Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Cetyltrimethyl Ammonium Bromide Catalysed Oxidative Cross Dehydrogenative Coupling of Benzylic C(sp³)–H Bonds in Methylarenes with P(O)–OH Compounds

Hang Li^{a1}, Jian Lei^{a1}, Yongping Liu^b, Yi Chen*^b, Chak-Tong Au^c

and Shuang-Feng Yin*a

- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China. E-mail: sf_yin@hnu.edu.cn.
- b School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China. Address here.
- c College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China.
- ¹ H. Li and J. Lei contribute equally to this work.

Table of Contents

Control experiments	2
Copies of ¹ H, ¹³ C, ³¹ P NMR charts of the Compounds	7
References	51

Control experiments

$$\begin{array}{c} Ph \stackrel{O}{P'}_{Ph} O \\ Ph \end{array} + \underbrace{CTAB (20 \text{ mol}\%), \text{ DTBP (4 equiv.)}}_{\text{solvent, 120 °C, 10 h, BQ (2 equiv)}} \begin{array}{c} Ph \stackrel{O}{P'}_{Ph} O \\ Ph \end{array} + \underbrace{O}_{\text{solvent, 120 °C, 10 h, BQ (2 equiv)}}_{\text{solvent, 120 °C, 10 h, BQ (2 equiv)}} \end{array}$$

Ph₂P(O)OH (**1a**) (0.1 mmol), CTAB (20 mol%), DTBP (0.4 mmol) BQ (0.2 mmol) and toluene (**2a**) (0.5 ml) were added in a 25-mL Schlenk tube with magnetic stirring at room temperature. With constant stirring the resulting mixture was heated to 120 °C and kept at this temperature for 10 h. Then the reaction solution was allowed to cool to ambient temperature, and then transferred to a round-bottom flask. Silica gel (4.0 g) was added, and the solvent was removed under reduced pressure to afford a free-flowing powder. This powder was then dry-loaded onto a silica gel column and purified by flash chromatography using petroleum ether/ethyl acetate = 10 / 1, (v/v) as eluent to give **5**.

Yellow oil ¹ $R_f = 0.40$ (petroleum ether/ethyl acetate = 2:1), ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.37 (m, 2H), 7.34–7.30 (m, 2H), 7.24 (s, 1H), 6.85–6.75 (m, 2H), 6.43 (s, 1H), 3.81 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 187.7 (s), 187.2 (s), 148.7 (s), 136.7 (s), 136.6 (s), 136.3 (s), 133.3 (s), 129.4 (s), 128.9 (s), 127.0 (s), 35.2 (s).

1 / 1

Ph₂P(O)OH (0.1 mmol), CTAB (20 mol%), DTBP (0.4 mmol) and toluene-d₈ (0.5 ml) were added in a 25-mL Schlenk tube with magnetic stirring at room temperature. With constant stirring the resulting mixture was heated to 120 °C and kept at this temperature for 10 h. Then the reaction solution was allowed to cool to ambient temperature, and then transferred to a round-bottom flask. Silica gel (4.0 g) was added, and the solvent was removed under reduced pressure to afford a free-flowing powder. This powder was then dry-loaded onto a silica gel column and purified by flash chromatography using petroleum ether/ethyl acetate = 5 / 1 (v/v) as eluent to give [**D**₇-

3a].

¹H NMR (400MHz, CDCl₃) spectrum of compound [D₇-3a]

Colorless oil $R_f = 0.20$ (petroleum ether/ethyl acetate = 2:1) ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.85 (m, 4H), 7.59–7.30 (m, 6H).

Ph₂P(O)OH (0.1 mmol), CTAB (20 mol%), DTBP (0.4 mmol) and solvent (1.0 ml, toluene/toluene-d₈, 1:1, v/v) were added in a 25-mL Schlenk tube with magnetic stirring at room temperature. With constant stirring the resulting mixture was heated to 120 °C and kept at this temperature for 10 h. Then the reaction solution was allowed to cool to ambient temperature, and then transferred to a round-bottom flask. Silica gel (4.0 g) was added, and the solvent was removed under reduced pressure to afford a free-flowing powder. This powder was then dry-loaded onto a silica gel column and purified by flash chromatography using petroleum ether/ethyl acetate = 5 / 1 (v/v) as eluent to give $[H_7/D_7]$ -3a.

