Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

Metallic salt-catalyzed direct indium insertion into alkyl iodides and their applications in cross-coupling reactions

Bing-Zhi Chen,^a Chuang-Xin Wang, ^a Zhen-Hua Jing, ^a Xue-Qiang Chu,^a Teck-Peng Loh*,^{a,b} and Zhi-Liang Shen*,^a

^a Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
 ^b Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

Table of Contents

1.	General information	page S2
2.	Experimental procedure	page S2
3.	ESI-MS data	.page S5
4.	Characterization data of products	page S8
5.	References	page S13.
6.	¹ H and ¹³ C NMR spectra of products	page S14

General information

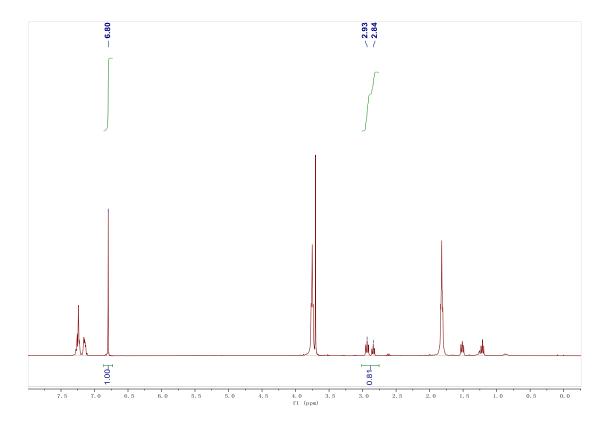
Commercially available alkyl iodides and aryl halides were used without further purification. Starting materials of 6-iodohexyl benzoate (**1h**)¹ was prepared according to reported methods. Analytical grade THF and DMA were used in all the reactions (without the need of precautions to exclude air and moisture unless otherwise noted) without purification. Indium powder, metallic salt, palladium catalyst, and lithium chloride were purchased from chemical companies and used directly without further purification. Analytical thin layer chromatography (TLC) was performed using silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm). Flash chromatography was performed using Merck silica gel (200-300 mesh) for column chromatography with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on Jeol 400 MHz spectrometers. Tetramethylsilane (TMS) served as internal standard for NMR analysis.

Experimental procedure

General procedure for the synthesis of alkyl indium reagent from alkyl halides and palladium-catalyzed cross-coupling reaction with aryl halide (Tables 2-4):

The insertion step 1: Alkyl iodide (1 mmol), indium (172.2 mg, 1.5 mmol), indium trichloride (22.1 mg, 0.1 mmol) or lead bromide (36.7 mg, 0.1 mmol), and analytical grade THF (2 mL) was added in a flask equipped with a septum and a magnetic stir bar. The reaction mixture was vigorously stirred at 60 °C for 12 hrs. Then the upper clear solution was carefully separated from the bottom black precipitate by centrifugal. The remaining black precipitate was additionally stirred with THF (3 mL), and the THF layer was carefully separated from bottom precipitate by pipette. The combined organic layers were concentrated under vacuum. The crude mixture was directly used in the next step without further purification.

The cross-coupling step 2: To the above residue was added aryl halide (0.7 mmol), LiCl (84.8 mg, 2 mmol), Pd(PPh₃)₄ (57.8 mg, 0.05 mmol), and DMA (2 mL), and the reaction mixture was stirred at 100 °C for 24 hrs. Upon completion of the reaction, the reaction mixture was directly purified by flash silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford the pure products.


General procedure and method for the determination of NMR yield of the formed alkyl indium reagent:

After normal work-up by following the typical experimental procedure shown above (*the insertion step 1*), 1,4-dimethoxybenzene (0.5 mmol) was added to the obtained crude residue of the alkyl indium reagent followed by the addition of 2 mL CDCl₃. After complete dissolution of the residue and internal standard, 0.6 mL of the CDCl₃ solution was transferred to a clean NMR tube by pipette

and subjected to NMR analysis. In the obtained ¹H NMR spectrum, integrations of the singlet peak at 6.8 ppm (belong to the four protons in aromatic ring of 1,4-dimethoxybenzene; suppose the integration value is Q) and the two triplet peaks between 2.8~3.0 ppm (belong to the two protons of the benzylic CH₂ of the formed two alkyl indium reagents A + B; suppose the integration value is S) could be performed. Based on the integrations, the NMR yield of the formed alkyl indium reagent could be calculated to be 81% yield based on the following calculation:

yield% =
$$[(S/2 \div Q/4) \times 0.5] \div 1 \times 100\% = [(0.81/2 \div 1/4) \times 0.5] \div 1 \times 100\% = 81\%$$
.

