Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Reactive cycloalkane plasticizers covalently linked to energetic polyurethane binders *via* facile control of an *in situ* Cu-free azide-alkyne 1,3-dipolar cycloaddition reaction

Mingyang Ma^a and Younghwan Kwon *b

 ^aJiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, China
^bDepartment of Chemical Engineering, Daegu University, Gyeongsan, Gyeongbuk 712–714, Korea

Synthesis of adamantane based RCAPs

A mixture of 1-adamantanecarboxylic acid (1.000 g, 5.548 mmol), propargyl alcohol or 3-butyn-1-ol (0.622 g or 0.778 g, 11.096 mmol), *p*-TsA (0.106 g, 0.555 mmol), and toluene (20 mL) was heated in a one-necked round bottom flask equipped with the Dean-Stark trap and condenser refluxing for 12 hrs (see Scheme S1 for synthetic route). After reaction, the toluene solution was cooled down, and extracted with 10 wt.% NaCO₃ solution and water, respectively. The toluene solution was then collected and dried with MgSO₄ overnight. After dryness, the toluene solution was filtered and toluene was removed by rotary evaporator to give the crude liquid product. The final crude product was purified by flash column chromatography to give yellow liquid (silica gel, ethyl acetate/ hexane (v/v) = 3/1).

PAC (n=1): Yield 93.2%. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.67$ ppm (m, 6H, CH–CH₂–CH), 1.87 ppm (m, 6H, CH–CH₂–C), 1.98 ppm (m, 3H, CH₂–CH–CH₂), 2.43 ppm (t, *J*=2.5 Hz, 1H, =C–H), 4.60 ppm (d, *J*=4.7 Hz, 2H, –CH₂–C=). ¹³C NMR (75 MHz, CDCl₃, ppm): $\delta = 28.0$, 36.6, 38.8, 40.8, 52.0, 74.8, 78.3, 177.0. FT-IR (neat, cm⁻¹): 3297 (=C–H), 2905 (CH₂), 2851 (CH), 2127 (C=C), 1729 (C=O).

BAC (n=2): Yield 95.6%. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.65$ ppm (m, 6H, CH–CH₂–CH), 1.83 ppm (m, 6H, CH–CH₂–C), 2.00 ppm (m, 3H, CH₂–CH–CH₂), 2.01 ppm (t, *J*=2.9 Hz, 1H, ≡C–H), 2.46 ppm (m, 2H, –CH₂–C≡), 4.09 ppm (t, *J*=4.3 Hz, 2H, O–CH₂). ¹³C NMR (75 MHz, CDCl₃, ppm): $\delta = 19.2$, 28.1, 36.6, 38.9, 40.8, 61.8, 70.0, 80.3, 177.5. FT-IR (neat, cm⁻¹): 3304 (≡C–H), 2905 (CH₂), 2851 (CH), 2121 (C≡C), 1726 (C=O).

Scheme S1. Synthetic route to PAC (*n*=1) and BAC (*n*=2).

Synthesis of norbornane based RCAPs

A mixture of norbornane-2-carboxylic acid (1.000 g, 7.134 mmol), propargyl alcohol or 3-butyn-1-ol (0.799 g or 0.999 g, 14.267 mmol), *p*-TsA (0.136 g, 0.713 mmol) and toluene (20 mL) was heated in a one-necked round bottom flask equipped with the Dean-Stark trap and condenser refluxing for 12 hrs (see Scheme S2 for synthetic route). After reaction, the toluene solution was cooled down, and extracted with 10 wt.% NaCO₃ solution and water, respectively. The toluene solution was then collected and dried with MgSO₄ overnight. After dryness, the toluene solution was filtered and toluene was removed by rotary evaporator to give the crude liquid product. The final crude product was purified by flash column chromatography to give light yellow liquid (silica gel, ethyl acetate/ hexane (v/v) = 3/1).

