Supplemental Material

Mapping the creep compliance of living cells with scanning ion conductance microscopy reveals a subcellular correlation between stiffness and fluidity

J. Rheinlaender and T. E. Schäffer

Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany. E-mail: johannes.rheinlaender@uni-tuebingen.de & tilman.schaeffer@uni-tuebingen.de

Numerical Model

Suppl. Fig. S-1 | Numerical model for quantification. (a) Finite element simulations for fluid flow and deformation of an elastic sample calculated for vertical pipette positions corresponding to 99% ion current (top panel, $z_0 = 1.6r_i$) and to 98% ion current (bottom panel, $z = 0.4r_i$). (b) Vertical pipette position at 99% ion current, z_0 , and at 98% ion current, z, as a function of sample compliance J. δ_0 denotes the difference between the two positions at zero sample compliance (J = 0). (c) Relative sample deformation, defined as $\delta = z_0 - z - \delta_0$, as a function of J for different values of inner half cone angle α . The parameters for the shown FEM simulations are $J = 1.5 p_0^{-1}$ (panel a), $\alpha = 4^{\circ}$ (panels a and b), and ratio of outer to inner opening radius $r_0/r_i = 1.5$. The dashed red traces denote linear fits (b) and fits of Equation (5) (c).

Creep Compliance and Complex Modulus of Living Cells Follow a Power-Law Model

Suppl. Fig. S-2 | Creep compliance and complex modulus of a living cell and power-law model. (a) Creep compliance J(t) with a time relative to t_s (start of creep measurement) recorded on a living cell (same data as Figure 1c, bottom panel) shown on a log-log scale with fits of power law (Equation (3), red dashed trace), Maxwell $[J(t) = E^{-1}(1 + t/\tau)$, gives E = 2.9 kPa and $\tau = 0.23$ s, red dotted trace], and Kelvin-Voigt $[J(t) = E^{-1}(1 - e^{-t/\tau})]$, gives E = 2.3 kPa and $\tau = 3.5$ ms, red dashed-dotted trace] models. Here, E, η , and $\tau = \eta/E$ denote modulus of elasticity, viscosity, and time constant, respectively. Interpreting the time constant in terms of a poroelastic material model¹ gives poroelastic diffusion constants of typically $D_p = L^2/\tau \approx 10 \ \mu\text{m}^2\text{s}^{-1}$ (using $L \approx r_i$ as characteristic length scale), consistent with AFM experiments.¹ (b) Complex modulus $E^*(\omega) = E'(\omega) + i E''(\omega)$ calculated by the modified Fourier transform² of the creep compliance data (solid traces) and power-law model (red dashed-dotted trace, prediction from the fit in the time domain data).

Verification on a Silicone Polymer Sample

Correlation for Cell Population and for Pharmacological Treatment

Suppl. Fig. S-4 | Correlation between average stiffness and fluidity for the population of cells and for cells during pharmacological treatment. (a) Average stiffness \overline{E}_0 vs. average fluidity $\overline{\beta}$ for the population of cells (N = 17 cells) with fit of Equation (4) (red line). (b) Average stiffness \overline{E}_0 vs. average fluidity $\overline{\beta}$ for cells (N = 5 cells) before and 30 min after pharmacological treatment with 2 μ M cytochalasin D with fit of Equation (4). (c) Average scaling parameters j_0 and τ_0 and average correlation coefficient r obtained from subcellular correlations (see *e.g.* Fig. 3), from the population of cells (see panel a), and from pharmacological treatment (see panel b). Plots show average values (markers) and data of individual cells (dots); error bars indicate estimated standard deviation. The light red areas represent standard error of the fit (a, b).

Table S1 | Average scaling parameters j_0 and τ_0 and average correlation coefficient r obtained from subcellular correlations (see *e.g.* Fig. 3), from the population of cells (see Suppl. Fig. S-4a), and from pharmacological treatment (see Suppl. Fig. S-4a), provided as average * (scaling parameters) or \pm (correlation coefficient) standard error.

	Scaling parameters		Correlation coefficient	Number of cells
	$j_0 ({\rm kPa^{-1}})$	τ ₀ (μs)	r	Ν
Subcellular correlation	0.368 * 1.1	13.2 * 1.9	-0.65 ± 0.03	17
Population of cells	0.371 * 1.2	14.3 * 60	-0.72 ± 0.18	17
Pharmacological treatment	0.258 * 1.3	6.01 * 6.4	-0.91 ± 0.14	5

Stiffness and Fluidity of a Living Cell during Cytoskeleton Disruption and Recovery

Suppl. Fig. S-5 | Stiffness and fluidity of a living cell during cytoskeleton disruption and recovery. Whole sequence of topography images (top row) and maps of stiffness E_0 (middle row) and fluidity β (bottom row) of the living fibroblast cell from Figure 4 during addition and washout of 2 μ M cytochalasin D. Scale bars: 20 μ m. See also Supplementary Video S1 for an animation of this sequence.

References

- 1 E. Moeendarbary, L. Valon, M. Fritzsche, A. R. Harris, D. A. Moulding, A. J. Thrasher, E. Stride, L. Mahadevan and G. T. Charras, *Nat. Mater.*, 2013, **12**, 253-261.
- 2 R. M. L. Evans, M. Tassieri, D. Auhl and T. A. Waigh, *Phys. Rev. E*, 2009, **80**, 012501.
- 3 R. Takahashi and T. Okajima, Appl. Phys. Lett., 2015, 107, 173702.