(Please note: 1 and 0.5 is the mmol of substrate and internal standard used, respectively; in addition, based on the integrations in the spectrum shown below, S = 0.81 and Q = 1)

General procedure for the synthesis of alkyl iodide:

6-Iodohexyl benzoate (**1h**)¹: The title compound was prepared from benzoyl chloride and 6-iodohexan-1-ol by a reported similar method (85% isolated yield), in which pyridine was used instead of Et₃N.

tert-Butyl((6-iodohexyl)oxy)dimethylsilane (1k): To a solution of 6-chlorohexan-1-ol (8.2 g, 60.0 mmol) in CH₂Cl₂ (120 mL) was added imidazole (5.3 g, 78 mmol). After 5 min of stirring, tert-butyldimethylsilyl chloride (10.85 g, 72 mmol) was added over 5 min. The reaction mixture was stirred for 10 h before being diluted with CH₂Cl₂ (50 mL) and washed with saturated aqueous NH₄Cl (150 mL). The aqueous phase was extracted with CH₂Cl₂ (100 ml ×3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, and evaporated to dryness. Purification of the residue by flash silica gel column chromatography using petroleum ether/ethyl acetate (20:1) as eluent afforded the tert-butyl((6-chlorohexyl)oxy)dimethylsilane (12.3 g, 82%) as colorless liquid. To the solution of tert-butyl((6-chlorohexyl)oxy)dimethylsilane (6 g, 24.0 mmol) in acetone (120 mL) was added NaI (36 g, 240 mmol) and the solution was refluxed for 12 h. After cooling, the solvent was evaporated and diluted with EtOAc (150 mL), washed with brine (100 mL) and dried over anhydrous Na₂SO₄. After the solution was evaporated to dryness, the residue was purified by flash silica gel column chromatography using petroleum ether/ethyl acetate (20:1) as eluent to yield 1j as colorless oil (6.5 g, 90%).

(2-Iodoethyl)benzene (232.1mg, 1 mmol), indium (172.2 mg, 1.5 mmol), indium trichloride (165.9 mg, 0.75 mmol), and analytical grade THF (2 mL) was added in a flask equipped with a septum and a magnetic stir bar. The reaction mixture was vigorously stirred at 60 °C for 12 hrs.

(2-Iodoethyl)benzene (232.1mg, 1 mmol), indium(I) chloride (300.5 mg, 2 mmol), and analytical grade THF (2 mL) was added in a flask equipped with a septum and a magnetic stir bar. The reaction mixture was vigorously stirred at 60 °C for 12 hrs.

ESI-MS data

ESI-MS data of A1

HRMS (**ESI**, **m/z**): [M+H]⁺, calcd for C₁₂H₁₈I₂InO: 546.8486, found: 546.8486.

Elemental Composition Report

Single Mass Analysis
Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 27 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass)

Elements Used: C: 10-13 H: 15-20 O: 0-2 In: 0-2 I: 0-3

CBZ-2 (1.051) Is (1.00,1.00) C12H18l2InO 1: TOF MS ES+

1. TOT MIS ES	•								8.38e+012	
544.5	544.8488 544.50 545.00		545.50		546.00	546.	546.8 50	547.00 547.50	547.8520 548.00 m/z	
Minimum: Maximum:		5.0	10.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
546.8486	546.8486 546.8492 546.8480	0.0 -0.6 0.6	0.0 -1.1 1.1	3.5 1.5 5.5	63.6 86.0 128.8	0.000 22.456 65.181		C12 H18 O In I2 C11 H18 O I3 C13 H18 O In2 I		

ESI-MS data of A2

HRMS (ESI, m/z): $[M+H]^+$, calcd for $C_{24}H_{35}I_4In_2O_2$: 1092.6893, found: 1092.6893.

Elemental Composition Report

Single Mass Analysis
Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 50 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass) Elements Used:

C: 22-25 H: 34-36 O: 0-2 In: 0-2 I: 0-5

CBZ-2 (0.945) Is (1.00,1.00) C24H35I4In2O2 1: TOF MS ES+

100		1090.6896		1091.6929		1092.6893		1093.6927	7.04e+0	012 n/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
1092.6893	1092.6899 1092.6893	-0.6 0.0	-0.5 0.0	4.5 6.5	117.9 182.1	0.000 64.131	100.00	C23 H35 O2 In : C24 H35 O2 In2		

ESI-MS data of B1

HRMS (ESI, m/z): [M+H]⁺, calcd for C₂₀H₂₇IInO: 525.0145, found: 525.0145.

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 26 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass) Elements Used:
C: 18-22 H: 25-30 O: 0-2 In: 0-2 I: 0-3

CBZ-2 (1.023) Is (1.00,1.00) C20H27IInO 1: TOF MS ES+

100 0 522.50	523.0147 523.00	523	3.50	524.00		524.50	525.0 525.		525.50	526.0179 526.00	526.50 m/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
525.0145	525.0145 525.0151 525.0139	0.0 -0.6 0.6	0.0 -1.1 1.1	7.5 5.5 9.5	64.4 87.0 129.4	0.000 22.602 65.050		C20 H27 C19 H27 C21 H27	O I2		

7.68e+012

ESI-MS data of B2

HRMS (ESI, m/z): $[M+H]^+$, calcd for $C_{40}H_{53}I_2In_2O_2$: 1049.0212, found: 1049.0214.

