Supporting Information

Experimental characterization and first principle calculation on linear and nonlinear optical properties of two orthophosphates $A_3Al_2(PO_4)_3$ (A=Rb, K)

Ming Wen,^a Hongping Wu,^b Shichao Cheng,^c Jun Sun,^b Zhihua Yang,^b Xiaohong Wu,

^{*a,*}* and Shilie Pan^{*ab,*}*

^a School of Chemistry and Chemical Engineering, Harbin Institute of Technology,

Harbin Heilongjiang 150001, China.

^bCAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry; CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.

^c School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, China.

wuxiaohong@hit.edu.cn, slpan@ms.xjb.ac.cn

Empirical formula	Rb ₃ Al ₂ (PO ₄) ₃	K ₃ Al ₂ (PO ₄) ₃
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	$Cmc2_1$	$Pna2_1$
Formula weight	595.28	456.17
<i>a</i> (Å)	17.145(6)	8.671(3)
<i>b</i> (Å)	8.622(2)	16.906(5)
<i>c</i> (Å)	8.796(3)	8.445(2)
Z, Volume (Å ³)	4, 1300.3(7)	4, 1238.0(6)
ρ_{Calcd} (Mg/m ³)	3.041	2.447
μ(/mm)	11.806	1.689
F(000)	1112	896
R(int)	0.1303	0.0523
Goodness-of-fit on F ²	0.943	1.081
Final R indices $[F_0^2>2\sigma($	R1 = 0.0497,	R1 =0.0387,
$[F_o^2)]^a$	wR2=0.0776	wR2=0.0691
	R1 = 0.0725,	R1= 0.0489,
R indices (all data)"	wR2=0.0878	wR2=0.0766
Absolute structure parameter	0.017(17)	0.31(8)
Largest diff. peak and hole $(e \cdot Å^{-3})$	1.675 and 1.482	0.513 and 0.524

Table S1. Crystal data and structure refinements for $Rb_3Al_2(PO_4)_3$ and $K_3Al_2(PO_4)_3$.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|$ and $wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w F_{o}^{4}]^{1/2}$ for $F_{o}^{2} > 2\sigma (F_{o}^{2})$

Atom	х	У	Z	U(eq)
Rb(1)	3848(1)	10462(1)	7384(2)	23(1)
Rb(2)	5000	3551(2)	4468(3)	46(1)
P(1)	5000	7655(5)	5174(4)	15(1)
P(2)	7052(2)	3295(3)	4245(3)	13(1)
Al(1)	6674(2)	6528(4)	5840(3)	14(1)
O(1)	7897(4)	3037(8)	4841(9)	22(2)
O(2)	5000	9392(11)	5219(13)	23(2)
O(3)	6727(4)	4775(10)	4936(13)	36(2)
O(4)	7158(4)	3631(9)	2538(10)	34(2)
O(5)	5000	6988(14)	3616(13)	34(3)
O(6)	6523(4)	1964(9)	4534(9)	29(2)
O(7)	5713(4)	7034(9)	6122(8)	24(2)

Table S2a. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å²× 10³) for Rb₃Al₂(PO₄)₃. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	х	У	Z	U(eq)
K(1)	-437(2)	6423(1)	92(2)	24(1)
K(2)	131(2)	6013(1)	4858(2)	24(1)
K(3)	3252(2)	4910(1)	7097(2)	36(1)
P(1)	6599(2)	7134(1)	3184(2)	13(1)
P(2)	2966(2)	6884(1)	8111(2)	14(1)
P(3)	2394(2)	4971(1)	2395(3)	17(1)
Al(1)	3514(2)	6604(1)	1758(2)	13(1)
Al(2)	6309(2)	6688(1)	6663(2)	14(1)
O(1)	5823(5)	7068(3)	4817(6)	17(1)
O(2)	5307(5)	7044(3)	1937(6)	18(1)
O(3)	7161(5)	8001(3)	3064(6)	18(1)
O(4)	3703(5)	5599(3)	2081(6)	24(1)
O(5)	7860(5)	6550(3)	2912(6)	21(1)
O(6)	2835(5)	6904(3)	9915(6)	25(1)
O(7)	898(5)	5275(3)	1754(7)	28(1)
O(8)	2929(6)	4246(3)	1400(6)	25(1)
O(9)	2369(6)	4764(3)	4119(7)	30(1)
O(10)	1815(6)	6340(3)	7423(7)	34(1)
O(11)	4633(5)	6644(3)	7749(6)	34(2)
O(12)	2749(5)	7740(3)	7548(7)	27(1)

