Supporting Information

Intrinsic quantum efficiency enhancement in famous Ir(III) complexes by virtue of the simple and controllable deuteriation way. Yu Wang, Fu-Quan Bai,* and Hong-Xing Zhang * International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry,

Jilin University, 130023, Changchun, People's Republic of China.

1 Spin orbit coupling

The spin orbital coupling matrix elements play an indispensable role in both radiative and non-radiative decay processes. Accordingly, the calculation of SOC integrals is crucial in determination of photophysical property for a phosphor. The one-electron SOC Hamiltonian for heavy transition metals can be expressed as:

$$\hat{H}_{SOC} = \sum_{i} \hat{l}_i \cdot \hat{s}_i \xi_c \tag{S1}$$

where \hat{l}_i and \hat{s}_i are denoted as orbital and spin angular momentum operator for the *i*-th electron, respectively. ξ_c is the one-electron spin-orbital coupling constant. In this study, only iridium *d* electrons are considered to be contributing to the SOC strength, since ξ_c for *d* electrons in Ir atom is significantly larger than the other main group atoms. Further simplified one-center one-electron direct SOC integrals are reducing to products of the normalized configuration interaction coefficients (1a_i and 3a_j) of S_n and T_m excitation states, the atomic orbital coefficients (1c_k and 3c_k) of iridium 1d_k and 3d_k involved in correlative excitation states, as well as its SOC constant, which can be expressed as:[1, 2]

$$\langle S_n | H_{SOC} | T_m \rangle = \sum_k {}^1 a_i {}^3 a_j {}^1 c_k {}^3 c_k \xi_c \langle {}^1 d_k {}^1 \pi^* | \hat{l} \cdot \hat{s} | {}^3 d_k {}^3 \pi^* \rangle$$
(S2)

	1 - S_0 (theo/exp ^{<i>a</i>})) 1 - T_1 (theo)
Ir - N1	2.155 (2.130)	2.128
Ir - N2	2.155 (2.130)	2.167
Ir-N3	2.155 (2.130)	2.178
Ir-C1	2.018 (2.016)	1.974
Ir-C2	2.018 (2.016)	2.030
Ir-C3	2.017 (2.016)	2.017
	2 - S_0 (theo)	2 - T_1 (theo)
Ir - N1	2.146	2.108
Ir-N2	2.147	2.157
Ir-N3	2.147	2.157
Ir-C1	2.016	1.993
Ir-C2	2.016	2.013
Ir-C3	2.016	2.028
	3 - S_0 (theo)	3 - T_1 (theo)
Ir - N1	2.048	2.035
Ir-N2	2.048	2.067
Ir-C1	1.992	1.956
Ir-C2	1.992	1.991
Ir-O1	2.181	2.186
Ir-O2	2.181	2.180
	4 - S_0 (theo/exp ^b)) 4 - T_1 (theo)
Ir - N1	2.062 (2.059)	2.053
Ir-N2	2.049 (2.040)	2.073
Ir-C1	1.997 (2.011)	2.019
Ir-C2	1.990 (1.992)	2.009
Ir - O	2.152 (2.131)	2.035
Ir - N3	2.170 (2.115)	2.139

Table. S1 Calculated and experimental key parameters for complex 1 - 4 at optimized S_0 states and T_1 states.

^{*a*}From ref.3 ^{*b*}From ref.4

1 Mode 141 220.3 cm⁻¹

1 Mode 138 149.4 cm⁻¹

1 Mode 143 132.1 cm⁻¹

1 - D_{all}

Mode 139

385.3 cm⁻¹

1 - D_{all} Mode 143 210.0 cm⁻¹

1 - D_{all} Mode 149 109.9 cm⁻¹

1 - D_{ppyCT} Mode 133 467.5 cm⁻¹

1 - D_{ppyCT} Mode 142 382.5 cm⁻¹

1 - D_{ppyCT} Mode 146 197.3 cm⁻¹

Fig. S1 Normal mode displacement vectors for the first several largest reorganization energy of complexes **1**, together with its corresponding complete and partial deuterated ones.

Fig. S2 Normal mode displacement vectors for the first several largest reorganization energy of complexes **2**, together with its corresponding complete and partial deuterated ones.

Fig. S3 Normal mode displacement vectors for the first several largest reorganization energy of complexes **3**, together with its corresponding complete and partial deuterated ones.

Fig. S4 Normal mode displacement vectors for the first several largest reorganization energy of complexes **4**, together with its corresponding complete and partial deuterated ones.

References

- [1] K. Nozaki, J. Chin. Chem. Soc., 2006, 53, 101–112.
- [2] E. Yu-Tzu Li, T.-Y. Jiang, Y. Chi and P.-T. Chou, *Phys. Chem. Chem. Phys.*, 2014, 16, 26184–26192.
- [3] R. J. F. Berger, H.-G. Stammler, B. Neumann and N. W. Mitzel, *Eur. J. Inorg. Chem.*, 2010, 2010, 1613–1617.
- [4] Y. Kang, Y.-L. Chang, J.-S. Lu, S.-B. Ko, Y. Rao, M. Varlan, Z.-H. Lu and S. Wang, J. Mater. Chem. C, 2013, 1, 441–450.