Elemental Composition Report

Single Mass Analysis
Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

28 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass)

Elements Used:

C: 36-43 H: 50-55 O: 0-2 In: 0-2 I: 0-3

CBZ-2 (1.093) Is (1.00,1.00) C40H53I2In2O2 1: TOF MS ES+

	1. 101 1110 20										5.94e+012
1046.00		1047.0215 1047.00		1048.0248 1048.00			1049.0214 1049.00		1050.0247	 1.0280	1052.00 m/z
	Minimum: Maximum:		5.0	10.0	-1.5 50.0						
	Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
	1049.0214	1049.0218	-0.4 0.2	-0.4 0.2	12.5	120.1	0.000	100.00	C39 H53 O		

ESI-MS data of C1

HRMS (**ESI**, **m/z**): [M+H]⁺, calcd for C₁₂H₁₈ClIInO: 454.9130, found: 454.9129.

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 27 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

C: 12-15 H: 15-19 O: 0-2 CI: 1-3 In: 0-1 I: 0-1

CBZ-1 (2.362) Is (1.00,1.00) C12H18CIIInO 1: TOF MS ES+

1: TOF MS ES	,+										6.	44e+012
100		454.9129					456.9103		457.9135 m/z			
452.50		3.50	454.00	454.50	455.00	455.50	456.00	456.50	457.00	457.50	458.00	111111111111111111111111111111111111111
Minimum: Maximum:		5.0	10.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
454.9129	454.9130	-0.1	-0.2	3.5	119.6	n/a	n/a	C12 H18 C	Cl In I			

ESI-MS data of C2

HRMS (**ESI**, **m/z**): [M+H]⁺, calcd for C₂₄H₃₅Cl₂I₂In₂O₂: 908.8181, found: 908.8180.

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 76 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

Elements Used: C: 22-25 H: 34-36 O: 0-2 Cl: 0-2 In: 0-2 I: 0-2

CBZ-2 (2.525) Is (1.00,1.00) C24H35Cl2l2ln2O2 1: TOF MS ES+

908.8180 909.8214 910.8157 908.8182 906.00 907.00 908.00 .8180 909.8214 910.8157 911.8187 912.8141 913.8163 m/z 909.00 910.00 911.00 912.00 913.00 914.00 -1.5 5.0 10.0 50.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 908.8180 908.8181 -0.1 -0.1 6.5 184.8 n/a n/a C24 H35 O2 Cl2 In2 I2

Characterization data of products

1-(4-Phenethylphenyl)ethan-1-one (3a): 135.0 mg. Yield = 86%. Yellow oil. Colorless oil. ¹H NMR **(400 MHz, CDCl₃):** δ 7.78 (d, J = 7.8 Hz, 2H), 7.21-7.11 (m, 5H), 7.07 (d, J = 7.6 Hz, 2H), 2.92-2.82 (m, 4H), 2.49 (s, 3H) ppm. ¹³C NMR **(100 MHz, CDCl₃):** δ 197.8, 147.4, 141.0, 135.0, 128.7, 128.5, 128.4, 128.3, 126.0, 37.8, 37.4, 26.5 ppm. HRMS **(ESI, m/z):** [M+H]⁺, calcd. for C₁₆H₁₇O: 225.1274, found: 225.1284. **FTIR (KBr, neat):** v 1676 cm⁻¹.

4-Phenethylbenzonitrile (3b): 117.8 mg. Yield = 81%. Yellow solid. ¹**H NMR (400 MHz, CDCl₃):** δ 7.47 (d, J = 8.3 Hz, 2H), 7.22-7.11 (m, 5H), 7.05 (d, J = 6.8 Hz, 2H), 2.93-2.88 (m, 2H), 2.86-2.82 (m, 2H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 147.2, 140.5, 132.1, 129.3, 128.4, 128.4, 126.2, 119.1, 109.7, 37.9, 37.2 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₅H₁₄N: 208.1121, found: 208.1126. **FTIR (KBr, neat):** ν 2226 cm⁻¹.

1-Nitro-4-phenethylbenzene (3c): 130.5 mg. Yield = 82%. Yellow oil. ¹**H NMR (400 MHz, CDCl₃):** δ 8.05 (d, J = 8.7 Hz, 2H), 7.23-7.19 (m, 4H), 7.16-7.12 (m, 1H), 7.06 (d, J = 7.0 Hz, 2H), 2.99-2.86 (m, 4H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 149.4, 146.4, 140.4, 129.3, 128.5, 128.4, 126.3, 123.6, 37.7, 37.2 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₄H₁₄NO₂: 228.1019, found: 228.1024. **FTIR (KBr, neat):** v 1514 cm⁻¹.

1-Nitro-3-phenethylbenzene (3d): 130.5 mg. Yield = 82%. Yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 6.8 Hz, 2H), 7.36-7.29 (m, 2H), 7.21-7.04 (m, 5H),

2.95-2.91 (m, 2H), 2.88-2.83 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 148.1, 143.5, 140.4, 134.8, 129.1, 128.4, 128.4, 126.2, 123.2, 121.1, 37.3, 37.3 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₄H₁₄NO₂: 228.1019, found: 228.1024. FTIR (KBr, neat): ν 1526 cm⁻¹.