Table S2b. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² × 10³) for K₃Al₂(PO₄)₃. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Rb(1)-O(2)	2.894(9)	O(1)#3-Rb(1)-O(1)#6	117.9(2)
Rb(1)-O(6)#1	2.891(8)	O(4)#3-Rb(1)-O(1)#6	74.5(2)
Rb(1)-O(6)#2	2.892(8)	O(5)#4-Rb(1)-O(1)#6	159.7(2)
Rb(1)-O(1)#3	3.002(7)	O(2)#4-Rb(1)-O(1)#6	145.1(2)
Rb(1)-O(4)#3	3.004(8)	O(7)#5-Rb(1)-O(1)#6	48.68(18)
Rb(1)-O(5)#4	3.148(10)	O(6)#5-Rb(2)-O(6)	124.7(3)
Rb(1)-O(2)#4	3.184(9)	O(6)#5-Rb(2)-O(5)	117.04(15)
Rb(1)-O(7)#5	3.245(7)	O(6)-Rb(2)-O(5)	117.04(15)
Rb(1)-O(1)#6	3.469(7)	O(6)#5-Rb(2)-O(3)	168.3(2)
Rb(2)-O(6)#5	2.949(8)	O(6)-Rb(2)-O(3)	47.5(2)
Rb(2)-O(6)	2.949(8)	O(5)-Rb(2)-O(3)	73.10(18)
Rb(2)-O(5)	3.057(12)	O(6)#5-Rb(2)-O(3)#5	47.5(2)
Rb(2)-O(3)	3.170(8)	O(6)-Rb(2)-O(3)#5	168.3(2)
Rb(2)-O(3)#5	3.170(8)	O(5)-Rb(2)-O(3)#5	73.10(18)
Rb(2)-O(7)#7	3.227(8)	O(3)-Rb(2)-O(3)#5	138.2(3)
Rb(2)-O(7)#8	3.227(8)	O(6)#5-Rb(2)-O(7)#7	67.0(2)
P(1)-O(5)	1.487(11)	O(6)-Rb(2)-O(7)#7	106.3(2)
P(1)-O(2)	1.498(10)	O(5)-Rb(2)-O(7)#7	85.9(2)
P(1)-O(7)	1.574(7)	O(3)-Rb(2)-O(7)#7	121.6(2)
P(1)-O(7)#5	1.574(7)	O(3)#5-Rb(2)-O(7)#7	79.4(2)
P(2)-O(6)	1.485(8)	O(6)#5-Rb(2)-O(7)#8	106.3(2)
P(2)-O(3)	1.519(9)	O(6)-Rb(2)-O(7)#8	67.0(2)
P(2)-O(4)	1.540(9)	O(5)-Rb(2)-O(7)#8	85.9(2)
P(2)-O(1)	1.555(8)	O(3)-Rb(2)-O(7)#8	79.4(2)
Al(1)-O(3)	1.710(9)	O(3)#5-Rb(2)-O(7)#8	121.6(2)
Al(1)-O(4)#9	1.715(9)	O(7)#7-Rb(2)-O(7)#8	44.5(3)
Al(1)-O(7)	1.722(8)	O(6)#5-Rb(2)-O(7)#5	94.55(18)
Al(1)-O(1)#10	1.734(8)	O(6)-Rb(2)-O(7)#5	133.5(2)
O(2)-Rb(1)-O(6)#1	110.5(3)	O(5)-Rb(2)-O(7)#5	44.0(2)
O(2)-Rb(1)-O(6)#2	73.9(2)	O(3)-Rb(2)-O(7)#5	89.26(19)
O(6)#1-Rb(1)-O(6)#2	147.4(3)	O(3)#5-Rb(2)-O(7)#5	49.0(2)
O(2)-Rb(1)-O(1)#3	169.1(2)	O(7)#7-Rb(2)-O(7)#5	112.03(18)
O(6)#1-Rb(1)-O(1)#3	73.8(2)	O(7)#8-Rb(2)-O(7)#5	129.48(17)
O(6)#2-Rb(1)-O(1)#3	108.1(2)	O(6)#5-Rb(2)-O(7)	133.5(2)
O(2)-Rb(1)-O(4)#3	140.4(2)	O(6)-Rb(2)-O(7)	94.55(18)
O(6)#1-Rb(1)-O(4)#3	86.9(2)	O(5)-Rb(2)-O(7)	44.0(2)
O(6)#2-Rb(1)-O(4)#3	73.2(2)	O(3)-Rb(2)-O(7)	49.0(2)
O(1)#3-Rb(1)-O(4)#3	48.0(2)	O(3)#5-Rb(2)-O(7)	89.26(19)
O(2)-Rb(1)-O(5)#4	91.2(2)	O(7)#7-Rb(2)-O(7)	129.48(17)
O(6)#1-Rb(1)-O(5)#4	114.7(3)	O(7)#8-Rb(2)-O(7)	112.03(18)
O(6)#2-Rb(1)-O(5)#4	97.1(3)	O(7)#5-Rb(2)-O(7)	40.2(2)
O(1)#3-Rb(1)-O(5)#4	78.0(2)	O(5)-P(1)-O(2)	114.3(7)

