Asymmetric Construction of Polycyclic Indole derivatives with Different Ring Connectivity by Organocatalysis Triggered Two-step Sequence

Chao-Chao Xie,^a Rui Tan,^b and Yan-Kai Liu*,^{a,c}

 ^aKey Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
^bSchool of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
^cLaboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.

Email: liuyankai@ouc.edu.cn

Supporting Information

Contents

A. General information
B. The synthesis of the substrate 1 5
C. Optimization of the reaction conditions6
C1. Optimization of the Michael Addition6
C2. Optimization of the second step8
D. Scope of the reaction9
D1. Synthesis of product 5a 9
D2. Synthesis of Polycyclic Indoles via C3-Alkylation Path19
D3. Optimization of the reaction conditions22
D4. Synthesis of Polycyclic Indoles via C2-Alkylation Path23
E. Synthetic transformations
E1. Modification of C3 position of Indole Moiety in 4 26
E2. Modification of C3 position of Indole Moiety in 5a
E3. Useful Transformations of Product 5a 32
E4. Synthesis of Spiro-fused 2-Azido Indoline 17 via Radical-mediated
dearomatization reaction35
F. NMR spectra and HPLC traces
G. Single crystal X-Ray diffraction data85
H. Absolute configuration of 15b 87
I. Absolute configuration of 17 90

A. General information

The ¹H and ¹³C NMR spectra were recorded at 500 MHz for ¹H and at 125 MHz for ¹³C. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signals of the solvents (CDCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR.). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the Waters Q-Tof Ultima Global. X-ray data were obtained from Zhongke chemical technology service center. Optical rotations are reported as follows: [α]_D²⁰ (c in g per 100 mL, solvent: CHCl₃).

Note: NMR signals containing common solvent contaminants were list. H_2O in CDCl₃ at 1.56 ppm ¹H NMR; ethyl acetate in CDCl₃ at 2.05 (s), 4.12 (q), 1.26 (t) ppm ¹H NMR; dichloromethane in CDCl₃ at 5.30 (s) ppm ¹H NMR; acetone in CDCl₃ at 2.17 (s) ppm ¹H NMR; diethyl ether in CDCl₃ at 1.21 (t), 3.48 (q), ppm ¹H NMR

All the reactions were set up under air and using freshly distilled solvents, without any precautions to exclude moisture, unless otherwise noted open air chemistry on the benchtop. Chromatographic purification of products was accomplished using force-flow chromatography (FC) on silica gel (300-400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck pre-coated TLC plates (silica gel 60 GF254, 0.25 mm) were used, using UV light as the visualizing agent and an phosphomolybdic acid or basic aqueous potassium permanganate (KMnO₄) as stain developing solutions. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

HPLC analyses on chiral stationary phase were performed on an Hitachi Chromaste. Daicel Chiralpak IA, IB,orIC columns with *n*-hexane/*i*-PrOH as the eluent were used. HPLC traces were compared to racemic samples which prepared by mixture of two enantiomeric final products obtained using (*S*) and (*R*) catalyst.

Commercial reagents and solvents were purchased from Sigma Aldrich, Fluka, and Alfa Aesar used as received, without further purification. (*E*)-2-(2-nitrovinyl)-1*H*-indoles (**2a**) were prepared from 1*H*-indole-2-carbaldehydes¹. The *tert*-butyl (*E*)-3-(2-nitrovinyl)-1*H*-indole-1-carboxylate were prepared from *tert*-butyl 3-formyl-1*H*-indole-1-carboxylate².

1. Enders, D.; Wang, C.; Yang, X.; Raabe, G., One-pot organocatalytic asymmetric synthesis of 1*H*-pyrrolo[1,2a]indol-3(2*H*)-ones via a Michael-hemiaminalization-oxidation sequence. *Synlett* **2011**, (4), 469-472.

2. Feng, H.-X.; Tan, R.; Liu, Y.-K., An Efficient One-Pot Approach to the Construction of Chiral Nitrogen-Containing Heterocycles under Mild Conditions. *Org. Lett.* **2015**, *17* (15), 3794-3797.

B. The synthesis of the substrate 1

General procedure: A glass vial equipped with a magnetic stirring bar was charged with diethyl ketomalonate (8.0 mmol, 1.0 equiv) and tricyclohexyl phosphine (12.0 mmol, 1.5 equiv) in THF (15.0 mL, THF = tetrahydrofuran) at 25 °C . After the reaction was completed, solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel to provide the product diethyl 2-hydroxymalonate. Then the product diethyl 2-hydroxymalonate (8.0 mmol, 1.0 equiv) and acrolein (12.0 mmol, 1.5 equiv) were respectively dissolved in DMF (12.0 ml, DMF = N,N-dimethylformamide.) at 25 °C, and then Et₃N (0.16 mmol, 0.2 equiv, Et₃N = triethylamine) was added to the reaction mixtures at the same temperature. After the reaction was completed, water was added and the aqueous layer was extracted with ethyl acetate twice. The combined organic extracts were washed with brine, dried by Na₂SO₄, filtered, and concentrated in vacuo. The crude product **1** (1.04 g, 56% in 2 steps).

C. Optimization of the reaction conditions

C1. Optimization of the Michael Addition

Table S1. Optimization of the Michael Addition^a

Entry	Solvent	Aci d	t (h) ^b	Yield (%) ^c	ee (%) ^d	dr ^e
1	МеОН	A_1	20	28	>99	>20:1
2	MeCN	A_1	12	42	>99	>18:1
3	tetrahydrofuran	A_1	12	50	>99	>20:1
4	CHCl ₃	A_1	16	49	>99	>18:1
5	toluene	A_1	10	70	>99	>20:1
6	toluene	A_2	14	62	>99	>20:1
7	toluene	A_3	14	54	>99	>20:1
8	toluene	A_4	16	49	>99	>20:1

[*a*] Unless otherwise specified, all reations were carried out using **1** (0.20 mmol, 1.0 equiv), **2a** (0.24 mmol, 1.2 equiv) in solvent (0.6 mL) with **3** (20 mol%) and **acid** (20 mol%) at 40 °C. After workup, the mixture was purified by flash chromatography on silica gel to afford **4**. Compound **4** were respectively dissolved in redistilled CH_2Cl_2 (0.10 mmol in 1 mL) at 25 °C. *p*-TsOH (1.0 eq) was added, After full conversion of the second step, the residue was purified by flash chromatography on gel to give product **5a**. [*b*] For the first step. [*c*] Isolated yield of **5a** over two steps. [*d*] Determined by HPLC analyses of isolated compound **5a** on chiral stationary phases. [*e*] Determined by ¹H NMR. MeOH = methanol; MeCN = acetonitrile; $CHCl_{3=}$ chloroform; *p*-TsOH = *p*-Toluenesulfonic acid.

Optimization of the catalyst

Table S2. Optimization of the catalyst ^{*a*}

Entry	Catalyst	Aci d	t (h) ^b	Yield (%) ^c	ee (%) ^d	dr ^e
1	3a	A_1	24	32	-18	>20:1
2	3b	A_1	12	51	92	>20:1
3	3	A_1	10	71	>99	>20:1
4	3c	A_1	32	49	95	>20:1
5	3d	A_1	14	62	>99	>20:1
6	3e	A_1	16	58	99	>20:1

[*a*] Unless otherwise specified, all reations were carried out using **1** (0.20 mmol, 1.0 equiv), **2a** (0.24 mmol, 1.2 equiv) in solvent (0.6 mL) with **cat**. (20 mol%) and **acid** (20 mol%) at 40 °C. After workup, the mixture was purified by flash chromatography on silica gel to afford **4**. Compound **4** were respectively dissolved in redistilled CH_2Cl_2 (0.10 mmol in 1 mL) at 25 °C. *p*-TsOH (1.0 eq) was added, After full conversion of the second step, the residue was purified by flash chromatography on gel to give product **5a**. [*b*] For the first step. [*c*] Isolated yield of **5a** over two steps. [*d*] Determined by HPLC analyses of isolated compound **5a** on chiral stationary phases. TMS = trimethylsilyl; TES = triethylsilyl, TBS = *tert*-butyldimethylsilyl.