1-Nitro-2-phenethylbenzene (3e): 136.8 mg. Yield = 86%. Yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.2 Hz, 1H), 7.44-7.40 (m, 1H), 7.30-7.18 (m, 4H), 7.15-7.12 (m, 3H), 3.13-3.09 (m, 2H), 2.90-2.86 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 149.3, 140.9, 136.6, 132.9, 132.2, 128.5, 128.4, 127.2, 126.2, 124.8, 37.0, 35.5 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₄H₁₄NO₂: 228.1019, found: 228.1024. FTIR (KBr, neat): ν 1526 cm⁻¹.

Ethyl 4-phenethylbenzoate (3f, 3g): 135.3 mg. 108.6 mg. Yield = 76%, 61%. Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.1 Hz, 2H), 7.21-7.16 (m, 2H), 7.15-7.06 (m, 5H), 4.28 (q, J = 7.1 Hz, 2H), 2.92-2.82 (m, 4H), 1.30 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 147.0, 141.1, 129.6, 128.5, 128.4, 128.3, 128.2, 126.0, 60.8, 37.8, 37.4, 14.3 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₇H₁₉O₂: 255.1380, found: 255.1385. FTIR (KBr, neat): ν 1713 cm⁻¹.

4-Phenethylbenzaldehyde (**3h, 3i, 3j**): 138.4 mg, 114.8 mg, 76.5 mg. Yield = 94%, 78%, 52%. Yellow oil. ¹**H NMR (400 MHz, CDCl₃):** δ 9.82 (s, 1H), 7.65 (d, J = 8.1 Hz, 2H), 7.19-7.06 (m, 5H), 7.03 (d, J = 7.0 Hz, 2H), 2.90-2.79 (m, 4H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 191.8, 148.9, 140.7, 134.4, 129.8, 129.0, 128.3, 128.3, 126.0, 37.9, 37.2 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₅H₁₅O: 211.1117, found: 211.1123. **FTIR (KBr, neat):** ν 1701 cm⁻¹.

5-Phenethylfuran-2-carbaldehyde (**3k**): 76.3 mg. Yield = 54%. Yellow oil. ¹**H NMR** (**400 MHz, CDCl₃**): δ 9.43 (s, 1H), 7.21 (t, J = 7.3 Hz, 2H), 7.13-7.05 (m, 4H), 6.10 (d, J = 3.5 Hz, 1H), 2.94 (s, 4H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 176.9, 162.5, 151.7, 140.1, 128.4, 128.2, 126.3, 123.7, 109.1, 33.6, 30.1 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for 201.0910, found: 201.0916. **FTIR (KBr, neat):** v 1677 cm⁻¹.

1-Phenethylnaphthalene (**3l**): 133.3 mg. Yield = 82%. Colorless oil. ¹**H NMR (400 MHz, CDCl₃):** δ 8.01 (d, J = 8.3 Hz, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.46-7.37 (m, 2H), 7.31-7.11 (m, 7H), 3.30-3.27 (m, 2H), 2.94-2.98 (m, 2H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 142.0, 137.8, 133.8, 131.7, 128.8, 128.4, 126.7, 126.0, 126.0, 125.8, 125.5, 125.4, 123.6, 37.1, 35.1 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₈H₁₇: 233.1325, found: 233.1330.

3-Phenethylpyridine (**3m**): 110.3 mg. Yield = 86%. Yellow oil. ¹**H NMR (400 MHz, CDCl₃):** δ 8.37-8.34 (m, 2H), 7.35 (d, J = 7.8 Hz, 1H), 7.22-7.16 (m, 2H), 7.14-7.06 (m, 4H), 2.84 (s, 4H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 149.8, 147.3, 140.7, 136.8, 136.0, 128.4, 128.4, 126.1, 123.2, 37.4, 34.9 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₃H₁₄N: 184.1121, found: 184.1126.

2-Phenethylpyrazine (3n): 114.8 mg. Yield = 89%. Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.52 (s, 1H), 8.40 (d, J = 2.5 Hz, 1H), 8.36 (m, 1H), 7.30-7.26 (m, 2H), 7.21-7.17 (m, 3H), 3.15-3.11 (m, 2H), 3.09-3.05 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 156.7, 144.7, 144.1, 142.3, 140.7, 128.5, 128.4, 126.2, 37.2, 35.4 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₂H₁₃N₂: 185.1073, found: 185.1079. FTIR (KBr, neat): ν 3027, 2927, 1430 cm⁻¹.

1-(4-(3-Phenylpropyl)phenyl)ethan-1-one (4b): 140.1 mg. Yield = 84%. Yellow oil. **1H NMR (400 MHz, CDCl₃):** δ 7.86 (d, J = 8.2 Hz, 2H), 7.28-7.22 (m, 4H), 7.18-7.14 (m, 3H), 2.68-2.60 (m, 4H), 2.54 (s, 3H), 1.98-1.90 (m, 2H) ppm. ¹³C **NMR (100 MHz,** **CDCl₃):** δ 197.6, 147.9, 141.7, 134.8, 128.5, 128.3, 128.2, 128.2, 125.7, 35.2, 35.2, 32.4, 26.4 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₇H₁₉O: 239.1430, found: 239.1430. **FTIR (KBr, neat):** v 1682 cm⁻¹.

