> Electronic Supplementary Material (ESI) for Nanoscale This journal is © Royal Society of Chemistry 2018

Supplementary Information

Stabilizing the Structure of LiMn_{0.5}Fe_{0.5}PO₄ via Formation of Concentration-gradient Hollow Spheres with Fe-rich Surfaces

Tingting Ruan,^a Bo Wang, ^{*a, b} Fei Wang,^a Rensheng Song,^a Fan Jin,^a Yu Zhou,^b Dianlong Wang, ^{*a} Shixue Dou^c

^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China.

^b School of Materials Science and Engineering, Harbin Institute of Technology, 150001 Harbin, China.

^c Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia.

* Corresponding author. Fax: +86 45186413721; Tel: +86 45186413751.

E-mail address:

wangdianlonghit@163.com (D. L. Wang) wangbo19880804@163.com (B. Wang)

Figure S1[†] SEM images of the Li₃PO₄ particles obtained with different volume ratios of H₂O:PEG600: a) 1:2, b) 3:2, c) 3:1, d) 5:0.

As can be seen from the scanning electron microscope (SEM) images, the particle size of the Li_3PO_4 became larger and a spherical morphology was formed as the H_2O :PEG600 solvent ratio was raised from 1:2 to 3:1, which could be attributed to the different velocities influencing the mass transport for the synthesis reaction. As the volume ratio of H_2O to PEG600 grew higher, the viscosity of the solution decreased, which would expedite the mass transfer process for the nucleation and growth of Li_3PO_4 spheres. The resulting Li_3PO_4 nanoparticles would create rough surface, however, and stick together in the absence of PEG600 could reduce the surface energy of Li_3PO_4 , which consequently overcame the tendency of particles towards fusion with each other.¹

Figure S2[†] SEM images of the Li_3PO_4 particles obtained at different pH values: a) pH = 10, b) pH = 11, c) pH = 13, d) pH = 14.

As shown in **Fig. S2**, as the pH value of the original solution increased, the hollow spherical structure of Li_3PO_4 vanished and the particles were agglomerated into large grains, due to the dominance of PO_4^{3-} at higher pH values without the pre-sacrificial precipitation of Li_2HPO_4 , turning the hollow structured spheres into large solid ones.

Figure S3† a) SEM image of C-LMFP/C. b, c) HRTEM images of C-LMFP/C with FFT pattern in the inset of c). d) HAADF-STEM image and elemental mapping results from a cross-section of a C-LMFP/C sphere.

Figure S4[†] a) SEM image of a broken HCG-LMFP/C sphere. b) Line scan profiles of Fe and Mn across a broken HCG-LMFP/C sphere.

Figure S5[†] Cycling performances of C-LMFP/C and HCG-LMFP/C at the 1C rate.

Figure S6[†] XRD patterns of C-LMFP/C and HCG-LMFP/C after cycling.

Samples	a/Å	b/Å	c/Å	<i>V</i> /Å ³	$R_{\rm wp}$ /%	<i>R</i> _p /%	χ^2
C-LMFP/C	10.3285	6.0140	4.6945	291.60	3.01	2.47	1.52
HCG-LMFP/C	10.3216	6.0109	4.6926	291.14	2.75	2.18	1.46

Table S1[†] Lattice constants and unit cell volume from the Rietveld refinements of C-LMFP and HCG-LMFP samples. R_p : profile R-factor; R_{wp} : weighted profile R-factor; χ^2 : goodness-of-fit parameter.

Composites	Particle size	Electrochemical behavior	References
LiFePO ₄ nanoplatelets wrapped in a nitrogen- doped grapheme aerogel	~200 nm in length, ~40 nm in thickness	Initial discharge capacity ~124 mAh g ⁻¹ , with a capacity retention of 89% after 1000 cycles at 10C rate	2
$LiMn_{0.5}Fe_{0.5}PO_4$ nanoparticles	~50 nm	Initial discharge capacity ~109 mAh g ⁻¹ , with a capacity retention of 90% after 100 cycles at 1C rate	3
Mesoporous LiMnPO ₄ nanoplates	~200 nm in length, 5-20 nm in thickness	Initial discharge capacity ~ 156 mAh g ⁻¹ , with a capacity retention of 83% after 100 cycles at 1C rate	4
LiMn _{0.75} Fe _{0.25} PO ₄ nanoplates with fluorine- doped carbon coating	~150 nm	discharge capacity ~120 mAh g ⁻¹ at the 500 th cycle at 10C rate, with a capacity retention of 80%	5
LiMn _{0.6} Fe _{0.4} PO ₄	Unmentioned	discharge capacity ~90 mAh g ⁻¹ at the 1000 th cycle at 10C rate	6
LiFePO ₄ nanosheets	~5 µm in lateral size, 15-20 nm in thickness	discharge capacity ~120 mAh g ⁻¹ at the 500 th cycle at 5C rate, with a capacity retention of 93%	7
LiFePO ₄ nanoplatelets	80-100 nm in length,40-60 nm in width,10-20 nm in thickness	discharge capacity ~ 105 mAh g ⁻¹ at the 1000 th cycle at 10C rate, with a capacity retention of 87%	8
LiMn _{0.9} Fe _{0.1} PO ₄ - polyacene	unmentioned	discharge capacity \sim 91 mAh g ⁻¹ at the 100 th cycle at 10C rate, with a capacity retention of 89.7%	9
LiMn _{0.8} Fe _{0.2} PO ₄ microspheres	~1 µm in diameter	discharge capacity ~ 105 mAh g ⁻¹ at the 1000 th cycle at 5C rate, with a capacity retention of 93.9%	10
LiMn _{0.65} Fe _{0.35} PO ₄ at core covered by LiMn _{0.38} Fe _{0.62} PO ₄ with an average composition of LiMn _{0.5} Fe _{0.5} PO ₄	~600 nm	Initial discharge capacity \sim 117 mAh g ⁻¹ , with a capacity retention of 96% after 1000 cycles at 1C rate	This work

Table S2^{\dagger} Comparison of the properties in the present work with other LiMnPO₄-LiFePO₄ related cathodes reported in the last three years.