PBCHC (n=1): Yield 94.2%. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.24 - 1.73$ ppm (m, 2H, 2H, 1H, 1H, 2H, -C-CH₂-C-, -C-CH₂-C-, -C-CH-C-, -C-CH-C-, -C-CH₂-C-), 2.24 ppm (s, 1H, -C-CH-COO-), 2.44 ppm (t, *J*=2.6 Hz, 1H, =C-H), 2.58 ppm (s, 1H, -C-CH₂-C-), 2.78 ppm (s, 1H, -C-CH₂-C-), 4.67 ppm (m, *J*=4.4 Hz, 2H, -CH₂-C=). ¹³C NMR (75 MHz, CDCl₃, ppm) $\delta = 25.0, 29.2, 32.0, 37.1, 40.3, 40.8, 45.8, 51.9, 74.7, 78.2, 174.4. FT-IR (neat, cm⁻¹): 3299 (=C-H), 2951 (CH₂), 2869 (CH), 2122 (C=C), 1733 (C=O).$

BBCHC (n=2): Yield 93.6%. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.24 - 1.74$ ppm (m, 2H, 2H, 1H, 1H, 2H, -C-CH₂-C-, -C-CH₂-C-, -C-CH-C-, -C-CH-C-, -C-CH₂-C-), 2.00 ppm (t, *J*=2.8 Hz, 1H, =C-H), 2.24 ppm (s, 1H, -C-CH-C-), 2.49 - 2.54 ppm (m, 2H, 1H, -CH₂-C=, -C-CH₂-C-), 2.78 ppm (s, 1H, -C-CH₂-C-), 4.18 ppm (m, 2H, O-CH₂). ¹³C NMR (75MHz, CDCl₃, ppm) $\delta = 19.2$, 25.0, 29.2, 32.0, 37.1, 40.3, 40.9, 46.0, 62.0, 70.0, 80.4, 175.0. FT-IR (neat, cm⁻¹): 3297 (=C-H), 2956 (CH₂), 2873 (CH), 2122 (C=C), 1732 (C=O).

Scheme S2. Synthetic route to the PBCHC (*n*=1) and BBCHC (*n*=2).

Preparation of GAP-based PU binders with RCAPs

GAP polyol (8.930 g, 1.62 mmol) was dried at 60 °C under vacuum for 1 hr and cooled to room temperature for 0.5 hr. The vacuum was then released and IPDI (0.504 g, 2.27 mmol) was added rapidly to GAP polyol. After stirring for 0.5 hr at room temperature, the predetermined amount of RCAPs based on the molar ratio of [acetylene group in RCAPs]/[azide group in GAP], two catalysts triphenyl bismuth (0.03 g, 20 wt.% in benzene) and 3,5-dinitro salicylic acid (0.05 g, 12.5 wt.% in benzene) was added and stirred for another 0.5 hr under vacuum. The mixture was then cast on a Teflon coated mold (5 cm × 8 cm), kept under vacuum at 30 °C for 3 hrs to remove the bubbles formed during the casting process, and then subject to curing. The curing process was carried out in an oven at 60 °C for 7 days. The control GAP-based PU binder was also prepared using the same procedure.

Cu-free 1,3-DPCA reaction between GAP and RCAPs

The azide-alkyne 1,3-DPCA reactivity of RCAPs was studied with GAP prepolymer under bulk conditions. A total of 1.0 g of the RCAP/GAP mixture ($[C=C]/[-N_3]=0.5:1$) was mixed thoroughly in a vial. The mixture was then placed in an oven at 60 °C. A constant amount of sample was collected each time and dissolved in DMSO-d₆ to measure the conversion of the 1,3-DPCA reaction using a ¹H NMR spectrometer until the end of the 1,3-DPCA reaction.

Fig. S1. ¹H NMR spectra of (a) PAC, (b) BAC, (c) PBCHC and (d) BBCHC.

Fig. S2. ¹³C NMR spectra of (a) PAC, (b) BAC, (c) PBCHC and (d) BBCHC.

Fig. S3. FT-IR spectrum (neat) of PAC.

Fig. S4. FT-IR spectrum (neat) of BAC.

Fig. S5. FT-IR spectrum (neat) of PBCHC.

Fig. S6. FT-IR spectrum (neat) of BBCHC.

Fig. S7. Mass spectrum of PAC.

Fig. S8. Mass spectrum of BAC.

Fig. S9. Mass spectrum of PBCHC.

Event#: 1 Scan(E+) Ret. Time : [4.117->4.467]-[0.050->4.017] Scan# : [495->537]-[7->483]

B3LYP/6-31G* Total Energies in hartrees.

Cartesian coordinates in Å.

All structures have zero imaginary frequencies.

The second column refers to the atom type: 1=hydrogen, 6=carbon, etc.