1-(4-Nonylphenyl)ethan-1-one (**4c**): 141.2 mg. Yield = 82%. Yellow oil. ¹**H NMR** (**400 MHz, CDCl₃**): δ 7.78 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 7.8 Hz, 2H), 2.59-2.51 (m, 2H), 2.47 (s, 3H), 1.56-1.49 (m, 2H), 1.22-1.17 (m, 11H), 0.78 (t, J = 6.8 Hz, 4H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 197.6, 148.7, 134.7, 128.5, 128.3, 35.9, 31.8, 31.1, 29.4, 29.4, 29.2, 29.2, 26.4, 22.6, 14.0 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₇H₂₇O: 247.2056, found: 247.2062. **FTIR (KBr, neat):** v 1684 cm⁻¹.

1-(4-Hexylphenyl)ethan-1-one (4d): 118.7 mg. Yield = 83%. Colorless oil. ¹H NMR **(400 MHz, CDCl₃):** δ 7.90-7.87 (m, 2H), 7.28-7.25 (m, 2H), 2.66 (t, J = 8.0 Hz, 2H), 2.59 (s, 3H), 1.66-1.59 (m, 2H), 1.34-1.27 (m, 6H), 0.90-0.86 (m, 3H) ppm. ¹³C NMR **(100 MHz, CDCl₃):** δ 197.9, 148.8, 134.8, 128.6, 128.4, 36.0, 31.6, 31.1, 28.9, 26.5, 22.5, 14.1 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₄H₂₁O: 205.1587, found: 205.1590. FTIR (KBr, neat): ν 1683 cm⁻¹.

1-(4-(3-Chloropropyl)phenyl)ethan-1-one (4e): 85.4 mg. Yield = 62%. Yellow oil. **1H NMR (400 MHz, CDCl₃):** δ 7.83 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H), 3.46 (t, J = 6.4 Hz, 2H), 2.80-2.76 (m, 2H), 2.52 (s, 3H), 2.07-2.00 (m, 2H) ppm. ¹³C **NMR (100 MHz, CDCl₃):** δ 197.8, 146.5, 135.3, 128.8, 128.6, 44.0, 33.5, 32.7, 26.6 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₁H₁₄ClO: 197.0728, found: 197.0733. **FTIR (KBr, neat):** ν 1683 cm⁻¹.

4-(4-Acetylphenyl)butanenitrile (4f): 111.4 mg. Yield = 85%. Brown solid. ¹**H NMR (400 MHz, CDCl₃):** δ 7.92 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 2.85 (t, J = 7.5 Hz, 2H), 2.59 (s, 3H), 2.36 (t, J = 7.0 Hz, 2H), 2.06-1.98 (m, 2H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 197.6, 145.3, 135.5, 128.7, 128.6, 119.1, 34.2, 26.5, 26.4, 16.3 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₂H₁₄NO: 188.1070, found: 188.1078. **FTIR (KBr, neat):** ν 2246, 1682 cm⁻¹.

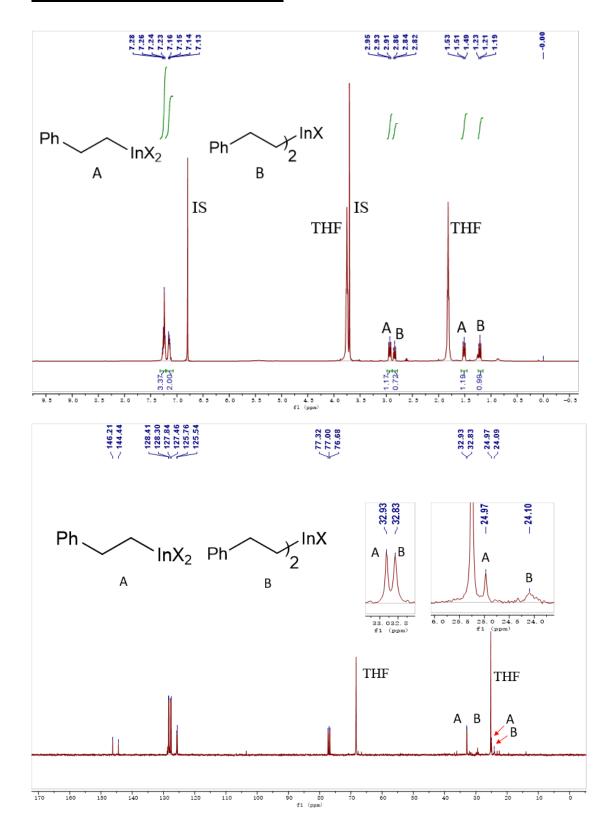
Ethyl 4-(4-acetylphenyl)butanoate (4g): 134.5 mg. Yield = 82%. Colorless oil. ¹**H NMR (400 MHz, CDCl₃):** δ 7.89 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H), 2.74-2.70 (m, 2H), 2.59 (s, 3H), 2.33 (t, J = 7.4 Hz, 2H), 2.01-1.94 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 197.8, 173.2, 147.2, 135.2, 128.7, 128.5, 60.3, 33.5, 30.1, 26.5, 26.1, 14.2 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₄H₁₉O₃: 235.1329, found: 235.1328. **FTIR (KBr, neat):** ν 1732, 1683 cm⁻¹.