Current densities	0.1C	0.2C	1C	2C	5C	10C	20C	60C
galvanostatic charge	168.10	156.40	147.42	137.04	128.09	110.1	93.5	60.0
capacity (mAh g ⁻¹)						2		
Total capacity	160 12	156 12	147.50	120.0	121	117.2	102	72 76
(mAh g ⁻¹)	168.12	130.43	147.39	138.0	131	117.2	103	/2./0
galvanostatic charge	00.09	00.07	00.88	00.21	07 79	02.06	00.20	00 <i>17</i>
capacity fraction (%)	99.98	99.97	99.88	99.31	97.78	93.90	90.29	02.47

 Table S3[†] Results for the charge process in HCG-LMFP/C.

 Table S4† Results for the charge process in C-LMFP/C.

Current densities	0.1C	0.2C	1C	2C	5C	10C	20C	60C
galvanostatic charge	169.32	156.17	146.26	126.54	101.64	75.74	53.85	21.60
capacity (mAh g ⁻¹)	107.02	100.17	110.20					
Total capacity	160 34	156 21	146 51	127 58	104	85.6	66 7	35 13
$(mAh g^{-1})$	109.54	130.21	140.31	127.30	104	85.0	00.7	55.15
galvanostatic charge	00.08	00.07	00.83	00.10	07 72	<u> </u>	<u> 20</u> 74	61 40
capacity fraction (%)	99.98	99.97	99.83	99.19	91.12	00.49	80.74	01.48

Samp	oles	C-LMFP/C	HCG-LMFP/C	
Space §	group	<i>Pnma</i> (orthorhombic)	<i>Pnma</i> (orthorhombic)	
Unit cell parameters	Cell volume (Å ³)	296.22	292.92	
	a (Å)	10.3975	10.3944	
	<i>b</i> (Å)	6.0281	6.0235	
	<i>c</i> (Å)	4.7262	4.6782	

Table S5[†] The structure parameters of the C-LMFP/C and HCG-LMFP/C cathodes after cycling.

Samples		LiMnPO ₄	LiFePO ₄	MnPO ₄	FePO ₄	
Space group		<i>Pnma</i> (orthorhombic)	<i>Pnma</i> (orthorhombic)	<i>Pnma</i> (orthorhombic)	<i>Pnma</i> (orthorhombic)	
Unit cell	Cell volume (Å ³)	310.8783	302.4183	275.8838	290.6502	
parameters	a (Å)	10.5751	10.4529	9.7575	10.0089	
	<i>b</i> (Å)	6.1570	6.0864	5.8580	5.9326	
	<i>c</i> (Å)	4.7746	4.7534	4.8265	4.8647	
M-O parameters	Average bond length (Å)	2.2193	2.1841	2.0327	2.0623	
	Distortio n index (Å)	0.0278	0.0339	0.0626	0.0399	

Table S6[†] The structure parameters of the LiMnPO₄, MnPO₄, LiFePO₄, and FePO₄ samples.

References

1. S.-L. Yang, R.-G. Ma, M.-J. Hu, L.-J. Xi, Z.-G. Lu and C. Y. Chung, *J Mater Chem*, 2012, 22, 25402.

2. B. Wang, W. Al Abdulla, D. Wang and X. S. Zhao, Energ Environ Sci, 2015, 8, 869-875.

3. W. Xiang, Y. J. Zhong, J. Y. Ji, Y. Tang, H. Shen, X. D. Guo, B. H. Zhong, S. X. Dou and Z. Y. Zhang, *Physical chemistry chemical physics : PCCP*, 2015, **17**, 18629-18637.

4. F. Wen, H. Shu, Y. Zhang, J. Wan, W. Huang, X. Yang, R. Yu, L. Liu and X. Wang, *Electrochim Acta*, 2016, **214**, 85-93.

5. X. Yan, D. Sun, Y. Wang, Z. Zhang, W. Yan, J. Jiang, F. Ma, J. Liu, Y. Jin and K. Kanamura, *Acs Sustain Chem Eng*, 2017, **5**, 4637-4644.

 S. Li, X. Meng, Q. Yi, J. A. Alonso, M. T. Fernández-Díaz, C. Sun and Z. L. Wang, *Nano Energy*, 2018, **52**, 510-516.

7. L. L. Peng, X. Zhang, Z. W. Fang, Y. Zhu, Y. J. Xie, J. J. Cha and G. H. Yu, *Chem Mater*, 2017, **29**, 10526-10533.

8. B. Wang, A. M. Liu, W. Al Abdulla, D. L. Wang and X. S. Zhao, Nanoscale, 2015, 7, 8819-8828.

9. L. G. Wang, P. J. Zuo, G. P. Yin, Y. L. Ma, X. Q. Cheng, C. Y. Du and Y. Z. Gao, *J Mater Chem A*, 2015, **3**, 1569-1579.

10. P. J. Zuo, L. G. Wang, W. Zhang, G. P. Yin, Y. L. Ma, C. Y. Du, X. Q. Cheng and Y. Z. Gao, *Nanoscale*, 2015, 7, 11509-11514.