PAC

E(RB+HF-LYP) = -694.7332802

Sum of electronic and zero-point Energies=		-694.437078			
1	6	0	-0.973134	0.283025	-1.246789
2	1	0	0.146652	0.283025	-1.246789
3	1	0	-1.319425	1.347909	-1.246789
4	6	0	-1.489796	-0.428571	0.000000
5	6	0	-1.490091	-0.428747	-2.493341
6	1	0	-1.109525	0.095468	-3.409730
7	6	0	-1.000356	-1.873710	-2.491914
8	1	0	0.119164	-1.894878	-2.504445
9	1	0	-1.366850	-2.399437	-3.410169
10	6	0	-1.000007	-1.873521	-0.001406
11	1	0	-1.366209	-2.399141	0.917029
12	1	0	0.119516	-1.894641	0.010782
13	6	0	-1.516946	-2.587812	-1.246533
14	1	0	-1.156129	-3.650451	-1.246504
15	6	0	-3.042497	-2.567072	-1.246345
16	1	0	-3.429299	-3.099714	-2.152209
17	1	0	-3.429036	-3.099570	-0.340284
18	6	0	-3.015378	-0.410356	-0.001219
19	1	0	-3.382164	0.647575	0.011199
20	1	0	-3.401612	-0.921501	0.917194
21	6	0	-3.015677	-0.410431	-2.491696
22	1	0	-3.382376	0.647537	-2.503983
23	1	0	-3.402224	-0.921498	-3.410012
24	6	0	-3.534598	-1.122913	-1.246379
25	1	0	-4.656735	-1.108873	-1.246230
26	6	0	-0.967287	0.291004	1.257297
27	8	0	-0.264700	-0.128957	2.175756
28	8	0	-1.371304	1.585160	1.315082
29	6	0	-0.866935	2.217722	2.494225
30	1	0	0.202628	2.188610	2.484890
31	1	0	-1.230231	1.702305	3.358668
32	6	0	-1.340264	3.682655	2.533354
33	6	0	-1.707555	4.819404	2.563717
34	1	0	-2.033661	5.828686	2.590676

BAC

Sum of electronic and zero-point Energies=			-733.727944			
1	6	0	-0.888158	1.924342	0.000000	
2	1	0	0.231628	1.924342	0.000000	
3	1	0	-1.234449	2.989226	0.000000	
4	6	0	-1.404820	1.212746	1.246789	
5	6	0	-1.405115	1.212570	-1.246552	
6	1	0	-1.024549	1.736785	-2.162941	
7	6	0	-0.915380	-0.232393	-1.245125	
8	1	0	0.204140	-0.253561	-1.257656	
9	1	0	-1.281874	-0.758120	-2.163380	
10	6	0	-0.915031	-0.232204	1.245383	
11	1	0	-1.281233	-0.757824	2.163818	
12	1	0	0.204492	-0.253324	1.257571	
13	6	0	-1.431970	-0.946495	0.000256	
14	1	0	-1.071153	-2.009134	0.000285	
15	6	0	-2.957521	-0.925755	0.000444	
16	1	0	-3.344323	-1.458397	-0.905420	
17	1	0	-3.344060	-1.458253	0.906505	
18	6	0	-2.930402	1.230961	1.245570	
19	1	0	-3.297188	2.288892	1.257988	
20	1	0	-3.316636	0.719816	2.163983	
21	6	0	-2.930701	1.230886	-1.244907	
22	1	0	-3.297400	2.288854	-1.257194	
23	1	0	-3.317248	0.719819	-2.163223	
24	6	0	-3.449622	0.518404	0.000410	
25	1	0	-4.571759	0.532444	0.000559	
26	6	0	-0.882311	1.932321	2.504086	
27	8	0	-0.179724	1.512360	3.422545	
28	8	0	-1.286328	3.226478	2.561871	
29	6	0	-0.781959	3.859039	3.741014	
30	1	0	0.287604	3.829927	3.731679	
31	1	0	-1.145255	3.343623	4.605457	
32	6	0	-1.255288	5.323972	3.780143	
33	1	0	-2.324865	5.353129	3.787600	
34	1	0	-0.890437	5.839866	2.916640	
35	6	0	-0.714339	6.004439	5.051339	
36	6	0	-0.294577	6.532464	6.037754	
37	1	0	0.078116	7.001279	6.913558	