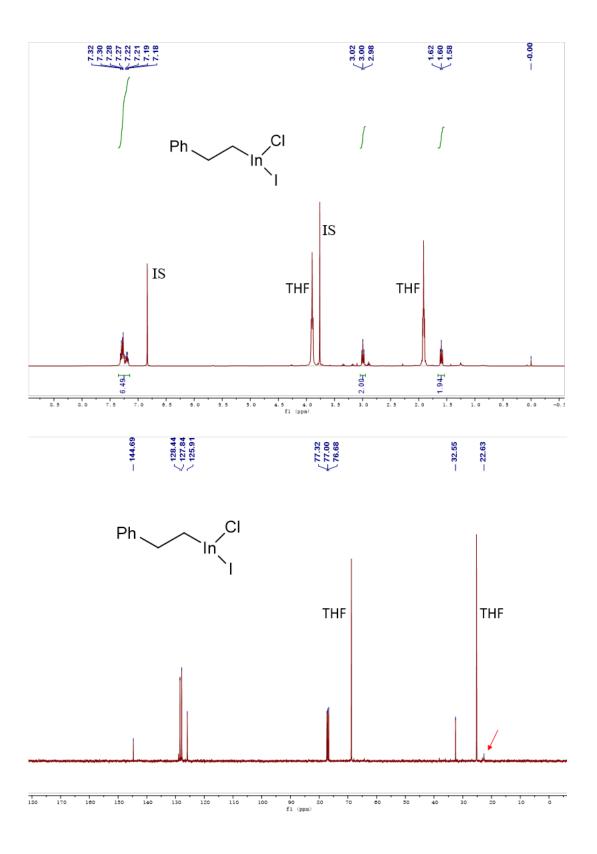
6-(4-Acetylphenyl)hexyl benzoate (4h): 193.0 mg. Yield = 85%. White solid. ¹**H NMR (400 MHz, CDCl₃):** δ 8.04 (d, J = 7.1 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.57-7.54 (m, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 4.31 (t, J = 6.6 Hz, 2H), 2.68 (t, J = 7.7 Hz, 2H), 2.58 (s, 3H), 1.80-1.73 (m, 2H), 1.71-1.63 (m, 2H), 1.52-1.38 (m, 4H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 197.8, 166.6, 148.4, 134.9, 132.8, 130.4, 129.5, 128.5, 128.5, 128.3, 64.9, 35.8, 30.9, 28.8, 28.6, 26.5, 25.9 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₂₁H₂₅O₃: 325.1798, found: 325.1796. **FTIR (KBr, neat):** v 1710, 1675 cm⁻¹.

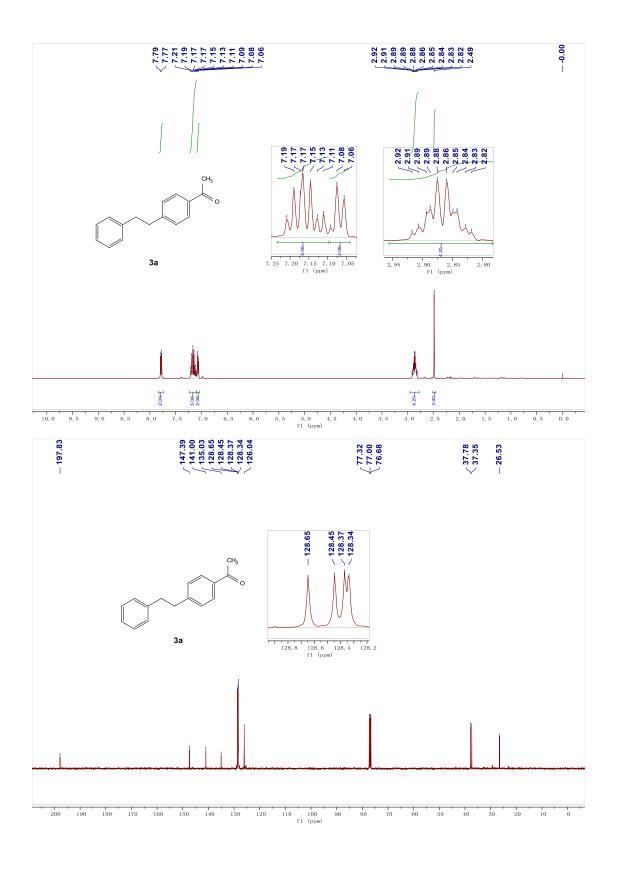
3-(4-Acetylphenyl)-1-phenylpropan-1-one (4i): 111.3 mg. Yield = 63%. Yellow solid. **¹H NMR (400 MHz, CDCl₃):** δ 7.91-7.80 (m, 4H), 7.52-7.47 (m, 1H), 7.39 (tt, J = 6.9, 2.7 Hz, 2H), 7.28 (dd, J = 8.1, 3.0 Hz, 2H), 3.32-3.20 (m, 2H), 3.07 (tt, J = 7.3, 3.3 Hz, 2H), 2.51 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 198.6, 197.8, 147.1, 136.6, 135.2, 133.2, 128.7, 128.7, 128.0, 39.7, 29.9, 26.6 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₇H₁₇O₂: 253.1223, found: 253.1225. **FTIR (KBr, neat):** v 1680, 1602 cm⁻¹.