¹H NMR (400MHz, CDCl₃) spectrum of compound $[H_7/D_7]$ -3a

Colorless oil $R_f = 0.20$ (petroleum ether/ethyl acetate = 2:1) ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.85 (m, 3H), 7.57–7.53 (m, 1H), 7.50–7.46 (m, 3H), 7.40–7.36 (m, 3H), 5.11 (d, *J* = 6.8 Hz, 1H).

Copies of ¹H, ¹³C, ³¹P NMR charts of the Compounds

 ^{13}C NMR (100MHz, CDCl₃) spectrum of compound **3a** $^{2,\,3}$

³¹P NMR (162MHz, CDCl₃) spectrum of compound **3b**

 ^{13}C NMR (100MHz, CDCl₃) spectrum of compound 3c

 ^1H NMR (400MHz, CDCl₃) spectrum of compound 3d

³¹P NMR (162MHz, CDCl₃) spectrum of compound **3d**

¹³C NMR (100MHz, CDCl₃) spectrum of compound **3e**

¹H NMR (400MHz, CDCl₃) spectrum of compound **3f**

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound **3f**

 ^{13}C NMR (100MHz, CDCl₃) spectrum of compound 3g

¹H NMR (400MHz, CDCl₃) spectrum of compound **3h**

¹³C NMR (100MHz, CDCl₃) spectrum of compound **3i**

¹H NMR (400MHz, CDCl₃) spectrum of compound **3**j

³¹P NMR (162MHz, CDCl₃) spectrum of compound **3**j

¹³C NMR (100MHz, CDCl₃) spectrum of compound **3k**

¹H NMR (400MHz, CDCl₃) spectrum of compound **3**l

³¹P NMR (162MHz, CDCl₃) spectrum of compound **31**

¹³C NMR (100MHz, CDCl₃) spectrum of compound **3m**

¹H NMR (400MHz, CDCl₃) spectrum of compound 3n

¹³C NMR (100MHz, CDCl₃) spectrum of compound **30** ³

¹H NMR (400MHz, CDCl₃) spectrum of compound **3p**

³¹P NMR (162MHz, CDCl₃) spectrum of compound **3p**

 ^{13}C NMR (100MHz, CDCl₃) spectrum of compound 3q

 ^1H NMR (400MHz, CDCl₃) spectrum of compound 3r

¹³C NMR (100MHz, CDCl₃) spectrum of compound 3s

¹H NMR (400MHz, CDCl₃) spectrum of compound 3t

 ^{13}C NMR (100MHz, CDCl₃) spectrum of compound 4a 3

 $^1\mathrm{H}$ NMR (400MHz, CDCl₃) spectrum of compound 4b

¹H NMR (400MHz, CDCl₃) spectrum of compound 4d

 ^{13}C NMR (100MHz, CDCl_3) spectrum of compound 4e

 ^1H NMR (400MHz, CDCl₃) spectrum of compound **4f**

³¹P NMR (162MHz, CDCl₃) spectrum of compound 4f

 ^{13}C NMR (100MHz, CDCl₃) spectrum of compound 4g 3

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound 4h

¹³C NMR (100MHz, CDCl₃) spectrum of compound 4i

³¹P NMR (162MHz, CDCl₃) spectrum of compound 4i

References:

- 1. S. I. Murahashi, N. Miyaguchi, S. Noda, T. Naota, A. Fujii, Y. Inubushi and N. Komiya, *Eur. J. Org. Chem.*, 2011, 5355–5365.
- 2. B. Xiong, G. Wang, C. Zhou, Y. Liu, P. Zhang and K. Tang, J. Org. Chem., 2018, 83, 993–999.
- 3. J. Xu, P. Zhang, X. Li, Y. Gao, J. Wu, G. Tang and Y. Zhao, *Adv. Synth. Catal.*, 2014, **356**, 3331–3335.
- 4. B. Xiong, Q. Ye, X. Feng, L. Zhu, T. Chen, Y. Zhou, C.-T. Au and S.-F. Yin, *Tetrahedron*, 2014, **70**, 9057-9063.