Electronic Supporting Information

A novel hydroxyl-containing polyimide as the colorimetric and ratiometric chemosensor for reversible detection of fluoride ion

Yancheng Wu, Chuqi Shi, Zhigeng Chen, Yubin Zhou, Shumei Liu,* and Jianqing Zhao*

School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China. E-mail: <u>liusm@scut.edu.cn</u>; <u>psjqzhao@scut.edu.cn</u>

Contents

1. Synthesis and characterization of diamine monomer (Figs. S1-S3)	
2. Characterization spectra of PI-OH film (Figs. S4 and S5)	
3. TGA and DMA curves of PI-OH film (Figs. S6 and S7)	
4. Time-dependent experiments in the presence of F ⁻ (Fig. S8)	S6
5. Results of DFT calculations for 1 and its complex (Tables S1-S2 and Figs. S9-S10)	
6. UV-vis absorption and IR spectra change of PI-OH film upon immersing in the so	lution of F- (Figs.
S11-S12)	S10
7. Detection of fluoride ion in DMSO/water media (Fig. S13)	S11
8. The comparison of our chemosensor PI-OH with polymeric F^- chemosensors	available in the
literature (Table S3)	S12
9. Supplementary material references	S13

1. Synthesis and characterization of diamine monomer

9,9-bis(4-amino-3,5-dimethylphenyl)-9H-fluorene-2,7-diol (DMAHF)

Scheme 1 Synthesis route of diamine monomer DMAHF

2,7-Dihydroxy-9-fluorenone (10.6 g, 0.05 mol), 2,6-dimethylaniline (74.6 g, 0.40 mol) and methylsulfonic acid (2.40 g, 0.025 mol) were added to a 500 mL round-bottomed flask equipped with a magnetic stirrer and reflux condenser. A stream of argon was introduced and the mixture was heated at 150 °C for 14 h. After that, the reaction mixture was cooled down to 110 °C, and then poured into triethylamine (200 mL) and stirred at 110 °C for 20 min. The precipitated product was isolated by suction filtration and washed thoroughly with ethanol and distilled water several times at room temperature before drying in a vacuum oven. Yield: 72.6%, ¹H NMR (DMSO-*d*₆, 400 MHz, δ , ppm): 9.20 (s, 2H), 7.42 (d, *J* = 8.7 Hz, 2H), 6.68-6.60 (m, 4H), 6.52 (s, 4H), 4.40 (s, 4H), 1.95 (s, 12H); ¹³C NMR (DMSO-*d*₆, 151 MHz, δ , ppm): 156.3, 154.1, 142.9, 134.2, 131.5, 127.8, 120.5, 112.0, 114.4, 113.4, 63.8, 18.6; ESI-HRMS, *m*/*z* (%): Calcd for C₂₉H₂₉N₂O₂⁺ ([M+H]⁺): 437.2224 (100), Found: 437.2226 (100).

Fig. S3 HRMS spectrum of diamine monomer DMAHF

2. Characterization spectra of PI-1 film

3. TGA and DMA curves of PI-OH film

Fig. S7 DMA curve of PI-OH film

4. Time-dependent experiments in the presence of F-

Fig. S8 Time-dependent UV absorption (at 290 and 320 nm) of chemosensor PI-OH in DMSO

5. Cartesian coordinates and total energies of stationary points

All calculations were performed with the Gaussian 09 program. The Cartesian coordinates of all stationary points are listed. For each structure, absolute energies obtained at the B3LYP/6-31G (d) level are shown.

Fig. S9 Model compound 1 for theoretical calculation

Table S1.	Compound 1, To	otal energy ar	nd atomic	coordinates.
-----------	----------------	----------------	-----------	--------------

1 $E_{tot} = -2295.00259486$ a.u.