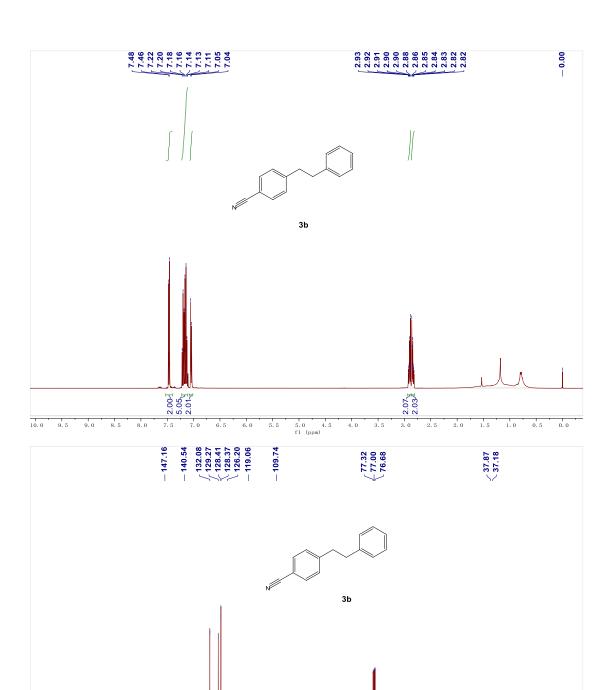
1-(4-(3-Hydroxypropyl)phenyl)ethan-1-one (4j): 78.6 mg. Yield = 63%. Colorless oil. ¹**H NMR (400 MHz, CDCl₃):** δ 7.90-7.87 (m, 2H), 7.31-7.29 (m, 2H), 3.69 (t, J = 6.4 Hz, 2H), 2.80-2.76 (m, 2H), 2.59 (s, 3H), 1.95-1.88 (m, 2H), 1.78 (s, 1H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 198.0, 147.8, 135.0, 128.6, 128.5, 61.9, 33.8, 32.0, 26.5 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₁H₁₅O₂: 179.1067, found: 179.1069. **FTIR (KBr, neat):** ν 3438, 1679 cm⁻¹.

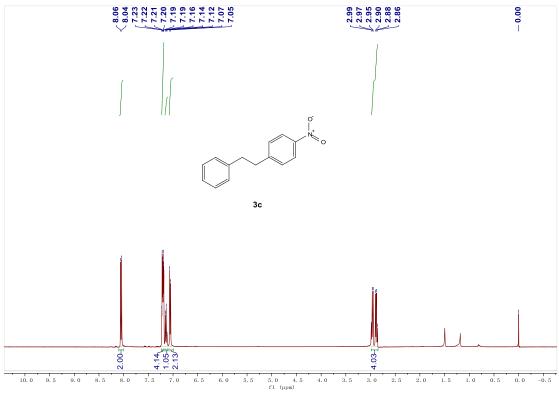
1-(4-(6-((tert-Butyldimethylsilyl)oxy)hexyl)phenyl)ethan-1-one (4k): 196.7 mg. Yield = 84%. Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 7.9 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 3.59 (t, J = 6.5 Hz, 2H), 2.68-2.64 (m, 2H), 2.59 (s, 3H), 1.68-1.60 (m, 2H), 1.52-1.48 (m, 2H), 1.37-1.33 (m, 4H), 0.89 (s, 9H), 0.04 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.9, 148.7, 134.9, 128.6, 128.5, 63.2, 35.9, 32.7, 31.1, 29.0, 26.6, 26.0, 25.6, 18.4, -5.3 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₂₀H₃₅O₂Si: 335.2401, found: 335.2401. FTIR (KBr, neat): v 1685 cm⁻¹.

