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Figure 1: Model reaction determining stability of trithiocarbonate RAFT agent to aminolysis by 
TMPM monomer. (a) UV-Vis absorbance spectrum of model reaction (100 TMPM:1 CPPTTC, dioxane) 
at 85°C at 0 and 6 h, (b) Absorbance of trithiocarbonate RAFT agent from model reaction at 308 nm, 
showing stability over time (each time point average of two measurements).

Figure 2: 1H NMR spectrum of a mixture of TMPM and CPPTTC at polymerisation concentrations and 
heated at 85 °C in dioxane for 5 hours. Peak D represents the α-methylene of the Z-group of the 
RAFT agent and show’s no evidence of aminolysis to form any free pentane thiol.
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Figure 3. Normalised SEC traces of PTMPM-PMMA copolymers synthesised in this study. SEC was run 
at 60 °C with DMAc with 1% LiBr was used as eluent.
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Figure 4: UV-Vis characterisation of the removal of trithiocarbonate groups from the polymers by 
oxidation, as evidenced by characteristic loss of thiocarbonylthio peak at 308 nm.
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Figure 5: 1H NMR spectroscopic characterisation of the removal of trithiocarbonate groups from the 
polymers by oxidation, as evidenced by characteristic loss of α-methylene of the Z-group of the RAFT 
agent. 
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Figure 6: EPR spectroscopy standard curve of TEMPO used to quantify nitroxide concentration in 
polymers. (a) EPR spectra of TEMPO from 0 – 1 mM, (b) standard curve of the double integral of the 
EPR spectra in (a). Slope = 2100000 M-1 (r2 = 0.9999).
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Figure 7: UV-Vis standard curve of TEMPO used to quantify nitroxide concentration in polymers. (a) 
UV-Vis spectra of TEMPO from 0 – 10 mM, (b) standard curve of max absorbance at 460 nm. Ε= 
11.72 M-1.cm-1 (r2 = 1).
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Figure 8: Optimisation of spin coating conditions, for (a) spin conditions and (b) concentration, using 
100 wt% PMMA in toluene.
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Figure 9: 3D view of AFM measurement of 100% PMMA film, spin coated onto silicon wafer 
demonstrating that the surface is smooth without features. RMS roughness of entire FOV ± 3.0 nm 
(255 µm2).  Some dust particles are evident on the surface as the narrow and intense peaks 
approximately 70 nm high.
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Figure 10: XPS survey spectrum of 100 wt% PTMA and 0 wt% PTMA films.
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Figure 11: High resolution XPS spectra of the C1s region for each of the PTMA-PMMA copolymers.

Figure 12: High resolution XPS spectra of the C1s region for each of the PTMA-PMMA copolymers.
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Figure 13: Replicate high resolution XPS N1s spectra acquired for the same 100 wt% PTMA film, at 
three different locations, demonstrating the variability of the peak at 406 eV. 
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Figure 14: High resolution XPS N1s spectrum of neat PTMA powder, showing that there is no peak at 
306 eV for the oxoammonium cation.
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Table 1: Summary statistics for two-way ANOVA analysis of anti-biofilm activity of nitroxide 
copolymer surfaces.

ANOVA summary

F 13.64

P value <0.0001

P value summary ****

Significant diff. among 
means (P < 0.05)?

Yes

R square 0.7912

ANOVA table SS DF MS F (DFn, 
DFd)

P value

Treatment (between 
columns)

50.51 5 10.1 F (5, 18) = 
13.64

P<0.0001

Residual (within 
columns)

13.33 18 0.7406

Total 63.84 23

Dunnett's multiple 
comparisons test

Mean 
Diff.

95.00% 
CI of diff.

Summary Adjusted 
P Value

% 
reduction 
in 
attached 
bacteria

0 wt% PTMA-PMMA vs. 
30 wt% PTMA-PMMA

2.58 0.8991 to 
4.26

** 0.0021 99.69

0 wt% PTMA-PMMA vs. 
60 wt% PTMA-PMMA

2.47 0.7894 to 
4.15

** 0.0032 99.69

0 wt% PTMA-PMMA vs. 
82 wt% PTMA-PMMA

3.122 1.442 to 
4.802

*** 0.0003 99.91

0 wt% PTMA-PMMA vs. 
100 wt% PTMA

4.115 2.435 to 
5.796

**** 0.0001 99.96