C2. Optimization of the second step

Entry	Acid	Tem (°C)	t (h)	Yield (%) ^b	ee (%) ^c
1	BF ₃ ·Et ₂ O (1.0 eq)	0	4	60	>99
2	trifluoroacetic acid (1.0 eq)	0	3	43	>99
3	tiphenylphosphate (1.0 eq)	25	12	40	>99
4	methanesulfonic acid (1.0 eq)	25	0.5	29	>99
5	<i>p-</i> TsOH (1.0 eq)	0	24	64	>99
6	<i>p-</i> TsOH (0.4 eq)	25	12	65	>99
7	<i>p-</i> TsOH (0.8 eq)	25	6	69	>99
8	<i>p-</i> TsOH (1.0 eq)	25	2	76	>99

Table S3. Optimization of the second step^{*a*}

[*a*] Unless otherwise specified, all reations were carried out using **4** (0.05 mmol, 1.0 equiv) in redistilled CH_2Cl_2 (1.0 mL) with **acid** at corresponding temperature. After workup, the mixture was purified by flash chromatography on silica gel to afford **5a**. [*b*] Isolated yield of **5a**. [*c*] Determined by HPLC analyses of isolated compound **5a** on chiral stationary phases. BF₃·Et₂O = boron trifluoride etherate

D. Scope of the reaction

D1. Synthesis of product 5a

General procedure: A glass vial equipped with a magnetic stirring bar was charged with lactols **1** (0.20 mmol, 1.0 equiv), *(E)*-2-(2-nitrovinyl)-*1H*-indole **2** (0.24 mmol, 1.2 equiv), **3** (0.04 mmol, 0.2 equiv TMS = trimethylsilyl) and BA (0.04 mmol, 0.2 equiv BA = benzoic acid) in toluene (0.6 mL) at 40 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of lactols **1** (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **4**. Then, compound **4** (1.0 equiv) were respectively dissolved in anhydrous CH_2Cl_2 (0.10 mmol in 1.0 mL) at 25 °C, and *p*-TsOH (1.0 equiv) was added to the reaction mixtures. After full conversion of the second step, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 9:1 to 7:1) to give product **5**.

5a was obtained as a colorless oil 56.3 mg in 70% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.58 – 7.54 (m, 1H), 7.51 – 7.47 (m, 1H), 7.19 –7.13 (m, 1H), 7.12 – 7.07 (m, 1H), 6.59 (d, *J* = 5.6 Hz, 1H), 6.09 – 6.06 (m, 1H), 5.11 (dd, *J* = 14.5, 10.0 Hz, 1H), 5.03 (dd, *J* = 14.5, 5.5 Hz, 1H), 4.30 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.26 – 4.18 (m, 2H), 3.93 (dddd, *J* = 11.0, 5.3, 4.8, 2.5 Hz, 1H), 3.58 – 3.51 (m, 1H), 2.97 – 2.91 (m, 1H), 2.88 (dd, *J* = 14.1, 4.2 Hz, 1H), 2.35 (dd, *J* = 14.1, 11.2 Hz, 1H), 1.28 – 1.25 (m, 3H), 0.67 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 168.0, 167.7, 139.4, 133.5, 132.0, 122.1, 121.0, 120.9, 111.3, 94.5, 92.0, 87.7, 74.1, 62.8, 62.4, 48.8, 36.8, 32.8, 14.2, 13.2 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₀H₂₃N₂O₇⁺ 403.1500 found 403.1503. **[α]_D²⁰**-53.19 (*c* = 1.28 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 220 nm, t_{major} = 31.84 min, t_{minor} = 26.49 min, **ee >99%**. The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

5b was obtained as a colorless oil 49.1 mg in 51% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 11/1). ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 8.1 Hz, 1H), 7.27 (d, *J* = 7.7 Hz, 1H), 7.03 (t, *J* = 7.9 Hz, 1H), 6.53 (d, *J* = 5.6 Hz, 1H), 6.16 (s, 1H), 5.06 (qd, *J* = 14.6, 7.7 Hz, 2H), 4.34 – 4.16 (m, 3H), 3.99 – 3.88 (m, 1H), 3.58 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.06 (dq, *J* = 10.7, 7.2 Hz, 1H), 2.83 (dd, *J* = 14.1, 4.4 Hz, 1H), 2.37 (dd, *J* = 14.1, 11.0 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.69 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 167.7, 167.4, 139.9, 133.7, 132.1, 123.7, 122.8, 114.1, 110.3, 94.8,

92.1, 87.6, 73.6, 62.7, 62.3, 48.5, 36.7, 32.6, 14.0, 13.1 ppm. **HRMS**: $[M+H]^+$ *calcd*. For $C_{20}H_{22}BrN_2O_7^+$ 481.0605 found 481.0610. $[\alpha]_D^{20}$ -39.65 (c = 2.04 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i-PrOH = 70/30, 1 mL/min], $\lambda = 220$ nm, $t_{major} = 22.41$ min, $t_{minor} = 39.19$ min, **ee** >99%. The diastereomeric ratio was determined by ¹H NMR dr >20:1.

5c was obtained as a colorless oil 50.2 mg in 58% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 11/1). ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 8.8 Hz, 1H), 6.97 (d, *J* = 2.3 Hz, 1H), 6.83 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.56 (d, *J* = 5.6 Hz, 1H), 6.01 (s, 1H), 5.06 (ddd, *J* = 20.0, 14.5, 7.7 Hz, 2H), 4.37 – 4.14 (m, 3H), 4.00 – 3.90 (m, 1H), 3.82 (s, 3H), 3.59 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.04 (dq, *J* = 10.7, 7.2 Hz, 1H), 2.88 (dd, *J* = 14.1, 4.1 Hz, 1H), 2.35 (dd, *J* = 14.1, 11.2 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 0.74 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 167.8, 167.6, 154.9, 139.9, 134.0, 127.0, 111.8, 111.8, 102.9, 94.1, 92.0, 87.5, 73.9, 62.6, 62.2, 55.8, 48.5, 36.8, 32.6, 14.0, 13.2 ppm. HRMS: [M+H]⁺ calcd. For C₂₁H₂₅N₂O₈⁺ 433.1605 found 433.1600. [**α**]_{**b**²⁰ -32.58 (*c* = 0.83 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 220 nm, *t_{major}* = 23.73 min, *t_{minor}* = 14.11 min, **ee** >**99%**. The diastereomeric ratio was determined by ⁺H NMR *dr* >**20:1**.}

5d was obtained as a colorless oil 53.3 mg in 61% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 13/1). ¹H NMR (500 MHz,

CDCl₃) δ 7.46 (t, *J* = 5.8 Hz, 2H), 7.12 (dd, *J* = 8.6, 2.0 Hz, 1H), 6.56 (d, *J* = 5.7 Hz, 1H), 6.02 (s, 1H), 5.04 (ddd, *J* = 20.2, 14.5, 7.7 Hz, 2H), 4.38 – 4.14 (m, 3H), 4.00 – 3.88 (m, 1H), 3.58 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.05 (dq, *J* = 10.7, 7.2 Hz, 1H), 2.84 (dd, *J* = 14.1, 4.2 Hz, 1H), 2.36 (dd, *J* = 14.1, 11.1 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.72 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 167.7, 167.4, 140.8, 134.3, 130.2, 126.6, 122.2, 120.2, 112.1, 94.1, 91.9, 87.6, 73.7, 62.7, 62.3, 48.6, 36.7, 32.5, 14.0, 13.1 ppm. HRMS: [M+H]⁺ calcd. For C₂₀H₂₂ClN₂O₇⁺ 437.1110 found 437.1112. [α]_D²⁰ -57.38 (*c* = 0.68 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 220 nm, t_{major} = 37.08 min, t_{minor} = 17.11 min, **ee** >**99%**. The diastereomeric ratio was determined by ¹H NMR *dr* >**20:1**.