PBCHC

E(RB+HF-LYP) =	-577.9777013				
Sum of electronic an	nd zero-point Ener	int Energies=		-577.747599	
1	6	0	-2.814323	-1.148988	1.389192
2	6	0	-1.272613	-1.148988	1.389192
3	6	0	-1.813728	1.060012	1.389192
4	6	0	-3.180894	0.347501	1.389380
5	1	0	-3.222727	-1.672810	0.493680
6	1	0	-3.205949	-1.656877	2.302370
7	1	0	-3.785417	0.623448	0.494088
8	1	0	-3.762577	0.616617	2.302891
9	6	0	-0.969987	0.095915	2.262705
10	1	0	0.109219	0.360309	2.282942
11	1	0	-1.354614	0.001716	3.301054
12	6	0	-0.816949	-0.659759	0.000131
13	1	0	0.282943	-0.801939	-0.123748
14	1	0	-1.336667	-1.211102	-0.817842
15	6	0	-1.183673	0.836735	0.000000
16	1	0	-1.899491	1.085050	-0.817990
17	1	0	-0.812337	-2.099481	1.716279
18	1	0	-1.844852	2.115596	1.716406
19	6	0	0.071447	1.712495	-0.171221
20	8	0	1.111136	1.743607	0.485773
21	8	0	-0.034731	2.564478	-1.222060
22	6	0	1.147855	3.358590	-1.347665
23	1	0	1.290355	3.929954	-0.454280
24	1	0	1.992154	2.719334	-1.500676
25	6	0	1.001157	4.311499	-2.548516
26	6	0	0.887323	5.050932	-3.480345
27	1	0	0.786253	5.707449	-4.307685

BBCHC

E(RB+HF-LYP) =	-617.29760	76				
Sum of electronic and zero-point Energies=			-617.038594			
1	6	0	0.193929	0.059022	0.000000	
2	6	0	1.735639	0.059022	0.000000	
3	6	0	1.194524	2.268022	0.000000	
4	6	0	-0.172642	1.555511	0.000188	
5	1	0	-0.214475	-0.464800	-0.895512	
6	1	0	-0.197697	-0.448867	0.913178	
7	1	0	-0.777165	1.831458	-0.895104	
8	1	0	-0.754325	1.824627	0.913699	
9	6	0	2.038265	1.303925	0.873513	
10	1	0	3.117471	1.568319	0.893750	
11	1	0	1.653638	1.209726	1.911862	
12	6	0	2.191303	0.548251	-1.389061	
13	1	0	3.291195	0.406071	-1.512940	
14	1	0	1.671585	-0.003092	-2.207034	
15	6	0	1.824579	2.044745	-1.389192	
16	1	0	1.108761	2.293060	-2.207182	
17	1	0	2.195915	-0.891471	0.327087	
18	1	0	1.163400	3.323606	0.327214	
19	6	0	3.079699	2.920506	-1.560413	
20	8	0	4.119388	2.951617	-0.903419	
21	8	0	2.973522	3.772488	-2.611252	
22	6	0	4.156108	4.566600	-2.736857	
23	1	0	4.298608	5.137965	-1.843472	
24	1	0	5.000406	3.927344	-2.889868	
25	6	0	4.009410	5.519509	-3.937708	
26	1	0	3.856568	4.948456	-4.829581	
27	1	0	3.171302	6.165717	-3.779937	
28	6	0	5.288936	6.364252	-4.082001	
29	6	0	6.281816	7.019751	-4.193968	
30	1	0	7.163360	7.601746	-4.293380	

$$E\left[\begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \left[\begin{array}{c} \end{array} \\ \left[\begin{array}{c} \end{array} \\ \left[\end{array} \\ \left[\begin{array}{c} \end{array} \\ \left[\end{array} \\ \left[\end{array} \\ \left[\begin{array}{c} \end{array} \\ \left[\end{array} \\ \left[\end{array} \\ \left[\begin{array}{c} \end{array} \\ \left[\end{array} \\ \left[\end{array} \\ \left[\end{array} \\ \left[\begin{array}[] \\ \left[\end{array} \\ \left[}\end{array} \\ \left[\end{array} \\ \left[\end{array} \\ \left[\end{array} \\ \left[}\end{array} \\ \left[\end{array} \\ \left[\end{array} \\ \left[}\end{array} \\ \left[\end{array} \\ \left[}\end{array} \\ \left[\end{array} \\ \left[}\end{array} \\ \left[}\end{array} \\ \left[\end{array} \\ \left[}\end{array} \\ \left[}\end{array} \\ \left[\end{array} \\ \left[}\end{array} \\ \left[}\end{array} \\ \left[}\end{array} \\ \left[}\end{array} \\ \left[}\end{array} \\ \left[}\bigg \\ \\ \left[}\bigg \\ \left[\bigg] \\ \left[}\bigg \\ \\ \left[}\bigg \\ \left[\bigg] \\ \left[}\bigg \\ \left[\bigg \\ \left[\bigg] \\ \left[}\bigg \\ \left[\bigg] \\ \left[\bigg \\ \left[\bigg \\ \left[\bigg] \left[\bigg \\ \left[\bigg] \\ \left[\bigg \\ \left[\bigg] \left[\bigg] \left[\bigg] \\ \left[\bigg] \left[\bigg] \left[\bigg \\ \left[\bigg] \left[\bigg]$$