Atom	Х	Y	Ζ				
С	8.615085	-3.99174	-0.72389	Н	-0.694618	4.020295	-5.271149
С	8.887912	-3.57157	0.584798	Ν	-4.869993	-1.327699	0.047895
С	8.014284	-2.71383	1.265576	С	-5.769516	-1.401773	-1.041058
С	6.873486	-2.30002	0.592871	С	-6.873485	-2.300159	-0.592858
С	6.602462	-2.71737	-0.70984	С	-6.602479	-2.717181	0.709965
С	7.460236	-3.56719	-1.3935	С	-5.313896	-2.102823	1.144248
С	5.769381	-1.40175	1.040965	С	-8.014163	-2.71432	-1.26555
Ν	4.869744	-1.3281	-0.04796	С	-8.887687	-3.572059	-0.584646
С	5.313744	-2.10333	-1.14417	С	-8.614879	-3.991895	0.724151
0	4.74219	-2.2205	-2.20787	С	-7.460152	-3.566992	1.393754
0	5.638849	-0.84067	2.108385	0	-4.742366	-2.219684	2.20799
С	3.658503	-0.5588	-0.04523	0	-5.638973	-0.840964	-2.108629
С	2.576206	-0.98413	0.743534	Н	9.311826	-4.657445	-1.225516
С	1.40372	-0.2252	0.718345	Н	9.792076	-3.917848	1.077549
С	1.281907	0.928134	-0.06674	Н	8.214582	-2.381486	2.279506
С	2.382666	1.32237	-0.83155	Н	7.237845	-3.88584	-2.407226
С	3.578897	0.597705	-0.8362	Н	0.560957	-0.560198	1.315263
С	0.000004	1.785572	-2.9E-05	Н	2.320025	2.217337	-1.441197
С	-1.28198	0.928239	0.066588	Н	-0.187986	6.186286	-1.306547
С	0.139835	2.769562	1.179567	Н	-0.491931	5.676372	-3.712358
С	0.092478	4.103269	0.726544	Н	-0.363563	1.458751	-2.893967
С	-0.09203	4.103365	-0.72635	Н	0.363207	1.458384	2.893932
С	-0.13971	2.769715	-1.1795	Н	0.492514	5.675889	3.71274

С	-0.21942	5.151482	-1.63779	Н	0.188859	6.186111	1.306959
С	-0.39121	4.865338	-2.99304	Н	-2.320106	2.217708	1.440784
С	-0.43807	3.536376	-3.43414	Н	-0.561054	-0.560248	-1.315256
С	-0.31435	2.477336	-2.52353	Н	4.887166	0.397682	-2.544105
С	0.314287	2.477013	2.523584	Н	5.675873	1.073514	-1.114417
С	0.438168	3.535932	3.434309	Н	4.561002	2.071186	-2.061935
С	0.391659	4.86495	2.993336	Н	1.672272	-2.492382	1.987933
С	0.220043	5.151266	1.638103	Н	3.044722	-3.080975	1.03569
С	-2.38277	1.322672	0.831243	Н	3.32825	-2.066934	2.454279
С	-3.57905	0.598088	0.835872	Н	-1.672423	-2.492723	-1.987449
С	-3.65868	-0.55851	0.045044	Н	-3.327981	-2.066522	-2.454683
С	-2.57637	-0.984	-0.74361	Н	-3.045672	-3.080662	-1.035948
С	-1.40383	-0.22515	-0.71842	Η	-4.561183	2.071844	2.061253
0	-0.60303	3.206252	-4.75234	Н	-5.676011	1.074101	1.113752
0	0.60293	3.205642	4.752483	Н	-4.887552	0.398479	2.543687
С	4.739272	1.060553	-1.68374	Η	-8.214449	-2.38223	-2.279567
С	2.659228	-2.22408	1.600505	Н	-9.791757	-3.918606	-1.077384
С	-2.65946	-2.22397	-1.60056	Н	-9.311538	-4.657617	1.225878
С	-4.73949	1.06116	1.683207	Η	-7.237775	-3.885391	2.40756
Н	0.694591	4.019615	5.271393				

 Table S2.
 Complex 1-2F⁻, Total energy and atomic coordinates.

1-2F ⁻	$E_{tot} = -2494.74162783 a.u.$

Atom	Х	Y	Ζ				
С	-8.495979	-4.317203	0.040289	С	8.233069	-4.5081	-1.176854
С	-8.790139	-3.665779	-1.173208	С	8.979965	-3.535738	-0.48401
С	-7.939921	-2.681435	-1.684331	С	8.371506	-2.374729	0.001242
С	-6.796811	-2.367255	-0.956531	0	6.369804	-0.082437	0.768059
С	-6.504582	-3.015107	0.252152	0	3.90684	-3.289959	-1.508025
С	-7.345889	-3.995694	0.766674	F	-0.634941	6.237931	-5.032854
С	-5.722891	-1.383285	-1.235092	F	0.590559	-0.070412	5.293307
Ν	-4.81712	-1.491406	-0.153094	Н	-9.17471	-5.079981	0.414577
С	-5.232445	-2.467661	0.783261	Н	-9.691987	-3.935127	-1.717987
0	-4.649344	-2.774532	1.809983	Н	-8.154123	-2.171073	-2.619247
0	-5.615597	-0.633395	-2.191589	Н	-7.105917	-4.489463	1.704273
С	-3.61581	-0.710561	-0.023931	Н	-0.529402	-0.408562	-1.379366
С	-2.531209	-0.967189	-0.87912	Н	-2.297642	1.792535	1.840924
С	-1.372258	-0.202943	-0.726569	Н	0.1687	5.80901	2.331733
С	-1.260496	0.801708	0.244098	Н	0.433496	4.915557	4.641567
С	-2.362167	1.027634	1.074708	Н	0.330207	0.882194	3.157894
С	-3.543811	0.288568	0.959145	Н	-0.357143	1.845437	-2.588574
С	0.007028	1.677091	0.326602	Н	-0.413912	6.144374	-2.705033