Table S3a. Selected bond distances (Å) and angles (deg) for $Rb_3Al_2(PO_4)_3$.

_

O(4)#3-Rb(1)-O(5)#4	114.1(2)	O(5)-P(1)-O(7)	110.9(4)
O(2)-Rb(1)-O(2)#4	96.01(8)	O(2)-P(1)-O(7)	109.0(4)
O(6)#1-Rb(1)-O(2)#4	69.7(2)	O(5)-P(1)-O(7)#5	110.9(4)
O(6)#2-Rb(1)-O(2)#4	142.9(2)	O(2)-P(1)-O(7)#5	109.0(4)
O(1)#3-Rb(1)-O(2)#4	75.9(2)	O(7)-P(1)-O(7)#5	102.0(6)
O(4)#3-Rb(1)-O(2)#4	123.5(2)	O(6)-P(2)-O(3)	110.9(5)
O(5)#4-Rb(1)-O(2)#4	46.6(3)	O(6)-P(2)-O(4)	112.6(5)
O(2)-Rb(1)-O(7)#5	47.7(2)	O(3)-P(2)-O(4)	106.0(5)
O(6)#1-Rb(1)-O(7)#5	67.4(2)	O(6)-P(2)-O(1)	113.6(5)
O(6)#2-Rb(1)-O(7)#5	99.4(2)	O(3)-P(2)-O(1)	109.1(4)
O(1)#3-Rb(1)-O(7)#5	139.90(19)	O(4)-P(2)-O(1)	104.2(4)
O(4)#3-Rb(1)-O(7)#5	118.4(2)	O(3)-Al(1)-O(4)#9	108.0(5)
O(5)#4-Rb(1)-O(7)#5	127.5(2)	O(3)-Al(1)-O(7)	110.0(4)
O(2)#4-Rb(1)-O(7)#5	99.2(2)	O(4)#9-Al(1)-O(7)	111.0(4)
O(2)-Rb(1)-O(1)#6	72.8(2)	O(3)-Al(1)-O(1)#10	113.9(5)
O(6)#1-Rb(1)-O(1)#6	83.23(18)	O(4)#9-Al(1)-O(1)#10	107.2(4)
O(6)#2-Rb(1)-O(1)#6	66.9(2)	O(7)-Al(1)-O(1)#10	106.8(4)

#1 -x+1,-y+1,z+1/2 #2 -x+1,y+1,z #3 x-1/2,-y+3/2,z+1/2 #4 -x+1,-y+2,z+1/2 #5 -x+1,y,z #6 x-1/2,y+1/2,z #7 -x+1,-y+1,z-1/2 #9 x,-y+1,z+1/2 #8 x,-y+1,z-1/2 #10 -x+3/2,y+1/2,z #11 x,-y+2,z-1/2 #12 -x+1,-y+2,z-1/2 #13 x+1/2,-y+3/2,z-1/2 #14 -x+1,y-1,z #16 -x+3/2,y-1/2,z #15 x+1/2,y-1/2,z

