Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Study on performance and mechanism for aerobic oxidative

desulfurization based on the dual-functional material possessing

catalytic and adsorptive properties

Shuai-Yong Dou,^a Rui Wang ^{a*}

School of Environmental Science and Engineering, Shandong University, No. 27

Shanda South Road, Jinan 250199, P. R. China.

*Corresponding author: Tel: +86-531-88366367 E-Mail: wangrui@sdu.edu.cn

Fig. S1. The desulfurization ratio curves over catalyst dosage. (The condition was as that described in Fig. 3, and the reaction time was determined as 120 min).

Model oil	Desulfurization ratio/%				
	After ODS treatment	After ODS treatment with extration			
Sample 1	96.10	100			
Sample 2	43.25	94.31			
Sample 3	24.10	84.45			

Table S1. The evaluation of selectivity to the supported catalysts for ODS.

Note: Sample 1 refers to the model oil containing 250 ppmw DBT, Sample 2 refers to the simulated oil containing 250 ppmw DBT and 10% n-octylene, Sample 3 refers to the model oil containing 250 ppmw DBT and 10% xylene; the condition is as described in figure. 12.

Fig. S2. The GC-MS spectra of the oxidation products ((a) before ODS reaction in the model oil; (b) after ODS reaction in the model oil; (c) after reaction in the eluent of catalyst; (d) after ODS reaction combined with extraction of MeCN in the model oil).

catalyst	assistant	Solvent	oxidant	Temperature (°C)	Pressure	Reused times	Sulfur removal (%)	Ref.
Na_4W_{10} $O_{32} \cdot 8H_2$		MeCN	$O_2 H_2 O_2$	25	0.6 MPa		99%	S 1
H ₈ PV ₅ Mo ₇ O ₄₀		water	O ₂	120	20 bar		99	S2
$[C_{18}H_{37} \\ N(CH_3) \\ _3]_5[PV_2 \\ Mo_{10}O_4 \\ _0]$	isobutyl aldehydes	MeCN	O ₂	60	Atmospheric pressure		100	83
CNTs			O ₂	150	Atmospheric pressure	5	100	S4
HPW@ MOFs		MeCN	O ₂	90	Atmospheric pressure		90	S5
GO	n-octanal		air	60	Atmospheric pressure	3	89.21	S6
K ₆ P ₂ W ₁ ₈ O ₆₂ /G O	n-octanal		air	60	Atmospheric pressure	5	96.10	This work
K ₆ P ₂ W ₁ ₈ O ₆₂ /G O	n-octanal	MeCN	air	60	Atmospheric pressure	5	100	This work

 Table S2. The comparison between the different aerobic ODS systems.

System	Final desulfurization ratio/%
1	48.05
2	48.12
3	62.75
4	67.13
5	99.63

Table S3. The contrast tests for the proposed mechanism of ODS reaction.

Conditions: system 1: the model oil was only treated by extraction of MeCN for 30 min without ODS treatment;

system 2: the model oil was treated by ODS treatment with 200 ml/min air bubbled for 4 h without any catalyst.

system 3: the model oil was treated by ODS treatment with 200 ml/min air bubbled for 4 h with $K_6[\alpha-P_2W_{18}O_{62}]\cdot 14H_2O$ as catalyst;

system 4: the model oil was treated by ODS treatment with 200 ml/min air bubbled for 4 h with n-octanal as catalyst;

system 5: the model oil was treated by ODS treatment with 200 ml/min air bubbled for 4 h with $K_6[\alpha - P_2W_{18}O_{62}] \cdot 14H_2O$ and n-octanal as catalysts;

The other conditions were same as described in Figure 3.

Fig. S3. The GC analysis of the oxidation reaction of n-octanal with molecular oxygen (Condition: T=60 °C; $w_{cat.}$ =0.5%; reaction time is 4 h; the initial n-octanal content is 20 wt%).

REFERENCES

- S1 H. Hori, K. Ogi, Y. Fujita, Y. Yasuda, E. Nagashima, Y. Matsuki and K. Nomiya, Fuel Process Technol 2018, 179, 175-183.
- S2 B. Bertleff, J. Claußnitzer, W. Korth, P. Wasserscheid, A. Jess and J. Albert. ACS Sustainable Chem. Eng. 2017, 5(5), 4110-4118.
- S3 H. Lü, J. Gao, Z. Jiang, Y. Yang, B. Song and C. Li. Chem. Commun. 2007, (2), 150-152.
- S4 W. Zhang, H. Zhang, J. Xiao, Z. Zhao, M. Yu, and Z. Li. Green. Chem. 2014, 16 (1), 211-220.
- S5 J. W. Ding and R. Wang. Chin. Chem. Lett. 2016, 27 (5), 655-658.
- S6 Y. Zhang and R. Wang. Diamond. Relat. Mater. 2017, 73, 161-168.