5e was obtained as a colorless oil 54.8 mg in 57% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 13/1). ¹H NMR (500 MHz,CDCl₃) δ 7.50 (d, *J* = 8.1 Hz, 1H), 7.27 (d, *J* = 7.7 Hz, 1H), 7.03 (t, *J* = 7.9 Hz, 1H), 6.53 (d, *J* = 5.6 Hz, 1H), 6.16 (s, 1H), 5.06 (qd, *J* = 14.6, 7.7 Hz, 2H), 4.34 – 4.16 (m, 3H), 3.99 – 3.88 (m, 1H), 3.58 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.06 (dq, *J* = 10.7, 7.2 Hz, 1H), 2.83 (dd, *J* = 14.1, 4.4 Hz, 1H), 2.37 (dd, *J* = 14.1, 11.0 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.69 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 167.7, 167.4, 140.6, 134.9, 130.5, 124.6, 123.3, 114.2, 112.5, 94.0, 91.9, 87.6, 73.7, 62.7, 62.3, 48.6, 36.7, 32.5, 14.0, 13.1 ppm. HRMS: [M+H]⁺ calcd. For C₂₀H₂₂BrN₂O₇⁺ 481.0605 found 481.0604. [α]_p²⁰ -73.38 (*c* = 1.22 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 220 nm, t_{major} = 24.03 min, t_{minor} = 12.66 min, **ee = 99%**. The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

5f was obtained as a colorless oil 51.9 mg in 61% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.36 (d, *J* = 8.7 Hz, 1H), 7.05 (d, *J* = 2.1 Hz, 1H), 6.77 (dd, *J* = 8.7, 2.3 Hz, 1H), 6.56 (d, *J* = 5.6 Hz, 1H), 6.02 (s, 1H), 5.05 (ddd, *J* = 19.9, 14.5, 7.7 Hz, 2H), 4.36 – 4.16 (m, 3H), 3.97 – 3.90 (m, 1H), 3.86 (s, 3H), 3.62 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.05 (dq, *J* = 10.7, 7.2 Hz, 1H), 2.89 (dd, *J* = 14.1, 4.4 Hz, 1H), 2.36 (dd, *J* = 14.0, 11.1 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H), 0.75 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 167.7, 156.2, 137.8, 132.5, 127.3, 121.4, 111.1, 94.4, 94.3, 91.8, 87.5, 74.0, 62.6, 62.2, 55.8, 48.7, 36.6, 32.6, 14.0, 13.1 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₁H₂₅N₂O₈⁺ 433.1605 found 433.1601. **[α]**_D²⁰ -48.63 (*c* = 2.23 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 220 nm, *t_{major}* = 29.87 min, *t_{minor}* = 12.15 min, **ee >99%**. The diastereomeric ratio was determined by ¹H NMR *dr* **>20:1**.

5g was obtained as a colorless oil 49.1 mg in 51% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 12/1). ¹**H** NMR (500 MHz, CDCl₃) *δ* 7.73 (s, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.20 (dd, *J* = 8.5, 1.7 Hz, 1H), 6.55 (d, *J* = 5.6 Hz, 1H), 6.06 (s, 1H), 5.04 (qd, *J* = 14.5, 7.7 Hz, 2H), 4.36 – 4.15 (m, 3H), 3.99 – 3.87 (m, 1H), 3.58 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.99 (dq, *J* = 10.6, 7.2 Hz, 1H), 2.85 (dd, *J* = 14.1, 4.3 Hz, 1H), 2.36 (dd, *J* = 14.1, 11.2 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 0.76 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) *δ* 167.7, 167.4, 140.0, 132.4, 132.1, 124.1, 122.0, 115.3, 114.1, 94.6, 91.8, 87.6, 73.8, 62.7, 62.4, 48.6, 36.6, 32.4, 14.0, 13.1 ppm. HRMS: [M+H]⁺ calcd. For $C_{20}H_{22}BrN_2O_7^+$ 481.0605 found 481.0606. **[α]₀²⁰** -68.72 (*c* = 1.82 in CHCl₃). The

enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 220 nm, t_{major} = 35.60 min, t_{minor} = 11.45 min, **ee** >99%. The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

5h was obtained as a colorless oil 49.9 mg in 53% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 7.67 – 7.63 (m, 2H), 7.54 (d, *J* = 8.3 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.39 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.33 (t, *J* = 7.4 Hz, 1H), 6.64 (d, *J* = 5.6 Hz, 1H), 6.10 (s, 1H), 5.09 (ddd, *J* = 20.0, 14.5, 7.7 Hz, 2H), 4.38 – 4.17 (m, 3H), 4.00 – 3.91 (m, 1H), 3.54 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.01 – 2.83 (m, 2H), 2.36 (dd, *J* = 14.1, 11.3 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.61 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 167.8, 167.6, 141.8, 140.0, 135.4, 132.6, 132.4, 128.7, 127.3, 126.8, 121.0, 120.5, 109.6, 94.3, 91.9, 87.5, 73.9, 62.6, 62.2, 48.6, 36.7, 32.6, 14.0, 13.0 ppm. HRMS: [M+H]⁺ calcd. For C₂₆H₂₇N₂O₇⁺ 479.1813 found 479.1810. [**α**]_D²⁰ -64.67 (*c* = 0.48 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 60/40, 1 mL/min], λ = 220 nm, t_{major} = 34.42 min, t_{minor} = 9.23 min, **ee** >**99%**. The diastereomeric ratio was determined by ¹H NMR *dr* >**20:1**.

5i was obtained as a colorless oil 43.3 mg in 46% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.77 (d, *J* = 0.7 Hz, 1H), 7.67 (s, 1H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.28 (dd, *J* = 6.6, 1.3 Hz, 1H), 6.78 (dd, *J* = 6.4, 5.6 Hz, 1H), 6.62 (d, *J* = 5.6 Hz, 1H), 6.08 (s, 1H), 5.08 (ddd, *J* =

20.0, 14.5, 7.7 Hz, 2H), 4.39 – 4.18 (m, 3H), 3.95 (dt, *J* = 11.6, 4.9 Hz, 1H), 3.57 (dq, *J* = 10.6, 7.1 Hz, 1H), 3.03 – 2.84 (m, 2H), 2.36 (dd, *J* = 14.0, 11.2 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H), 0.66 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 167.8, 167.6, 164.0, 143.5, 139.7, 138.1, 132.4, 132.4, 127.1, 126.5, 121.1, 119.4, 113.7, 109.1, 108.2, 94.5, 91.9, 87.5, 73.9, 62.6, 62.3, 48.6, 36.7, 32.5, 14.0, 13.0 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₄H₂₅N₂O₈⁺ 469.1605 found 469.1605. [α]_D²⁰ -51.75 (*c* = 0.72 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 60/40, 1 mL/min], λ = 220 nm, *t_{major}* =37.72 min, *t_{minor}* = 11.45 min, **ee** = **93%**. The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

5j was obtained as a colorless oil 39.4 mg in 41% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 12/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.21 (dt, *J* = 21.9, 7.3 Hz, 2H), 6.49 (d, *J* = 5.7 Hz, 1H), 5.56 (dd, *J* = 15.2, 4.0 Hz, 1H), 5.15 (dd, *J* = 15.2, 11.9 Hz, 1H), 4.37 – 4.14 (m, 3H), 3.97 (dt, *J* = 10.9, 5.1 Hz, 1H), 3.66 – 3.54 (m, 1H), 3.18 – 3.04 (m, 1H), 2.89 (dd, *J* = 14.2, 4.3 Hz, 1H), 2.37 (dd, *J* = 14.1, 11.2 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 0.68 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 167.8, 167.4, 135.1, 132.0, 131.6, 123.2, 121.6, 119.0, 111.3, 91.9, 87.6, 83.9, 72.2, 62.7, 62.3, 48.7, 36.8, 32.4, 14.0, 13.1 ppm. HRMS: [M+H]⁺ calcd. For C₂₀H₂₂BrN₂O₇⁺ 481.0605 found 481.0601. [α]_D²⁰ -12.00 (*c* = 1.25 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 220 nm, t_{major} = 24.79 min, t_{minor} = 11.69 min, **ee >99%**. The diastereomeric ratio was determined by 'H NMR *dr* >20**:**1.