Fig. S11. DSC thermograms of (a) GAP:PAC; (b) GAP:BAC; (c) GAP:PBCHC; (d) GAP: BBCHC.

Fig. S12. Viscosity vs. time for binary mixtures of RCAPs/GAP prepolymer (50/50 w/w) isothermally at 30 °C.

Fig. S13. ¹H NMR spectra as a function of reaction time of Cu-free azide-alkyne 1,3-DPCA reaction of BAC (n=2) and GAP prepolymer carried out in bulk condition at 60 °C.

Fig. S14. ¹H NMR spectra as a function of reaction time of Cu-free azide-alkyne 1,3-DPCA reaction of PBCHC (n=1) and GAP prepolymer carried out in bulk condition at 60 °C.

Fig. S15. ¹H NMR spectra as a function of reaction time of Cu-free azide-alkyne 1,3-DPCA reaction of BBCHC (n=2) and GAP prepolymer carried out in bulk condition at 60 °C.

Fig. S16. Dynamic DSC curves of PAC (n=1)/GAP (top) and BAC (n=2)/GAP (bottom) mixtures at different heating rates.

Fig. S17. Arrhenius plots of $\ln(\beta)$ versus T - 1 max. For all samples, the linear fitting coefficient of determination (R^2) was greater than 0.99. Activation energy, E_a was determined by plotting $\ln(\beta)$ against T - 1 max.

Fig. S18. TGA (top) and DTG (bottom) curves of the RCAPs and RCAPs/GAP-based PUs.

	Dipole		НО	МО	LUMO		
	-o (N ₃		-6.734		-0.776		
	Dipolaropl	hile	НО	НОМО		LUMO	
	o		-7.071		0.265		
	o o	<i></i>	-7.074		0.331		
	O O		-7.245		0.182		
	O O		-7.256		0.251		
1-Azido Alpha oo Alpha vi	- 3-methoxy-2-metl cc. eigenvalues rt. eigenvalues	hylpropane -0.24749 -0.02851	0.01165	0.08848	0.10733	0.11392	
PAC Alpha oo Alpha vi	cc. eigenvalues rt. eigenvalues	-0.25988 0.00973	0.02403	0.04939	0.06827	0.11372	
BAC Alpha oo Alpha vi	cc. eigenvalues rt. eigenvalues	-0.25998 0.01218	0.04736	0.05478	0.06574	0.10426	
PBCHC Alpha oo Alpha vi	cc. eigenvalues rt. eigenvalues	-0.26627 0.00668	0.02416	0.04904	0.08140	0.10440	
BBCHC Alpha oc Alpha vi	cc. eigenvalues rt. eigenvalues	-0.26668 0.00923	0.04727	0.05470	0.08036	0.09919	

Table S1. Computational results of orbital energies at the $B3LYP/6-31G^*$ level of theory (eV).

	Elemental analysis (wt.%)				Experimental
PU ^a	С ±0.6	Н ±0.4	O ±1.1	N ±0.4	formula for 100 g
GAP	38.5	5.3	17.0	39.2	$C_{3.20}H_{5.27}O_{1.06}N_{2.80}$
PAC/GAP	52.6	6.5	15.8	25.1	$C_{4.38}H_{6.44}O_{0.99}N_{1.79}$
BAC/GAP	53.5	6.6	15.4	24.5	$C_{4.46}H_{6.49}O_{0.97}N_{1.75}$
PBCHC/GAP	49.1	6.1	17.9	26.9	$C_{4.09}H_{6.02}O_{1.12}N_{1.92}$
BBCHC/GAP	50.6	6.3	16.9	26.2	$C_{4.21}H_{6.22}O_{1.05}N_{1.88}$

Table S2. Percentage of carbon (C), hydrogen (H), oxygen (O) and nitrogen (N), and empirical formula for GAP and respective RCAP/GAP polymers.

^aMole ratio of $[C \equiv C]/[N_3] = 0.3/1$