(BJ)/def2-TZVP and 0.9912 for B3LYP-D3(BJ)/def2-SVP [1].

(MeO) ₂ P-X) or	Ea‡ [kcal/mol]	Eн [kcal/mol]	E _a ‡ [kcal/mol]	Eн [kcal/mol]
PMe ₃	oxidative addition	cuprate	reductive	product
			elimination	
X = H	0.3	-3.6	20.5	-20.2
Y – F	-0.8	-6 1	20.3	-21.0
X = 1	-0.0	-0.1	20.5	-21.0
X = Me	0.5	-0.5	18.9	-15.0
X = OMe	-0.4	-5.2	22.6	-20.8
X – NMoo	1.6	-3.5	21.6	-16 5
$\Lambda = 100002$	1.0	-5.2	21.0	-10.5
PMe ₃	0.2	-4.3	24.5	-20.8

Singlepoint structures (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP)

Important: The singlepoint structures of the M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP method are not appropriate for the cuprate-intermediate structure and not taken.

Energy Table 3 of singlepoint structures (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP)

Energy Table 3. Computed reaction pathway of the MeCu-catalyzed 1,4-addition to methylvinyl ketone with six different phosphorus ligands (T = 293.15 K, M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, solvent = diethylether, ZPE scaled by 0.9754 for M06-2X-D3/def2-TZVP and 0.9912 for B3LYP-D3(BJ)/def2-SVP [1].

(MeO) ₂ P-X) or	E _a [kcal/mol]	Eн [kcal/mol]	Ea [kcal/mol]	E _H [kcal/mol]
PMe ₃	oxidative addition	cuprate	reductive	product
	‡		elimination ‡	
X = H	0.0	1.7	13.6	-23.7
X = F	-0.36	0.1	13.3	-24.1
		••••		
X = Me	0.3	5.9	10.4	-20.4
X OMa	1.0	0.2	15.0	25.4
X = Oivie	-1.3	-0.2	15.3	-25.4
$X = NMe_2$	1.5	3.0	14.1	-20.6
PMe ₃	1.0	1.8	14.5	-24.3

Literature

(a) Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

For B3 see: (b) A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* 1993, **98**, 5648-5652; for LYP see: (c) C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* 1988, **37**, 785-789; for VWN see: (d) S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. *Can. J. Phys.* 1980, **58**, 1200-1211; for an assembly see: (e) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *J. Phys. Chem.* 1994, **98**, 11623-11627.

For def2-SVP and def2-TZVP see: (f) F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 2005, **7**, 3297-3305.

For M06-2X see: (g) Y. Zhao, D. G. Truhlar, The M06 suite of density functional for main group thermochemistry, thermochemical kintetics, noncovalent interactions, excited states, and transition elements: two new functional and systematic testing of four M06-class functional and 12 other functional. *Theor. Chem. Acc.* 2008, **120**, 215-241.

For TPSS see: (h) J. M. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules ans Solids. *Phys. Rev. Lett.* 2003, **91**, 146401-1–146401-4.

For Grimme dispersion see: (i) S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. *J. Comp. Chem.* 2011, **32**, 1456-1465.

For ZPE scale factors see: (j) M. K. Kesharwani, B. Brauer, J. M. L. Martin, Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided?. *J. Phys. Chem. A* 2015, **119**, 1701-1714.

For presentation of computed structures see: (k) Y. C. Legault, CYLview, 1.0b; Université de Sherbrooke 2009 (http://www.cylview.org).