5k was obtained as a white solid 34.5 mg in 65% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.56 (d, *J* = 7.9 Hz, 1H), 7.51 (d, *J* = 8.1 Hz, 1H), 7.22 – 7.17 (m, 1H), 7.15 – 7.10 (m, 1H), 6.24 (s, 1H), 5.86 (d, *J* = 4.4 Hz, 1H), 4.87 – 4.79 (m, 1H), 4.72 (dd, *J* = 13.6, 8.1 Hz, 1H), 4.08 (q, *J* = 7.3 Hz, 1H), 3.85 – 3.77 (m, 1H), 3.70 (ddd, *J* = 11.6, 8.8, 2.9 Hz, 1H), 2.98 (ddd, *J* = 12.9, 8.9, 5.6 Hz, 1H), 2.04 – 1.95 (m, 1H), 1.72 (tdd, *J* = 12.3, 5.7, 2.8 Hz, 1H), 1.60 (ddd, *J* = 13.7, 9.5, 5.0 Hz, 2H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 139.6, 132.8, 132.5, 123.0, 120.9, 120.4, 110.3, 95.8, 84.6, 74.2, 62.8, 41.3, 38.4, 22.7, 21.2 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₅H₁₇N₂O₃⁺ 273.1234 found 273.1240. [α]_p²⁰ -125.31 (*c* = 1.34 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 70/30, 1 mL/min], λ = 220 nm, *t*_{major} = 10.65 min, *t*_{minor} = 12.39 min, **ee** >**99%**. The diastereomeric ratio was determined by 'H NMR *dr* >**20:1**.

51 was obtained as a white solid 48.8 mg in 73% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1). ¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, *J* = 13.2, 8.0 Hz, 2H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.20 – 7.13 (m, 4H), 7.08 (dd, *J* = 6.2, 2.6 Hz, 2H), 6.37 (d, *J* = 5.6 Hz, 1H), 6.18 (s, 1H), 5.35 (dd, *J* = 10.6, 5.2 Hz, 1H), 4.90 (dd, *J* = 13.8, 5.3 Hz, 1H), 4.60 (dd, *J* = 13.7, 10.2 Hz, 1H), 4.33 – 4.21 (m, 1H), 3.90 (dt, *J* = 12.9, 7.1 Hz, 1H), 2.53 (ddd, *J* = 12.5, 7.4, 5.4 Hz, 1H), 1.74 (dd, *J* = 22.8, 11.2 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 140.6, 138.0, 132.9, 132.4, 128.5, 127.8, 125.5, 122.0, 120.6, 120.5, 110.8, 94.9, 90.8, 84.9, 74.0, 50.5, 36.8, 36.0 ppm. HRMS: [M+H]⁺ calcd. For $C_{20}H_{19}N_2O_3^+$ 335.1390 found 335.1392. [α]_p²⁰ -196.17 (*c* = 1.78 in CHCl₃). The

enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 90/10, 1 mL/min], λ = 220 nm, t_{major} = 10.90 min, t_{minor} = 12.35 min, **ee** >99%. The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

5m was obtained as a colorless oil 40.2 mg in 63% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 12/1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.63 (dd, *J* = 8.1, 0.6 Hz, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.15 (ddd, *J* = 22.7, 11.4, 4.1 Hz, 4H), 6.99 – 6.93 (m, 1H), 6.83 (d, *J* = 7.7 Hz, 1H), 6.34 (d, *J* = 5.9 Hz, 1H), 6.18 (s, 1H), 4.52 – 4.43 (m, 1H), 4.30 (ddd, *J* = 16.6, 13.9, 8.5 Hz, 2H), 3.78 – 3.69 (m, 1H), 3.23 (dd, *J* = 16.8, 7.3 Hz, 1H), 2.82 (dd, *J* = 16.9, 3.1 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 152.6, 140.7, 132.9, 132.4, 128.5, 128.4, 122.8, 122.2, 122.0, 121.2, 120.9, 117.9, 110.5, 96.0, 83.4, 75.6, 43.2, 37.5, 24.4 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₁₉H₁₇N₂O₃⁺ 321.1234 found 321.1235. [**α**]_{**D**²⁰} -168.34 (*c* = 3.84 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 220 nm, *t_{major}* = 6.99 min, *t_{minor}* = 8.37 min, **ee = 98%**. The diastereomeric ratio was determined by ¹H NMR *dr* = **5**:1.

5n was obtained as a white solid 48.4 mg in 62% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (s, 1H), 7.54 (d, *J* = 2.8 Hz, 1H), 7.45 (d, *J* = 6.8 Hz, 1H), 7.41 (t, *J* = 7.4 Hz, 3H), 7.39 – 7.34 (m, 2H), 7.20 (d, *J* = 8.3 Hz, 1H), 6.32 (t, *J* = 8.2 Hz, 1H), 6.15 (s, 1H), 5.43 (d, *J* = 12.2 Hz, 1H), 5.22 (d, *J* = 12.1 Hz, 1H), 4.94 (dd, *J* = 13.6, 5.1 Hz, 1H), 4.66 (dd, *J* = 13.7,

10.0 Hz, 1H), 4.23 (s, 1H), 3.66 (dd, J = 17.4, 10.0 Hz, 1H), 3.61 – 3.53 (m, 2H), 2.19 (dt, J = 13.2, 6.8 Hz, 1H), 1.80 (dt, J = 20.9, 10.6 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 155.7, 139.3, 136.1, 132.8, 131.4, 128.7, 128.4, 128.2, 123.5, 121.7, 115.6, 114.9, 95.2, 74.5, 73.5, 67.9, 48.3, 47.4, 37.1, 25.2 ppm. **HRMS**: [M+H]⁺ *calcd*. For C₂₂H₂₁BrN₃O₄⁺ 470.0710 found 470.0713. **[\alpha]**_D²⁰ +61.68 (c = 0.89 in CHCl₃) The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i-PrOH = 80/20, 1 mL/min], $\lambda = 220$ nm, $t_{major} = 39.26$ min, $t_{minor} = 24.2$ min, **ee = 98%**. The diastereomeric ratio was determined by ¹H NMR dr = 7:1.

D2. Synthesis of Polycyclic Indoles via C3-Alkylation Path

General procedure: A glass vial equipped with a magnetic stirring bar was charged with lactols **1** (0.20 mmol, 1.0 equiv), *(E)*-2-(2-nitrovinyl)-1*H*-indole **2'** (0.24 mmol, 1.2 equiv), **3** (0.04 mmol, 0.2 equiv) and BA (0.04 mmol, 0.2 equiv) in toluene (0.6 mL) at 40 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of lactols **1** (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **4'**. Then, compound **4'** (1.0 equiv) were respectively dissolved in anhydrous CH_2Cl_2 (0.10 mmol in 1 mL) at 0 °C, and BF_3 ·Et₂O(1.2 equiv) was added to the reaction mixtures. After full conversion of the second step, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 6:1 to 3:1) to give product **6**.