K(1)-O(7)	2.660(5)	O(10)-K(2)-O(5)#2	144.77(17)
K(1)-O(9)#1	2.741(5)	O(10)-K(2)-O(7)#6	82.72(17)
K(1)-O(5)#2	2.811(5)	O(5)#2-K(2)-O(7)#6	111.59(15)
K(1)-O(6)#3	2.955(5)	O(10)-K(2)-O(3)#5	88.43(17)
K(1)-O(10)#3	2.985(6)	O(5)#2-K(2)-O(3)#5	86.06(14)
K(1)-O(12)#4	3.015(5)	O(7)#6-K(2)-O(3)#5	159.57(14)
K(1)-O(2)#5	3.093(5)	O(10)-K(2)-O(9)	87.69(16)
K(1)-O(6)#4	3.204(5)	O(5)#2-K(2)-O(9)	126.17(17)
K(2)-O(10)	2.669(6)	O(7)#6-K(2)-O(9)	77.07(14)
K(2)-O(5)#2	2.721(5)	O(3)#5-K(2)-O(9)	84.23(14)
K(2)-O(7)#6	2.847(5)	O(10)-K(2)-O(7)	132.73(16)
K(2)-O(3)#5	2.858(5)	O(5)#2-K(2)-O(7)	76.69(14)
K(2)-O(9)	2.935(6)	O(7)#6-K(2)-O(7)	104.15(8)
K(2)-O(7)	2.978(6)	O(3)#5-K(2)-O(7)	68.91(14)
K(2)-O(8)#6	2.988(5)	O(9)-K(2)-O(7)	50.49(14)
K(2)-O(1)#5	3.298(5)	O(10)-K(2)-O(8)#6	99.35(16)
K(3)-O(9)	2.641(6)	O(5)#2-K(2)-O(8)#6	70.68(14)
K(3)-O(10)	2.734(6)	O(7)#6-K(2)-O(8)#6	50.55(12)
K(3)-O(5)#7	2.737(5)	O(3)#5-K(2)-O(8)#6	149.69(13)
K(3)-O(4)#7	2.777(5)	O(9)-K(2)-O(8)#6	125.06(14)
K(3)-O(11)	3.215(6)	O(7)-K(2)-O(8)#6	121.36(14)
P(1)-O(5)	1.491(4)	O(10)-K(2)-O(1)#5	72.89(14)
P(1)-O(1)	1.538(5)	O(5)#2-K(2)-O(1)#5	78.31(13)
P(1)-O(2)	1.545(5)	O(7)#6-K(2)-O(1)#5	144.62(15)
P(1)-O(3)	1.548(4)	O(3)#5-K(2)-O(1)#5	46.30(12)
P(2)-O(10)	1.477(5)	O(9)-K(2)-O(1)#5	125.79(14)
P(2)-O(6)	1.529(6)	O(7)-K(2)-O(1)#5	111.22(14)
P(2)-O(11)	1.532(5)	O(8)#6-K(2)-O(1)#5	108.07(13)
P(2)-O(12)	1.535(5)	O(9)-K(3)-O(10)	92.62(17)
P(3)-O(7)	1.496(5)	O(9)-K(3)-O(5)#7	93.07(16)
P(3)-O(9)	1.498(6)	O(10)-K(3)-O(5)#7	127.69(17)
P(3)-O(8)	1.558(5)	O(9)-K(3)-O(4)#7	104.02(18)
P(3)-O(4)	1.576(5)	O(10)-K(3)-O(4)#7	135.04(16)
Al(1)-O(4)	1.730(5)	O(5)#7-K(3)-O(4)#7	93.29(14)
Al(1)-O(2)	1.730(5)	O(9)-K(3)-O(11)	110.85(15)
Al(1)-O(6)#3	1.739(6)	O(10)-K(3)-O(11)	49.15(14)
Al(1)-O(3)#5	1.743(5)	O(5)#7-K(3)-O(11)	155.57(16)
Al(2)-O(11)	1.720(5)	O(4)#7-K(3)-O(11)	85.92(13)
Al(2)-O(8)#7	1.725(5)	O(5)-P(1)-O(1)	114.3(3)
Al(2)-O(1)	1.738(5)	O(5)-P(1)-O(2)	111.2(3)
Al(2)-O(12)#8	1.747(5)	O(1)-P(1)-O(2)	106.6(3)
O(7)-K(1)-O(9)#1	83.68(16)	O(5)-P(1)-O(3)	112.7(3)

Table S3b. Selected bond distances (Å) and angles (deg) for $K_3Al_2(PO_4)_3$.

