A new strategy for constructing the  $\beta$ -cyclodextrin-based magnetic

nano-carriers: Molecule docking technique

Pengfei Chen<sup>a</sup>, Shun Yao<sup>b</sup>, Xianggui Chen<sup>a</sup>, Yukun Huang<sup>a</sup>, Hang Song<sup>b,\*</sup>

<sup>a</sup> School of Food and Bioengineering, Xihua University, Chengdu 610039, People's Republic of China

<sup>b</sup> School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China

\* Corresponding author

## Supplementary information



Figure S1 The FT-IR spectra of CM-\beta-CD and MA-β-CD

As seen in Fig. S1, the characteristic peaks at 1602 cm<sup>-1</sup>, 1421 cm<sup>-1</sup> and 1325 cm<sup>-1</sup> in the FT-IR spectra of CM- $\beta$ -CD were assigned to CO<sub>2</sub><sup>-</sup> stretching vibration of carbonyl groups which indicated the attachment of carboxymethyl group on  $\beta$ -CD. In the spectra of MA- $\beta$ -CD, the new characteristic peaks at 1724 cm<sup>-1</sup> and 1652 cm<sup>-1</sup>, corresponding to the stretching vibration of C=O and C=C, respectively, confirmed the successful synthesis of MA- $\beta$ -CD.



Figure S2 The <sup>1</sup>H NMR (600 MHz) spectral for the β-CD, CM-β-CD and MA-β-CD

|          | β-CD | CM-β-CD | MA-β-CD |
|----------|------|---------|---------|
| H-1      | 4.46 | 4.26    | 4.43    |
| H-2      | 3.28 | 3.37    | 3.31    |
| H-3      | 3.59 | 3.97    | 3.65    |
| H-4      | 3.35 | 3.49    | 3.35    |
| H-5      | 3.55 | 3.78    | 3.57    |
| H-6 a, b | 3.62 | 4.01    | 4.19    |
| H-7      | -    | 2.12    | 6.29    |
| H-8      | -    | -       | 6.44    |
| OH-2     | 5.73 | 5.2     | 5.73    |
| ОН-3     | 5.68 | 4.98    | 5.68    |
| OH-6     | 4.82 | -       | 4.88    |
| OH-9     | -    | -       | 7.96    |

Table S1 <sup>1</sup>H NMR (600 MHz) spectral data for the β-CD, CM-β-CD and MA-β-CD

As illustrated in Table S1 and Fig. S2, the disappeared peak at  $\delta = 4.82$  in the spectrum of CM- $\beta$ -CD indicated the substitution reaction occurred at OH-6. As for MA- $\beta$ -CD, the similar peak shape and height at  $\delta = 5.68$  and  $\delta = 5.73$  suggested the

same proportion of proton, which demonstrated there was no involved reaction at OH-2. While the peak area at  $\delta = 4.82$  was less than that of  $\delta = 5.73$ , which was ascribed to the partial substitution occurring at OH-6. Therefore, the substitution reaction of the CM- $\beta$ -CD and MA- $\beta$ -CD both occurred at OH-6.



Figure S3 The XRPD spectral for SMNPs, CM-CD-MNPs, CD-MNPs and MA-CD-MNPs

The XRPD patterns for these nanoparticles were shown in Fig. S3. For all the samples, the six characteristic peaks occur at  $2\theta = 30.1$ , 35.5, 43.1, 53.4, 57.0 and 62.6 and their indices are: (220), (311), (400), (422), (511), and (440), respectively, because of the presence of Fe<sub>3</sub>O<sub>4</sub> according to the standard XRPD data cards of the Fe<sub>3</sub>O<sub>4</sub> crystal (JCPDS no. 85-1436). The results suggested that the grafting process did not change the phase of the Fe<sub>3</sub>O<sub>4</sub> particles. It was worth noting that the intensity of the XRPD peaks obviously decreased when the SMNPs were coated with the polymers, and this proved that successful surface modification occurred.

| Samples     | C (%) | H (%) | N (%) |  |  |
|-------------|-------|-------|-------|--|--|
| SMNPs       | 2.99  | 1.11  | -     |  |  |
| SMNPs-KH540 | 3.87  | 1.23  | 0.87  |  |  |
| SMNPs-KH560 | 4.02  | 1.30  | -     |  |  |
| SMNPs-KH570 | 4.16  | 1.32  | -     |  |  |

Table S2 Elemental analysis of SMNPs and the modified SMNPs

Table S3 The optimal loading conditions of three types of magnetic nano-carriers

|            | pН | t (h) | C <sub>o</sub> (mg/L) <sup>a</sup> | solid-liquid ratio (mg/mL) <sup>b</sup> | T (°C) |
|------------|----|-------|------------------------------------|-----------------------------------------|--------|
| CD-MNPs    | 2  | 4     | 40                                 | 15:40                                   | 35     |
| CM-CD-MNPs | 2  | 4     | 20                                 | 15:30                                   | 35     |
| MA-CD-MNPs | 2  | 4     | 50                                 | 15:40                                   | 35     |

a: the initial concentration of HCFU

b: the ratio of amount of nano-carriers to volume of solution