6a was obtained as a white solid 35.2 mg in 42% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.70 (d, *J* = 7.9 Hz, 1H), 7.25 – 7.18 (m, 2H), 7.18 – 7.07 (m, 1H), 6.07 (dd, *J* = 6.4, 0.8 Hz, 1H), 4.67 (dd, *J* = 13.0, 4.4 Hz, 1H), 4.41 (dd, *J* = 12.9, 9.5 Hz, 1H), 4.33 – 4.18 (m, 2H), 4.08 – 3.97 (m, 1H), 3.73 – 3.66 (m, 1H), 3.65 (s, 3H), 3.49 – 3.42 (m, 1H), 3.25 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.80 (dd, *J* = 13.4, 4.7 Hz, 1H), 2.58 (dd, *J* = 13.3, 10.2 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.73 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 169.0, 168.9, 142.7, 142.6, 123.1, 122.3, 120.4, 120.0, 118.9, 109.7, 93.4, 86.8, 83.0, 78.5, 62.2, 61.62, 52.5, 43.7, 39.7, 30.7, 14.0, 13.2 ppm. **HRMS**: [M+H]⁺ *calcd*. For Chemical Formula: C₂₁H₂₅N₂O₇⁺ 417.1656 found 417.1660. [*α*]_D²⁰ -39.33 (*c* = 1.27 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 220 nm, *t_{major}* = 41.69 min, *t_{minor}* = 18.87 min, **ee = 99%**. The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

6b was obtained as a colorless oil 42.1 mg in 42% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.77 – 7.72 (m, 1H), 7.37 – 7.27 (m, 3H), 7.20 – 7.12 (m, 3H), 7.08 (d, *J* = 7.0 Hz, 2H), 6.11 (dd, *J* = 6.5, 1.1 Hz, 1H), 5.29 – 5.20 (m, 2H), 4.31 (dd, *J* = 13.1, 3.7 Hz, 1H), 4.27 (dd, *J* = 9.1, 5.4 Hz, 1H), 4.25 – 4.20 (m, 1H), 4.15 (dd, *J* = 13.2, 10.2 Hz, 1H), 3.95 – 3.87 (m, 1H), 3.71 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.43 (dt, *J* = 10.1, 4.9 Hz, 1H), 3.25 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.78 (dd, *J* = 13.5, 4.6 Hz, 1H), 2.60 – 2.50 (m, 1H), 1.27 (d, *J* = 7.1 Hz, 3H), 0.75 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 168.9, 142.5, 142.3, 136.5, 129.1, 128.1,

126.3, 123.3, 122.6, 120.7, 120.1, 110.2, 86.8, 83.0, 78.2, 62.2, 61.6, 52.6, 48.1, 44.0, 39.7, 14.0, 13.3 ppm. **HRMS**: $[M+H]^+$ *calcd*. For Chemical Formula: $C_{27}H_{29}N_2O_7^+$ 493.1969 found 493.1964. $[\alpha]_D^{20}$ -45.74 (c = 0.86 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i-PrOH = 80/20, 1 mL/min], $\lambda = 220$ nm, $t_{major} = 41.92$ min, $t_{minor} = 24.26$ min, **ee = 99%**. The diastereomeric ratio was determined by ¹H NMR dr > 20:1.

diethyl (3a*R*,4*S*,9c*R*)-5-allyl-4-(nitromethyl)-3a,4,5,9ctetrahydrofuro[2',3':3,4]cyclopenta[1,2-*b*]indole-2,2(3*H*)-dicarboxylate (6c)

6c was obtained as a yellow oil 38.6 mg in 44% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1). **¹H NMR** (500 MHz, CDCl₃) δ 7.72 (d, *J* = 7.8 Hz, 1H), 7.21 (q, *J* = 8.0 Hz, 2H), 7.17 – 7.12 (m, 1H), 6.11 (d, *J* = 6.4 Hz, 1H), 6.06 – 5.93 (m, 1H), 5.25 (d, *J* = 10.3 Hz, 1H), 5.02 (d, *J* = 17.1 Hz, 1H), 4.74 – 4.69 (m, 1H), 4.69 – 4.58 (m, 2H), 4.34 – 4.22 (m, 3H), 4.02 (dd, *J* = 10.1, 3.4 Hz, 1H), 3.70 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.48 (dt, *J* = 10.7, 5.4 Hz, 1H), 3.23 (dq, *J* = 10.7, 7.2 Hz, 1H), 2.81 (dd, *J* = 13.4, 4.5 Hz, 1H), 2.57 (dd, *J* = 13.4, 10.3 Hz, 1H), 1.27 (s, 3H), 0.75 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 169.0, 168.9, 142.2, 142.1, 132.9, 123.3, 122.5, 120.6, 120.1, 119.4, 117.4, 110.1, 86.8, 82.9, 78.4, 62.2, 61.6, 52.6, 46.9, 43.9, 39.7, 14.0, 13.2 ppm. HRMS: [M+H]⁺ calcd. For Chemical Formula: C₂₃H₂₇N₂O₇+443.1813 found 443.1814. [α]_b²⁰ -25.64 (*c* = 0.77 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 210 nm, *t_{major}* = 33.55 min, *t_{minor}* = 12.99 min, **ee = 99%**. The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

D3. Optimization of the reaction conditions

Table S4. Optimization of the reaction conditions^a

Entry	Solvent	Catalys	t (h) ^b	Yield (%) c	ee (%) ^d	dr ^e	
-		t					
1	toluene	3	64	37	73	>20:1	
2	toluene	3a	NR	NR	NR	NR	
3	toluene	3b	68	36	91	>20:1	
4	toluene	3c	64	38	90	>20:1	
5	toluene	3d	70	35	97	>20:1	
6	toluene	3e	72	33	96	>20:1	

[*a*] Unless otherwise specified, all reations were carried out using **1** (0.20 mmol, 1.0 equiv), **7** (0.24 mmol, 1.2 equiv) in solvent (0.6 mL) with **cat.** (20 mol%) and **BA** (20 mol%) at 40 °C. After workup, the mixture was purified by flash chromatography on silica gel to afford **7**'. Compound **7**' were respectively dissolved in redistilled CH_2Cl_2 (0.10 mmol in 1 mL) at 40 °C. *p*-TsOH (1.2 eq) was added, after full conversion of the second step, the residue was purified by flash chromatography on gel to give product **8**. [*b*] For the first step. [*c*] Isolated yield of **8** over two steps. [*d*] Determined by HPLC analyses of isolated compound **8** on chiral stationary phases. [*e*] Determined by ¹H NMR. TMS = trimethylsilyl; TES = triethylsilyl, TBS = *tert*-butyldimethylsilyl.

D4. Synthesis of Polycyclic Indoles via C2-Alkylation Path

General procedure: A glass vial equipped with a magnetic stirring bar was charged with lactols **1** (0.20 mmol, 1.0 equiv), (*E*)-3-(2-nitrovinyl)-1*H*-indole **7** (0.24 mmol, 1.2 equiv), **3d** (0.04 mmol, 0.2 equiv) and BA (0.04 mmol, 0.2 equiv) in toluene (0.6 mL) at 40 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of lactols **1** (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford **7'**. Then, compound **7'** (1.0 equiv) were respectively dissolved in anhydrous CH_2Cl_2 (0.10 mmol in 1.0 mL) at 40 °C, and *p*-TsOH (1.2 equiv) was added to the reaction mixtures. After full conversion of the second step, the reaction mixture was concentrated and the residue and the residue was purified by flash **6** °C, and *p*-TsOH (1.2 equiv) was added to the reaction mixtures. After full conversion of the second step, the reaction mixture was concentrated and the residue and the residue was purified by flash **6** °C, and *p*-TsOH **7** °C, and *p*-TsOH °C, an

8a was obtained as a white solid 28.1 mg in 35% yield for two steps after column chromatography on silica gel (petroleum ether/dichloromethane= 1/3). ¹**H NMR** (500 MHz, CDCl₃) δ 9.00 (s, 1H), 7.41 (d, *J* = 7.9 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 1H), 7.18 (t, *J* = 7.7 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 5.97 (d, *J* = 7.0 Hz, 1H), 4.77 (dd, *J* = 13.1, 5.0 Hz, 1H), 4.35 (dd, *J* = 13.1, 9.5 Hz, 1H), 4.26 – 4.19 (m, 2H), 4.01 (dd, *J* = 9.4, 5.0 Hz, 1H), 3.97 – 3.87 (m, 1H), 3.87 – 3.78 (m, 1H), 3.50 (dd, *J* = 14.0, 6.4 Hz, 1H), 2.80 (dt, *J* = 15.4, 7.7 Hz, 1H), 2.72 (dd, *J* = 13.4, 5.7 Hz, 1H), 1.21 (t, *J* = 7.1 Hz, 3H), 0.99 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 168.6, 168.4, 142.2, 141.0, 122.9, 122.5, 120.3, 119.0, 118.1, 112.7, 87.7, 81.9, 79.4, 62.4, 62.3, 52.5, 43.7, 39.7, 13.9, 13.7 ppm. **HRMS**: [M+H]⁺ *calcd*. For Chemical Formula: $C_{20}H_{23}N_2O_7^+$ 403.1500 found 403.1502. [**α**]_D²⁰ -24.71 (*c* = 0.72 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 220 nm, *t_{major}* = 20.69 min, *t_{minor}* = 17.25 min, **ee** = **97%**. The diastereomeric ratio was determined by ¹H NMR *dr* >**20:1**.(The absolute configuration of compound **8a** is determined by the configuration of compound **17**.)

