Highly Sensitive Glutathione Assay and Intracellular Imaging with Functionalized Semiconductor Quantum Dots

Junlin Sun, Feng Liu, Wenqian Yu, Qunying Jiang, Jialing Hu, Yahua Liu, Fuan Wang, Xiaoqing

Liu*

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education),

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China

* To whom correspondence should be addressed. E-mail: xiaoqingliu@whu.edu.cn.

Table of Contents

Fig. S1 Hydrodynamic diameter and zeta potential of QD@SiO ₂ and QD@SiO ₂ -MnO ₂ S2
Fig. S2 EDS spectrum of QD@SiO ₂ -MnO ₂ S3
Fig. S3 Excitation, emission spectra of QD and QD@SiO ₂ S4
Fig. S4 Relative quantum yields of QD and QD@SiO ₂ S5
Fig. S5 UV-vis absorption spectra of KMnO ₄ and MnO ₂
Fig. S6 Absorption spectra and zeta potential of QD@SiO ₂ subjected to different concentrations of KMnO ₄
Fig. S7 Fluorescent quenching of the QD@SiO ₂ by different preparation routes
Fig. S8 Fluorescence restoration ability of the nanoprobe toward GSH
Fig. S9 Kinetics of GSH sensing by optical spectra and ICP-MS
Fig. S10 TEM images of QD@SiO ₂ -MnO ₂ in the absence and presence of GSHS11
Fig. S11 Confocal images of of nanoprobes or cells for control
Fig. S12 Variation of intracellular GSH upon NEM treatment
Fig. S13 Intracellular imaging of GSH variation in MCF-7 cells
Table S1 Performance of different methods for fluorescent assay of GSH. S15
Reference

Fig. S1 Hydrodynamic diameter of $QD@SiO_2$ (A) and $QD@SiO_2-MnO_2$ (B) in water and DMEM. Zeta potential of $QD@SiO_2$ (C) and $QD@SiO_2-MnO_2$ (D). Inset: corresponding photograph of the particle solution.

Fig. S2 Energy-dispersive X-ray spectroscope (EDS) spectrum of QD@SiO₂-MnO₂.

Fig. S3 Fluorescence excitation (red line) and emission (black line) spectra of QD in toluene (A) and QD@SiO₂ in water (B).

Fig. S4 Calculation of relative photoluminescence quantum yields of QD and QD@SiO₂ using standard quinine sulfate (QS). Corresponding linear equation: $y_{QD} = 671117.0619x - 1263.91762$, $R^2 = 0.9986$; $y_{QD@SiO2} = 321620.65124x - 3917.02263$, $R^2 = 0.9998$; $y_{QS} = 526928.40956x - 6530.24365$, $R^2 = 0.9938$.

Fig. S5 UV-vis absorption spectra of aqueous solutions of $KMnO_4$ and MnO_2 nanosheets.

Fig. S6 UV-vis absorption spectra (A) and zeta potential (B) of $QD@SiO_2$ in the presence of different concentrations of KMnO₄ (0, 0.2, 0.4, 0.8, 1.2, 1.6 and 2 mM).

Fig. S7 Fluorescent quenching of the $QD@SiO_2$ by different preparation routes for the nanoprobes. (a) Pristine $QD@SiO_2$. (b) Nanoprobes prepared by physical mixing $QD@SiO_2$ and MnO_2 . (c) Nanoprobes ($QD@SiO_2-MnO_2$) prepared by in-situ growth of MnO_2 on the surface of $QD@SiO_2$. The respective concentrations of QD and MnO_2 were the same.

Fig. S8 Fluorescence restoration ability of the $QD@SiO_2-MnO_2$ toward 500 μ M GSH. The nanoprobes were prepared separately using 0.8 and 1.2 mM KMnO₄.

Fig. S9 Dynamic reaction between $QD@SiO_2-MnO_2$ and 500 μ M GSH followed by timedependent fluorescence restoration (A), absorbance variation (B), and ICP-MS (C).

Fig. S10 TEM images of $QD@SiO_2$ -MnO₂ in the absence (A) and presence (B) of 500 μ M GSH.

Scale bar, 50 nm.

Fig. S11 Confocal images of nanoprobes or cells. First column: RAW264.7 cells without treatment. Second column: $QD@SiO_2-MnO_2$ incubated in DMEM without cells for 4 h. Third column: RAW264.7 cells incubated with $QD@SiO_2$ for 4 h. Scale bar, 7 µm.