O(7)-K(1)-O(5)#2	80.62(16)	O(1)-P(1)-O(3)	105.3(3)
O(9)#1-K(1)-O(5)#2	89.35(15)	O(2)-P(1)-O(3)	106.1(3)
O(7)-K(1)-O(6)#3	79.03(15)	O(10)-P(2)-O(6)	110.9(3)
O(9)#1-K(1)-O(6)#3	140.67(16)	O(10)-P(2)-O(11)	113.2(3)
O(5)#2-K(1)-O(6)#3	121.74(15)	O(6)-P(2)-O(11)	105.9(3)
O(7)-K(1)-O(10)#3	94.57(16)	O(10)-P(2)-O(12)	112.5(3)
O(9)#1-K(1)-O(10)#3	97.99(16)	O(6)-P(2)-O(12)	106.2(3)
O(5)#2-K(1)-O(10)#3	170.77(15)	O(11)-P(2)-O(12)	107.6(3)
O(6)#3-K(1)-O(10)#3	49.24(14)	O(7)-P(3)-O(9)	114.8(4)
O(7)-K(1)-O(12)#4	160.98(16)	O(7)-P(3)-O(8)	109.5(3)
O(9)#1-K(1)-O(12)#4	79.12(15)	O(9)-P(3)-O(8)	110.1(3)
O(5)#2-K(1)-O(12)#4	107.08(15)	O(7)-P(3)-O(4)	109.4(3)
O(6)#3-K(1)-O(12)#4	109.62(15)	O(9)-P(3)-O(4)	109.3(3)
O(10)#3-K(1)-O(12)#4	79.94(15)	O(8)-P(3)-O(4)	103.0(3)
O(7)-K(1)-O(2)#5	104.76(15)	O(4)-Al(1)-O(2)	108.8(2)
O(9)#1-K(1)-O(2)#5	153.17(15)	O(4)-Al(1)-O(6)#3	117.4(3)
O(5)#2-K(1)-O(2)#5	67.57(13)	O(2)-Al(1)-O(6)#3	104.9(3)
O(6)#3-K(1)-O(2)#5	66.07(13)	O(4)-Al(1)-O(3)#5	109.9(2)
O(10)#3-K(1)-O(2)#5	106.48(14)	O(2)-Al(1)-O(3)#5	112.6(2)
O(12)#4-K(1)-O(2)#5	94.27(14)	O(6)#3-Al(1)-O(3)#5	103.1(3)
O(7)-K(1)-O(6)#4	150.67(17)	O(11)-Al(2)-O(8)#7	110.6(3)
O(9)#1-K(1)-O(6)#4	110.27(15)	O(11)-Al(2)-O(1)	106.8(2)
O(5)#2-K(1)-O(6)#4	74.11(13)	O(8)#7-Al(2)-O(1)	108.4(3)
O(6)#3-K(1)-O(6)#4	101.75(9)	O(11)-Al(2)-O(12)#8	113.6(3)
O(10)#3-K(1)-O(6)#4	108.20(15)	O(8)#7-Al(2)-O(12)#8	106.7(3)
O(12)#4-K(1)-O(6)#4	46.26(14)	O(1)-Al(2)-O(12)#8	110.6(3)
O(2)#5-K(1)-O(6)#4	51.76(12)		

#1 - x, -y + 1, z - 1/2 $#2 x - 1, y, z $ $#3 x, y, z - 1$	
#4 x-1/2,-y+3/2,z-1 #5 x-1/2,-y+3/2,z	
#6 -x,-y+1,z+1/2 #7 -x+1,-y+1,z+1/2	
#8 x+1/2,-y+3/2,z #9 -x+1,-y+1,z-1/2	
#10 x+1,y,z #11 x,y,z+1 #12 x+1/2,-y+3/2,z+	-1

Fig. S1. TG-DSC curves of (a) $Rb_3Al_2(PO_4)_3$ and (b) $K_3Al_2(PO_4)_3$.

Fig. S2. Experimental and calculated XRD patterns of (a) $Rb_3Al_2(PO_4)_3$ and (b) $K_3Al_2(PO_4)_3$.

Fig. S3. IR spectra of (a) $Rb_3Al_2(PO_4)_3$ and (b) $K_3Al_2(PO_4)_3$.

Fig. S4. Band structures of (a) $Rb_3Al_2(PO_4)_3$ and (b) $K_3Al_2(PO_4)_3$.

Fig. S5. The detailed PDOSs of the O atoms in (a) $Rb_3Al_2(PO_4)_3$ and (b) $K_3Al_2(PO_4)_3$.

Fig. S6. SHG density of VE processes of (a) unoccupied states and (b) occupied states for $Rb_3Al_2(PO_4)_3$; (c) unoccupied states and (d) occupied states for $K_3Al_2(PO_4)_3$.