8b was obtained as a white solid 26.7 mg in 40% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1). ¹**H** NMR (500 MHz, CDCl₃) δ 8.59 (s, 1H), 8.39 (s, 1H), 7.41 (d, *J* = 7.9 Hz, 1H), 7.34 – 7.27 (m, 5H), 7.19 (t, *J* = 5.8 Hz, 2H), 7.12 (td, *J* = 8.2, 4.5 Hz, 1H), 5.66 (d, *J* = 7.4 Hz, 1H), 5.17 – 5.07 (m, 2H), 4.61 (dd, *J* = 13.7, 10.5 Hz, 1H), 4.27 – 4.20 (m, 1H), 3.94 (dq, *J* = 11.3, 7.3 Hz, 1H), 2.48 – 2.37 (m, 1H), 1.79 (q, *J* = 11.3 Hz, 1H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 142.9, 141.5, 140.5, 128.5, 128.1, 126.2, 126.0, 123.3, 122.5, 120.3, 118.7, 116.1, 112.5, 83.9, 79.9, 75.0, 51.6, 37.9, 37.6 ppm. **HRMS**: [M+H]⁺ *calcd.* For Chemical Formula: C₂₀H₁₉N₂O₃⁺ 335.1390 found

335.1386. $[\alpha]_D^{20}$ +13.67 (c = 1.8 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i-PrOH = 90/10, 1 mL/min], $\lambda =$ 220 nm, $t_{major} = 10.98$ min, $t_{minor} = 11.72$ min, **ee** >99%. The diastereomeric ratio was determined by ¹H NMR dr = 5:1.

E. Synthetic transformations

E1. Modification of C3 position of Indole Moiety in **4**

General procedure: To a suspension of **4** (1.0 equiv) were respectively dissolved in anhydrous CH_2Cl_2 (0.10 mmol in 1.0 mL) at 25 °C, and then *p*-TsOH (1.0 equiv) was added to the reaction mixtures. After the compound **4** was completely consumed (TLC control), then the **E** was added at the same temperature. After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel(petroleum ether/ethyl acetate = 10:1 to 6:1) to give the product **9**.

diethyl (3aR,4R,10aR)-5-((R)-1,4-dioxo-1,4-diphenylbutan-2-yl)-4-(nitromethyl)-3a,10a-dihydro-4H-furo[3',2':4,5]pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (9a)

9a was obtained as a colorless oil 33.5 mg in 51% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹H NMR (500 MHz, CDCl₃) δ 7.97 (dd, J = 17.4, 7.4 Hz, 4H), 7.62 (d, J = 7.5 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.45 (dd, / = 10.9, 4.2 Hz, 3H), 7.37 (t, / = 7.6 Hz, 2H), 7.20 – 7.12 (m, 2H), 6.40 (d, / = 5.9 Hz, 1H), 5.88 (dd, J = 14.6, 4.0 Hz, 1H), 5.50 (t, J = 6.2 Hz, 1H), 5.42 – 5.34 (m, 1H), 4.27 (ddg, J = 39.7, 10.8, 7.1 Hz, 2H), 4.04 (s, 1H), 3.98 (dd, J = 18.2, 7.2 Hz, 1H), 3.88 (dt, J = 14.3, 7.6 Hz, 1H), 3.44 (dd, J = 18.2, 5.8 Hz, 1H), 3.36 (td, J = 14.2, 6.9 Hz, 1H), 2.98 (dd, J = 14.1, 3.2 Hz, 1H), 2.84 – 2.70 (m, 1H), 2.28 (dd, J = 14.0, 11.3 Hz, 1H), 1.27 (t, J = 5.5 Hz, 3H), 0.45 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 199.4, 198.2, 168.2, 167.4, 136.4, 136.3, 135.9, 133.4, 133.0, 132.1, 131.7, 128.6, 128.6, 128.6, 128.2, 122.5, 121.3, 118.6, 111.3, 106.1, 91.2, 87.2, 73.5, 62.6, 62.1, 48.2, 41.5, 36.9, 32.7, 14.0, 12.8 ppm. HRMS: $[M+H]^+$ calcd. For Chemical Formula: $C_{36}H_{35}N_2O_9^+$ 639.2337 found 639.2334. $[\alpha]_D^{20}$ -131 $(c = 2.16 \text{ in CHCl}_3)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 80/20, 1 mL/min], λ = 220 nm, t_{major} = 30.92 min, t_{minor} = 17.32 min, ee >99%. The diastereometric ratio was determined by ¹H NMR *dr* >20:1.(The absolute configuration of compound 9a is derived from the the X-ray data of 5n.)

diethyl (3aR,4R,10aR)-5-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-(nitromethyl)-3a,10a-dihydro-4H-furo[3',2':4,5]pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (9b)

9b was obtained as a brown syrup 31.3 mg in 56% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹H NMR (500 MHz,

CDCl₃) δ 8.13 (d, *J* = 7.4 Hz, 2H), 7.84 – 7.72 (m, 2H), 7.64 (d, *J* = 8.5 Hz, 2H), 7.28 – 7.19 (m, 3H), 6.65 (d, *J* = 5.9 Hz, 1H), 5.07 (dd, *J* = 14.8, 11.3 Hz, 1H), 4.82 – 4.74 (m, 1H), 4.64 (dd, *J* = 14.9, 3.8 Hz, 1H), 4.27 (ddq, *J* = 39.6, 10.8, 7.1 Hz, 2H), 4.17 – 4.03 (m, 1H), 3.67 – 3.59 (m, 1H), 3.12 (dq, *J* = 10.6, 7.2 Hz, 1H), 2.85 (dd, *J* = 14.2, 4.0 Hz, 1H), 2.38 (dd, *J* = 14.2, 11.1 Hz, 1H), 1.26 (s, 3H), 0.69 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 185.7, 184.8, 167.8, 167.4, 141.7, 140.9, 134.5, 134.3, 133.7, 132.2, 132.1, 132.0, 131.4, 127.1, 126.1, 123.1, 122.3, 119.2, 111.7, 101.8, 92.0, 87.6, 73.4, 62.7, 62.4, 48.3, 38.9, 32.9, 14.0, 13.1 ppm. HRMS: [M+H]⁺ calcd. For Chemical Formula: C₃₀H₂₇N₂O₉⁺ 559.1711 found 559.1709. The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

BF3 Et2O NO₂ CH₂Cl₂, E ō EtOOC COOEt EtOOC COOEt 9 5a 0 0 CF₃ Е NO₂ Е NO₂ 13 12 ċ ċ COOEt COOEt EtOOĆ EtOOĆ 9c 9d

E2. Modification of C3 position of Indole Moiety in 5a

General procedure: To a suspension of **5a** (1.0 equiv) were respectively dissolved in anhydrous CH_2Cl_2 (0.10 mmol in 1.0 mL) at 0 °C, and $BF_3 Et_2O$ (1.0 equiv) was added to the reaction mixtures, then the **E** was added at the same temperature. After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1 to 6:1) to give the product **9**.

diethyl (3aR,4R,10aR)-4-(nitromethyl)-5-(2,2,2-trifluoroacetyl)-3a,10a-dihydro-4H-furo[3',2':4,5]pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (9c)