Fig. S12 Variation of intracellular GSH in RAW264.7 cells pretreated with NEM (10 μ M) for 20 min. The GSH level was measured using Ellman's reagents.

Fig. S13 Intracellular imaging of GSH variation in MCF-7 cells with different treatments by confocal laser scanning microscopy. (A) Untreated cells in the absence of QD@SiO₂-MnO₂. (B) Cells incubated with QD@SiO₂-MnO₂. (C) Cells pretreated with NEM (10 μ M) for 20 min followed by incubation with QD@SiO₂-MnO₂. (D) Cells pretreated with LPA (500 μ M) for 24 h followed by incubation with QD@SiO₂-MnO₂. Scale bar, 12 μ m.

Methods	Detection limit (µM)	Linear range (µM)	Ref.
TCF-GSH	0.28	/	1
AuNC	0.2	150-1200	2
g-C ₃ N ₄ -MnO ₂ nanocomposite	0.2	/	3
Eu(DPA) ₃ @Lap-Tris/Cu ²⁺ system	0.162	0.5-100	4
Bis-Pyrene-Cu(II)	0.16	/	5
Iridium(III) complex	0.13	1-200	6
Au-MOF	0.1	0-10000	7
CQDs-AuNPs	0.05	0.1-0.6	8
QD@SiO ₂ -MnO ₂	0.01	0.01-120	This work

References

(1) Sedgwick, A. C.; Gardiner, J. E.; Kim, G.; Yevglevskis, M.; Lloyd, M. D.; Jenkins, A. T. A.; Bull, S. D.; Yoon, J.; James, T. D. Long-Wavelength TCF-Based Fluorescence Probes for the Detection and Intracellular Imaging of Biological Thiols. *Chemical Communications* **2018**, *54* (38), 4786-4789.

(2) Zhang, X.; Wu, F. G.; Liu, P.; Gu, N.; Chen, Z. Enhanced Fluorescence of Gold Nanoclusters Composed of HAuCl₄ and Histidine by Glutathione: Glutathione Detection and Selective Cancer Cell Imaging. *Small* **2014**, *10* (24), 5170-5177.

(3) Zhang, X. L.; Zheng, C.; Guo, S. S.; Li, J.; Yang, H. H.; Chen, G. Turn-On Fluorescence Sensor for Intracellular Imaging of Glutathione Using g-C₃N₄ Nanosheet-MnO₂ Sandwich Nanocomposite. *Analytical Chemistry* **2014**, *86* (7), 3426-3434.

(4) Chen, X.; Wang, Y.; Chai, R.; Xu, Y.; Li, H.; Liu, B. Luminescent Lanthanide-Based Organic/Inorganic Hybrid Materials for Discrimination of Glutathione in Solution and within Hydrogels. *ACS Applied Materials & Interfaces* **2017**, *9* (15), 13554-13563.

(5) Hu, Y.; Heo, C. H.; Kim, G.; Jun, E. J.; Yin, J.; Kim, H. M.; Yoon, J. One-Photon and Two-Photon Sensing of Biothiols Using a Bis-Pyrene-Cu(II) Ensemble and Its Application to Image GSH in the Cells and Tissues. *Analytical Chemistry* **2015**, *87* (6), 3308-3313.

(6) Dong, Z. Z.; Lu, L.; Ko, C. N.; Yang, C.; Li, S.; Lee, M. Y.; Leung, C. H.; Ma, D. L. A MnO₂ Nanosheet-Assisted GSH Detection Platform Using an Iridium(iii) Complex as a Switch-On Luminescent Probe. *Nanoscale* **2017**, *9* (14), 4677-4682.

(7) Du, T.; Zhang, H.; Ruan, J.; Jiang, H.; Chen, H. Y.; Wang, X. Adjusting the Linear Range of Au-MOF Fluorescent Probes for Real-Time Analyzing Intracellular GSH in Living Cells. *ACS Applied Materials & Interfaces* **2018**, *10* (15), 12417-12423.

(8) Shi, Y.; Pan, Y.; Zhang, H.; Zhang, Z.; Li, M. J.; Yi, C.; Yang, M. A Dual-Mode Nanosensor Based on Carbon Quantum Dots and Gold Nanoparticles for Discriminative Detection of Glutathione in Human Plasma. *Biosensors & Bioelectronics* **2014**, *56*, 39-45.