Supplementary Information

Efficient bifunctional vanadium doped Ni_3S_2 nanorod array for overall water splitting

Jinxue Guo,^a Ke Zhang,^a Yanfang Sun,^b Qingyun Liu,^c Lin Tang,^a Xiao Zhang,^{a,*}

^aState Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular

Engineering, Qingdao University of Science & Technology, Qingdao 266042, China

^bCollege of Science and Technology, Agricultural University of Hebei, Cangzhou 061100, China

^cCollege of Chemistry and Environmental Engineering, Shandong University of Science and

Technology, Qingdao 266590, China

*Corresponding author. E-mail: zhx1213@126.com (X. Zhang)

Fig. S1 SEM image of pristine Ni₃S₂/NF, showing morphology of nanorod array. Scale bar: 100 nm.

Fig. S2 EDX spectrum of V-Ni $_3S_2$ nanorod.

Fig. S3 The HER polarization curves of V-Ni $_3S_2$ /NF, Ni $_3S_2$ /NF, V-Ni $_3S_2$ /NF-3, and V-Ni $_3S_2$ /NF-7 in 1

M KOH.

Fig. S4 The Nyquist plots of V-Ni₃S₂ nanorod/NF and Ni₃S₂/NF electrodes obtained at (a) open circuit potential and (b) 40 mV for HER in 1 M KOH.

Fig. S5 CV curves of (a) V-Ni $_3S_2$ nanorod and (b) Ni $_3S_2$ obtained in 1 M KOH.

Table S1 Electrocatalytic performances of the designed V-Ni $_3$ S₂ nanorod array electrode compared with the reported state-of-the-art bifunctional electrocatalysts for HER, OER, and overall water splitting in alkaline media.

Samples	$\eta_{\rm HER}$ at 10 mA	η_{OER} at 10 mA	Cell voltage for overall water	Ref.
	cm^{-2} (mV)	cm^{-2} (mV)	splitting at 10 mA cm ⁻² (V)	
V-Ni ₃ S ₂ /NF	133	148	1.421	This
				work
(Fe,Co,Ni) ₉ S ₈ -MoS ₂	58	184	1.429	[1]
nanotube array				
Ni ₂ P/Ni/NF	98	200	1.49	[2]
MoS ₂ -Ni ₃ S ₂ /NF	98	249	1.5	[3]
Co _{0.7} Fe _{0.3} P/CNT	76	243	1.5	[4]
MoS ₂ /Ni ₃ S ₂ @NF	110	218	1.56	[5]
NiCoP/N-rGO	115	310/40	1.57/20	[6]
NiFe	120	220	1.57	[7]
LDH@NiCoP/NF				
NiCoP/NF	32	280	1.58	[8]
Ni _{2-x} Co _x P	138	270	1.59	[9]
Co-Pi/CoP/Ti	68	310	1.6	[10]
NiCo ₂ S ₄	210	260	1.63	[11]
nanowire/NF				
(Ni,Co) _{0.85} Se	169	287/20	1.65	[12]
Cu@CoFe LDH	171	240	1.681	[13]
NiFe LDH	210	240	1.7	[14]
Ni_3S_2 nanosheet	223	260	1.76/13	[15]

References

[1] H. Li, S. Chen, Y. Zhang, Q. Zhang, X. Jia, Q. Zhang, L. Gu, X. Sun, L. Song and X. Wang, Nat.

Commun., 2018, 9, 2452.

[2] B. You, N. Jiang, M. Sheng, M. Bhushan and Y. Sun, ACS Catal., 2016, 6, 714-721.

- [3] Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, ACS Catal., 2017, 7, 2357-2366.
- [4] X. Zhang, X. Zhang, H. Xu, Z. Wu, H. Wang and Y. Liang, Adv. Funct. Mater., 2017, 27, 1606635.
- [5] J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X. Feng, Angew. Chem. Int. Ed., 2016, 55, 6702-6707.
- [6] X. Zhang, J. Li, Y. Sun, Z. Li, P. Liu, Q. Liu, L. Tang and J. Guo, *Electrochim. Acta*, 2018, 282, 626-633.
- [7] H. Zhang, X. Li, A. Hahnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W. Maijenburg and R. B. Wehrspohn, *Adv. Funct. Mater.*, 2018, 28, 1706847.
- [8] H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlögl and H. N.Alshareef, Nano Lett., 2016, 16, 7718-7725.
- [9] J. Li, M. Yan, X. Zhou, Z. Q. Huang, Z. Xia, C. R. Chang, Y. Ma and Y. Qu, Adv. Funct. Mater., 2016, 26, 6785-6796.
- [10] L. Ai, Z. Niu and J. Jiang, *Electrochim. Acta*, 2017, 242, 355-363.
- [11] A. Sivanantham, P. Ganesan and S. Shanmugam, Adv. Funct. Mater., 2016, 26, 4661-4672.
- [12] K. Xiao, L. Zhou, M. Shao and M. Wei, J. Mater. Chem. A, 2018, 6, 7585-7591.
- [13] L. Yu, H. Zhou, J. Sun, F. Qin, D. Luo, L. Xie, F. Yu, J. Bao, Y. Li, Y. Yu, S. Chen and Z. Ren, *Nano Energy*, 2017, 41, 327-336.
- [14] J. Luo, J. Im, M. Mayer, M. Schreier, M. Nazeeruddin, N. Park, S. Tilley, H. Fan and M. Grätzel, *Science*, 2014, 345, 1593-1596.
- [15] L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J. Am. Chem.

Soc., 2015, 137, 14023-14026.