9c was obtained as a colorless oil 26.4 mg in 53% yield for one steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 4.7 Hz, 1H), 7.74 – 7.67 (m, 1H), 7.35 (dd, *J* = 6.0, 3.0 Hz, 2H), 6.58 (d, *J* = 6.2 Hz, 1H), 6.07 (dd, *J* = 15.6, 3.7 Hz, 1H), 5.08 (dd, *J* = 15.5, 11.6 Hz, 1H), 4.59 – 4.49 (m, 1H), 4.38 – 4.22 (m, 2H), 4.18 – 4.06 (m, 1H), 3.75 – 3.63 (m, 1H), 3.37 – 3.21 (m, 1H), 2.89 (dd, *J* = 14.4, 3.9 Hz, 1H), 2.43 (dd, *J* = 14.2, 11.3 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H), 0.70 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 175.8, 167.7, 166.9, 151.9, 132.1, 128.3, 124.5, 124.3, 121.3, 118.0, 115.7, 112.2, 105.9, 92.5, 91.7, 87.9, 71.4, 62.9, 62.6, 48.0, 39.2, 32.7, 14.0, 13.1 ppm. HRMS: [M+H]⁺ calcd. For Chemical Formula: $C_{22}H_{22}F_3N_2O_8^+$ 499.1323 found 499.1322. [α]_D²⁰ +45.56 (*c* = 0.9 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

9d was obtained as a colorless oil 33.1 mg in 75% yield for one steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 7.1 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.35 – 7.27 (m, 2H), 6.54 (d, *J* = 6.1 Hz, 1H), 6.30 (dd, *J* = 15.6, 4.0 Hz, 1H), 5.00 (dd, *J* = 15.6, 11.7 Hz, 1H), 4.46 (ddd, *J* = 11.9, 8.3, 4.0 Hz, 1H), 4.35 – 4.21 (m, 2H), 4.04 (ddd, *J* = 10.9, 9.7, 6.0 Hz, 1H), 3.67 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.25 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.87 (dd, *J* = 14.2, 4.3 Hz, 1H), 2.68 (s, 3H), 2.38 (dt, *J* = 19.2, 9.6 Hz, 1H), 1.28 (t, *J* = 6.6 Hz, 3H), 0.72 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 194.5, 167.7, 167.2, 146.2, 132.0, 130.2, 123.3, 123.0, 120.7, 112.1, 110.0,

92.3, 87.8, 72.1, 62.8, 62.4, 48.1, 38.5, 32.7, 31.2, 14.0, 13.1 ppm. **HRMS**: $[M+H]^+$ *calcd*. For Chemical Formula: $C_{22}H_{25}N_2O_8^+$ 445.1605 found 445.1600. $[\alpha]_D^{20}$ +56.95 (*c* = 1.08 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

E3. Useful Transformations of Product 5a

General procedure: To a suspension of **5a** (41.0 mg, 0.10 mmol, 1.0 equiv), NiCl₂6H₂O (28.5 mg, 0.12 mmol, 1.2 equiv.)) in 1.0 mL MeOH was carefully added NaBH₄ (45.6 mg, 1.20 mmol, 12.0 equiv.) and stirred at 0 °C for 1 h. The mixture was then quenched with sat. NH₄Cl and extracted with CH₂Cl₂ (3×5 mL). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated to give a yellow oil. Subsequently, the crude intermediate was dissolved in a solution of aldehyde (0.30 mmol, 3.0 equiv) in CH₂Cl₂, followed by adding TFA (17.0 mg, 0.15 mmol, 1.5 equiv, TFA = trifluoroacetic acid). The mixture was stirred for 12 h at room temperature. The solution was quenched with sat. NaHCO₃ and extracted with CH₂Cl₂ (3×5 mL). The combined organic phases were dried over MgSO₄ and concentrated to give a white oil. the crude intermediate was dissolved in a solution of aldehyde (6.30 mmol, 3.0 equiv) in CH₂Cl₂, followed by adding TFA (17.0 mg, 0.15 mmol, 1.5 equiv, TFA = trifluoroacetic acid). The mixture was stirred for 12 h at room temperature. The solution was quenched with sat. NaHCO₃ and extracted with CH₂Cl₂ (3×5 mL). The combined organic phases were dried over MgSO₄ and concentrated to give a white oil. the crude intermediate was dissolved in a solution of di-*tert*-butyl dicarbonate (65.5 mg, 0.30 mmol, 3.0 equiv) in CH₂Cl₂, followed by adding Et₃N (3.0 mg, 0.03mmol, 0.3 equiv, Et₃N = triethylamine). After filtered and concentrated, the residue was purified by flash column chromatography to yield **15** as an brown syrup.

2-(tert-butyl) 5,5-diethyl (1S,3aR,3bR,6aR)-1-ethyl-3,3a,3b,6a-tetrahydrobenzo[b]furo[2,3e]pyrido[3,4,5-gh]pyrrolizine-2,5,5(1H,4H)-tricarboxylate (15a)

15a was obtained as a colorless oil 20.5 mg in 41% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1). ¹**H** NMR (500 MHz, CDCl₃) δ 7.47 (dd, *J* = 6.9, 1.6 Hz, 1H), 7.44 – 7.41 (m, 1H), 7.09 (dq, *J* = 7.2, 5.8 Hz, 2H), 6.69 (d, *J* = 4.7 Hz, 1H), 5.10 (dd, *J* = 7.8, 4.1 Hz, 1H), 4.30 – 4.17 (m, 2H), 4.05 (dd, *J* = 12.8, 7.7 Hz, 1H), 3.84 – 3.73 (m, 1H), 3.65 (dd, *J* = 12.8, 7.1 Hz, 1H), 3.57 – 3.45 (m, 2H), 3.23 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.30 (ddd, *J* = 21.7, 13.9, 9.0 Hz, 2H), 2.07 – 1.98 (m, 1H), 1.87 – 1.74 (m, 1H), 1.49 (s, 9H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.92 (t, *J* = 7.4 Hz, 3H), 0.86 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C** NMR (125 MHz, CDCl₃) δ 168.5, 166.5, 155.7, 143.5, 134.3, 131.5, 120.9, 120.3, 118.6, 112.5, 109.4, 95.3, 89.0, 79.8, 62.4, 61.8, 54.0, 53.8, 42.7, 31.8, 31.6, 30.2, 28.5, 14.0, 13.4, 10.0 ppm. HRMS: [M+H]⁺ calcd. For Chemical Formula: C₂₈H₃₇N₂O₇⁺ 513.2595 found 513.2597. [α]_D²⁰ -68.68 (*c* = 1.43 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

2-(*tert*-butyl) 5,5-diethyl (1*S*,3a*R*,3b*R*,6a*R*)-1-phenyl-3,3a,3b,6a-tetrahydrobenzo[*b*]furo[2,3e]pyrido[3,4,5-*gh*]pyrrolizine-2,5,5(1*H*,4*H*)-tricarboxylate (15b)

15b was obtained as a colorless oil 25.2 mg in 46% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (dd, *J* = 15.5, 7.8 Hz, 2H), 7.39 (d, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 7.6 Hz, 2H), 7.15 (t, *J* = 7.3 Hz, 1H), 7.11 – 7.02 (m, 2H), 6.73 (d, *J* = 4.7 Hz, 1H), 6.06 (s, 1H), 4.44 (s, 1H), 4.25 (dddd, *J* = 25.0, 10.7, 7.1, 3.6 Hz, 2H), 3.88 – 3.79 (m, 1H), 3.70 – 3.62 (m, 2H), 3.53 (tt, *J* = 13.9, 5.2 Hz, 1H), 3.06 (dq, *J* = 14.7, 7.2 Hz, 1H), 2.47 (dd, *J* = 13.9, 6.8 Hz, 1H), 2.32 (dd, *J* = 13.9, 10.4 Hz, 1H), 1.29 – 1.24 (m, 11H), 0.87 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (125)

