Supporting Information

Controllable Fabrication of the Novel pH-, Thermo-, and Light-Responsive Supramolecular Dendronized Copolymers with Dual Self-Assembly Behavior

ChangAn Yang,^{*1} Ling Chen,¹ He Huang,¹ Tuo Ji,¹ YingXiang Jiang,¹ Xiaobo Chen,^{*2}

CongShan Zhou,^{*1}

¹Department of Chemistry and Chemical Engineering, Hunan Institute of Science and

Technology, Yueyang 414006, Hunan Province, PR China.

²Department of Chemistry, University of Missouri – Kansas City, Kansas City, MO

64110, USA.

Corresponding Authors:Chang_anyang@163.com (ChangAn Yang), <u>chenxiaobo@umkc.edu</u>, zhoucongsh@126.com Figure S1-S10 and Table S1.

Figure S1. ¹H NMR spectra of G1-Azo-CHO (a),N-(4-Vinylpheny) phthalimide(b), 4-VBAHS (c) and the polymer PVBAHS (d) and in D₂O.

Figure S2. FT-IR image of 4-VBAHS (a) and PVBAHS (b).

Figure S3. The optical images of turbidity transitions solution of monomer G1-Azo-CHO (a) and copolymer (b).

Figure S4. Concentration effcts on the LCST of monomersolution.

Figure S5. The chemical shift of benzylamine (a) and the chemical shift (b) of model system (the model self-assembly system were form by use the benzylamine to assembly with G1-Azo-CHO to illustrate the formation of hydrogen and imine bonds); The integral of chemical shift details of model system were in (c-f); (g) the details of chemical shift of monomer and the model system in pH=1.3,6.2,10.1.

Figure S6. FT-IR spectrum of the model system in different pH.

Figure S7. (a) The effect of pH on the LCST of dendronized copolymers aqueous solution before UV irradiation; (b)The effect of pH on the LCST of dendronized copolymers aqueous solution after UV irradiation.

Figure S8. Absorption spectrums of the self-assembly polymer at the molar ratio 0.2:1 (a), 0.4:1 (b), 0.8:1 (c), 1:1 (d).

Figure S9. HPLC outflow curve of the copolymer (a) $P_{0.2}$ and (b) $P_{0.4}$ solution at the molar ratio 1:1(CH₃OH/H₂O: 80/20).

Figure S10. Thermo-responsive of self-assembly polymers with different CHO/NH_2 ratio in heating (solid line) and cooling (dot line) process.

Samples	Concentration of	Mw of the	n_{CHO}/n_{NH2} -	LCST (°C)	
	total materials	copolymers		heating	cooling
	(mg/mL)	(g/mol)	(11101/11101)*		
1	5.0	7.1× 10 ⁴	1:1	54.4	54.1
2	5.0	5.9×10^4	0.8:1	53.5	53.5
3	5.0	4.7×10^4	0.6:1	50.3	49.0
4	5.0	3.5×10^4	0.4:1	46.5	46.1
5	5.0	2.4×10^4	0.2:1	45.6	45.3

Table S1. Raw material molar ratios for self-assembly of supramoleculardendronized copolymers