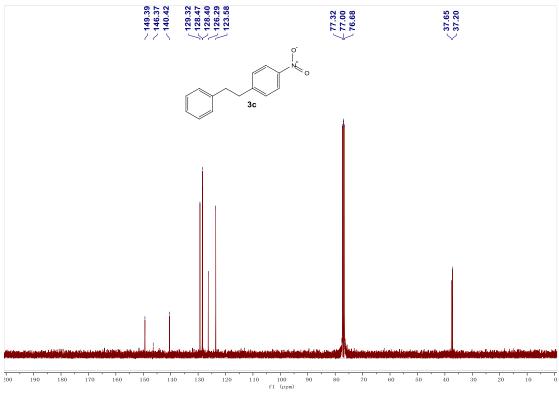

1-(4-Cyclohexylphenyl)ethan-1-one (4l): 126.0 mg. Yield = 89%. Yellow solid. ¹**H NMR (400 MHz, CDCl₃):** δ 7.81 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 2.49 (s, 3H), 1.79-1.66 (m, 5H), 1.40-1.11 (m, 6H) ppm. ¹³**C NMR (100 MHz, CDCl₃):** δ 197.8, 153.7, 134.9, 128.5, 127.0, 44.6, 34.0, 26.6, 26.5, 25.9 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₄H₁₉O: 203.1430, found: 203.1436. **FTIR (KBr, neat):** ν 1671 cm⁻¹.

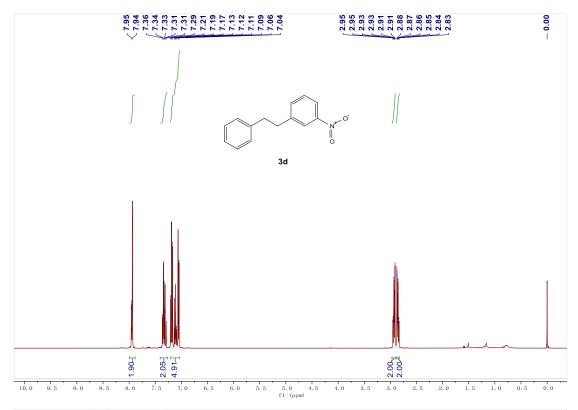

1-(4-Cyclopentylphenyl)ethan-1-one (4m): 98.8 mg. Yield = 75%. Yellow oil. ¹H **NMR (400 MHz, CDCl₃):** δ 7.80 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 3.00-2.91 (m, 1H), 2.49 (s, 3H), 2.04-1.96 (m, 2H), 1.76-1.46 (m, 6H) ppm. ¹³C **NMR (100 MHz, CDCl₃):** δ 197.8, 152.4, 134.8, 128.4, 127.2, 45.9, 34.4, 26.5, 25.5 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₃H₁₇O: 189.1274, found: 189.1279. **FTIR (KBr, neat):** ν 1682 cm⁻¹.

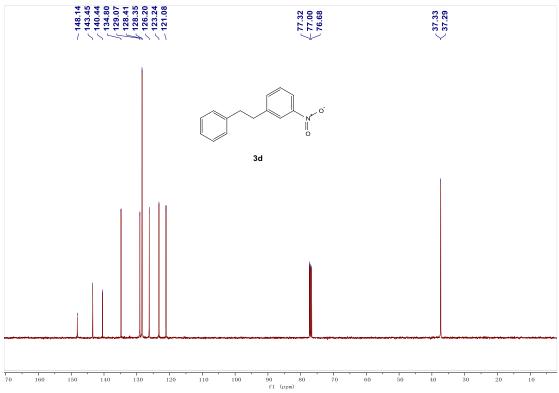

References

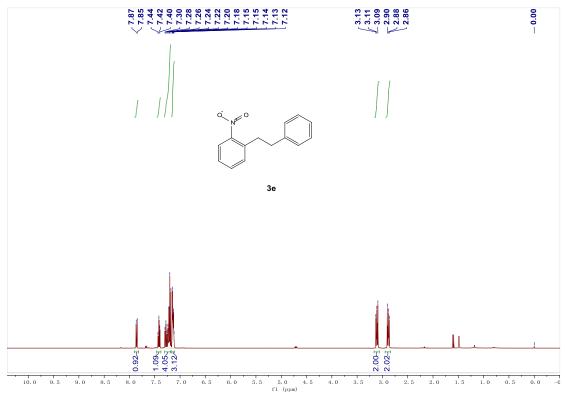

 Thompson, A. M.; Delaney, A. M.; Hamby, J. M.; Schroeder, M. C.; Spoon, T. A.; Crean, S. M.; Showalter, H. D. H.; Denny, W. A. J. Med. Chem. 2005, 48, 4628-4653.

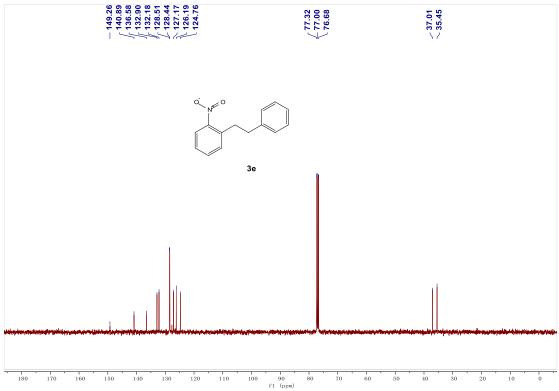

¹H and ¹³C NMR spectra of products










f1 (ppm)