C	1 292(02	0.925(20)	0 114700	П	0 120127	(220125	0 22207
C	1.283693	0.835629	0.114709	Н	-0.139137	6.239135	-0.22307
С	-0.133755	2.844433	-0.683006	Н	2.21738	2.1868	-1.267833
С	-0.075498	4.084909	0.004032	Н	0.66398	-0.723993	1.464344
С	0.090328	3.846376	1.41813	Н	0.572721	0.931371	5.334859
С	0.136157	2.448336	1.665993	Н	-0.600875	5.285682	-4.702465
С	0.199804	4.733451	2.50495	Н	6.274634	-5.080371	-1.929583
С	0.346941	4.242634	3.790958	Н	8.731814	-5.402016	-1.54401
С	0.395749	2.83294	4.071539	Н	10.044319	-3.693209	-0.326096
С	0.285561	1.944742	2.940686	Н	8.934903	-1.61591	0.537138
С	-0.298136	2.788746	-2.051749	С	4.588473	1.016209	-1.792776
С	-0.397325	3.994613	-2.832392	Н	5.460345	1.358623	-1.222649
С	-0.334256	5.239427	-2.110205	Н	4.934013	0.230931	-2.476892
С	-0.180486	5.278362	-0.736277	Н	4.223885	1.853073	-2.395656
С	2.325723	1.26111	-0.713691	С	2.747403	-2.422531	1.480322
С	3.50021	0.51671	-0.871831	Н	2.654362	-3.29817	0.826332
С	3.6311	-0.686159	-0.161943	Н	3.721144	-2.488735	1.98051
С	2.613494	-1.139001	0.69588	Н	1.971842	-2.480985	2.249242
С	1.4541	-0.369932	0.80962	С	-2.600363	-2.036765	-1.943194
0	0.529738	2.403816	5.278577	Н	-2.947126	-2.994209	-1.534376
0	-0.532595	3.949389	-4.113027	Н	-3.294103	-1.751112	-2.742715
Ν	4.821736	-1.477183	-0.322516	Н	-1.61432	-2.197924	-2.389254
С	4.85594	-2.725086	-0.987754	С	-4.699565	0.5638	1.891693
С	6.264196	-3.182015	-0.909272	Н	-5.645033	0.671548	1.345515
С	7.008187	-2.213194	-0.220861	Н	-4.827303	-0.253759	2.611248
С	6.097827	-1.107581	0.165296	Н	-4.524729	1.485788	2.453876
С	6.86335	-4.33883	-1.396695				

Fig. S10 Calculated (DFT B3LYP/6-31G (d) level) HOMO-LUMO energy levels

6. UV-vis absorption and IR spectra change of PI-OH film upon immersing in the solution of F-

Fig. S11 UV-*vis* absorption spectral change of **PI-OH** film upon immersing in the solution of F⁻ (10⁻¹ M).

Fig. S12 FTIR spectra of PI-OH film before and after F⁻ treating.

7. Detection of fluoride ion in DMSO/water media

On the basis of the successful titration tests in DMSO, we further evaluated the water effect on the binding affinity of chemosensor **PI-OH** for F⁻ by carrying out the UV-*vis* spectroscopic titration experiments. The results are shown as **Fig. S13**.

Upon addition of F⁻ to **PI-OH** in 10% aqueous DMSO solution (DMSO/H₂O; 90/10, v/v), the results are similar with the result of the UV-*vis* absorption titrations in pure DMSO solvent, but the addition of the more F⁻ is required (1000 equiv. *vs*. 50 equiv.). In aqueous solution, fluoride ion can format the hydrogen bond with water. Therefore, the binding affinity of chemosensor **PI-OH** for F⁻ becomes very weak in aqueous media. This conclusion is insistent with the reported by others.^[1-3]

Fig. S13 UV-*vis* absorption spectra of **PI-OH** (10 μ M in DMSO/H₂O, v/v, 90/10) with the addition of different equivalents of fluoride ion (0-1000 equiv.).

Table S3. The comparison of chemosensor PI-OH with polymeric F⁻ chemosensors available in the

literature

Polymeric chemosensors type	Solvent	LOD	Reversibility & reusability	Detection in the film state	Ref.
Nitrobenzofurazan-containing Polymers	THF	0.8 µM	Yes		[S1]
(S)-binaphthalene-based polymer	THF				[S2]
Fluorinated Poly(arylene ether-1,3,4- oxadiazole)s	DMAc	5.31 μM			[S4]
Polymer containing naphthalimide and imide moieties	CH ₂ Cl ₂ /DMSO (9/1, v/v)			Yes	[S5]
P(MMA-co-NBDAE)-b-PF-b-P- (MMA-co-NBDAE) triblock copolymer	THF	4.78 μM	Yes		[S6]
PEO- <i>b</i> -P(MEO ₂ MA- <i>co</i> -OEGMA- <i>co</i> -SiCouMA) block copolymer	THF	3.45 µM			[S7]
Polyethylene with side-chain triarylboranes	TCE	0.56 μM		Yes	[S8]
PEG containing fluorescein moiety	HEPES buffered water	1.01 µM			[S9]
Urea-based polyacetylenes	DMF	1 mM			[S10]
Poly(phenylene ethynylene) containing 2-thiohydantoin	DMSO	113 μM			[S11]
Polymers incorporating benzo[d][1,2,3]triazole moieties	MeCN	2 µM			[S12]
Conjugated polymer thin film-Fe ³⁺ complex		6.78 μM		Yes	[S13]
Polyacrylate functionalized gold nanoparticles-Al ³⁺ complex	H ₂ O	18 µM	Yes		[S14]
Polyamine derivative	H ₂ O/THF (9/1, v/v)	2.12 μM			[S15]
1,4-Diketo-pyrrolo[3,4-c]pyrroles (DPPs) based polymer films		1 µM	Yes	Yes	[S16]
9,10-Azaboraphenanthrene-containing conjugated polymers	THF			Yes	[S17]
Our chemosensor PI-OH	DMSO	1.79 μM	Yes	Yes	

Supplementary material references

- [1] J. M. Hu, C. H. Li, Y. Cui and S. Y. Liu, Macromol. Rapid Commun., 2011, 32, 610.
- [2] F. Li, G. Wei, Y. Sheng, Y. W. Quan, Y. X. Cheng and C. J. Zhu, Polymer, 2014, 55, 5689.
- [3] X. J. Zheng, W. C. Zhu, D. Liu, H. Ai, Y. Huang and Z. Y. Lu, ACS Appl. Mater. Interfaces, 2014, 6, 7996.
- [4] J. F. Ding and M. Day, *Macromolecules*, 2006, **39**, 6054.
- [5] P. Zhao, J. B. Jiang, B. Leng and H. Tian, *Macromol. Rapid Commun.*, 2009, **30**, 1715.
- [6] J. M. Hu, G. Y. Zhang, Y. H. Geng and S. Y. Liu, *Macromolecules*, 2011, 44, 8207.
- [7] Y. Y. Jiang, X. L. Hu, J. M. Hu, H. Liu, H. Zhong and S. Y. Liu, *Macromolecules*, 2011, 44, 8780.
- [8] M. H. Park, T. Kim, J. O. Huh, Y. Do and M. H. Lee, Polymer, 2011, 52, 1510.
- [9] F. Y. Zheng, F. Zeng, C. M. Yu, X. F. Hou and S. Z. Wu, Chem. Eur. J., 2013, 19, 936.
- [10] M.-J. Su, W. Wan, X. Yong, X.-W. Lu, R.-Y. Liu and J.-Q. Qu, Chin. J. Polym. Sci., 2013, 31, 620.
- [11] W. F. Zeng, X. Yong, X. D. Yang, Y. C. Yan, X. W. Lu, J. Q. Qu and R. Y. Liu, *Macromol. Chem. Phys.*, 2014, 215, 1370.
- [12] J. Hu, M. R. Whittaker, T. P. Davis and J. F. Quinn, ACS Macro Lett., 2015, 4, 236.
- [13] W. C. Ding, J. K. Xu, Y. P. Wen, J. Zhang, H. T. Liu and Z. X. Zhang, Anal. Chim. Acta, 2017, 967, 78.
- [14] A. Kumar, M. Bhatt, G. Vyas, S. Bhatt and P. Paul, ACS Appl. Mater. Interfaces, 2017, 9, 17359.
- [15] H. Deol, M. Kumar and V. Bhalla, Sens. Actuators, B, 2018, 258, 682.
- [16] H. C. Zhang, K. Yang, C. Chen, Y. H. Wang, Z. Z. Zhang, L. L. Tang, Q. K. Sun, S. F. Xue and W. J. Yang, *Polymer*, 2018, 149, 266.
- [17] W. D. Zhang, G. P. Li, L. T. Xu, Y. Zhuo, W. M. Wan, N. Yan and G. He, *Chem. Sci.*, 2018, 9, 4444.