MHz, CDCl₃) δ 168.4, 166.6, 156.1,145.1, 142.9, 134.5, 130.6, 128.3, 126.3, 125.9, 121.1, 120.3, 118.4, 112.5, 108.9, 95.5, 88.9, 80.3, 62.4, 61.8, 57.1, 53.2, 43.9, 32.6, 31.5, 28.2, 14.0, 13.4 ppm. **HRMS**: [M+H]⁺ *calcd*. For Chemical Formula: C₃₂H₃₇N₂O₇⁺ 561.2595 found 561.2591. [α]_D²⁰ -33.52 (*c* = 1.26 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

2-(*tert*-butyl) 5,5-diethyl (1S,3aR,3bR,6aS)-1-(pyridin-4-yl)-3,3a,3b,6a-tetrahydrobenzo[*b*]furo[2,3e]pyrido[3,4,5-*gh*]pyrrolizine-2,5,5(1*H*,4*H*)-tricarboxylate (15c)

15c was obtained as a colorless oil 26.4 mg in 47% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1). ¹H NMR (500 MHz, CDCl₃) δ 8.50 – 8.43 (m, 2H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.31 (d, *J* = 6.0 Hz, 2H), 7.07 (dtd, *J* = 14.9, 7.8, 1.1 Hz, 2H), 6.76 (d, *J* = 4.8 Hz, 1H), 5.88 (s, 1H), 4.64 (s, 1H), 4.30 – 4.19 (m, 2H), 3.89 (ddt, *J* = 10.8, 7.9, 5.4 Hz, 1H), 3.69 (dd, *J* = 15.9, 8.2 Hz, 1H), 3.58 – 3.45 (m, 2H), 2.87 (dq, *J* = 10.6, 7.1 Hz, 1H), 2.59 (dd, *J* = 14.0, 5.8 Hz, 1H), 2.28 (dd, *J* = 14.0, 10.9 Hz, 1H), 1.25 (dd, *J* = 8.2, 6.0 Hz, 12H), 0.86 (d, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 168.1, 166.6, 156.0, 149.8, 142.9, 134.0, 129.8, 121.4, 120.6, 120.5, 118.1, 112.6, 110.0, 95.6, 88.8, 81.0, 62.5, 61.8, 57.1, 52.6, 45.0, 32.7, 31.4, 28.1, 14.0, 13.4 ppm. HRMS: [M+H]⁺ calcd. For Chemical Formula: C₃₁H₃₆N₃O₇⁺ 562.2548 found 562.2549. [α]_D²⁰ -48.03 (*c* = 1.66 in CHCl₃). The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.

E4. Synthesis of Spiro-fused 2-Azido Indoline 17 via Radical-mediated

dearomatization reaction

1) **3** (20 mol %), BA (20 mol %), toluene, 25 °C 2) Ce(NH₄)₂(NO₂)₆, NaN₃, MeCN, 0 °C

General procedure: A glass vial equipped with a magnetic stirring bar was charged with lactols **1** (0.20 mmol, 1.0 equiv), *tert-butyl (E)*-3-(2-nitrovinyl)-*1H*-indole-1-carboxylate **Boc-7** (0.24 mmol, 1.2 equiv), **3** (0.04 mmol, 0.2 equiv) and C_6H_5COOH (0.04 mmol, 0.2 equiv) in toluene (0.6 mL) at 25 °C. The resulting reaction mixture was kept under vigorous stirring until the consumption of lactols **1** (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to afford **16**. To a suspension of **16** (52.2 mg, 0.10 mmol), NaN₃ (9.4 mg, 0.15 mmol NaN₃ = sodium azide) in MeCN (2.0 mL) was slowly added a solution of ceric ammonium nitrate (0.08 M in acetonitrile) (3.75 mL, 0.30 mmol) under N₂ at 0 °C. Upon stirring at 0 °C for 3 h, the reaction mixture was quenched with water, extracted with ethyl acetate, washed with water, dried over MgSO₄, filtered, concentrated, and was separated by C-18 column (MeCN/H₂O = 70/30, t_R = 52 min) to give **17** as white oil (15.0 mg, 28% yield).

17 was obtained as a colorless oil 15.0 mg in 28% yield for two steps after separated by C-18 column (MeCN/H₂O = 70/30, t_R = 52 min). ¹**H NMR** (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 6.37 (s, 1H), 6.01 (d,

J = 5.8 Hz, 1H), 5.07 – 4.91 (m, 1H), 4.48 (d, *J* = 14.0 Hz, 1H), 4.38 (s, 1H), 4.32 – 4.23 (m, 3H), 3.73 – 3.59 (m, 1H), 3.54 – 3.35 (m, 1H), 2.80 (dd, *J* = 13.6, 9.8 Hz, 1H), 2.75 – 2.65 (m, 1H), 1.61 (s, 9H), 1.40 – 1.27 (m, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 168.9, 167.2, 132.1, 123.8, 123.1, 116.3, 110.1, 87.2, 83.4, 80.2, 72.3,62.7, 62.5, 45.1, 43.8, 33.1, 28.1, 14.0, 14.0 ppm. HRMS: [M+H]⁺ *calcd*. For Chemical Formula: Chemical Formula: C₂₅H₃₁N₅NaO₁₀⁺ 584.1963 found 584.1967. [α]_D²⁰ +74.10 (*c* = 2.58 in CHCl₃). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 75/25, 1 mL/min], λ = 220 nm, *t_{major}* = 5.50 min, *t_{minor}* = 5.88 min, **ee** >99%. The diastereomeric ratio was determined by ¹H NMR *dr* >20:1.
F. NMR spectra and HPLC traces

The ¹H NMR spectrum of 5a (500 MHz, CDCl₃)

The HPLC of racemic 5a

The HPLC of chiral 5a

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	26.493	20851	0.076	BB
2	31.840	27576719	99.924	BB
12		27597570	100.000	6

The ¹H NMR spectrum of 5b (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5b (125 MHz, CDCl₃)

The HPLC of racemic 5b

1 23.280 5410963 48.620	BB
2 39.700 5718064 51.380	BB
11129027 100.000	

The HPLC of chiral 5b

No.	RT	Area	Area %	BC
1 2	22.407 39.187	28815336 16614	99.942 0.058	BB BB
		28831950	100.000	

The ¹H NMR spectrum of 5c (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5c (125 MHz, CDCl₃)

The HPLC of racemic 5c

Chrom Type: Fixed WL Chromatogram, 220 nm

The HPLC of chiral 5c

Chrom Type: Fixed WL Chromatogram, 220 nm

7713829

100.000

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	14.113	2312	0.056	BB
2	23.733	4149201	99.944	BB
		4151513	100.000	

The ¹H NMR spectrum of 5d (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5d (125 MHz, CDCl₃)

The HPLC of racemic 5d

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	16.840	11011523	52.143	BB
2	36.700	10106446	47.857	BB
		21117969	100.000	

The HPLC of chiral 5d

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	17.107	1668	0.024	BB
2	37.080	6916974	99.976	BB
		6918642	100.000	

The ¹H NMR spectrum of 5e (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5e (125 MHz, CDCl₃)

The HPLC of racemic 5e

The HPLC of chiral 5e

Chrom Type: Fixed WL Chromatogram, 220 nm

No.	RT	Area	Area %	BC
1	12.660	31506	0.669	BB
2	24.027	4677388	99.331	BB
		4708894	100.000	

The ¹³C NMR spectrum of 5f (125 MHz, CDCl₃)

The HPLC of racemic 5f

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	12.047 30.573	3632692 3625124	50.052 49.948	BB BB
		7257816	100.000	

The HPLC of chiral 5f

Chrom Type: Fixed WL Chromatogram, 220 nm

No.	RT	Area	Area %	BC
1	12.147	18548	0.301	BB
2	29.873	6150489	99.699	BB
		6169037	100.000	

The ¹H NMR spectrum of 5g (500 MHz, CDCl₃)

The HPLC of racemic 5g

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

BC	Area %	Area	RT	No.
BE	49.383	9156122	11.353	1
BE	50.617	9384793	35.793	2
	100.000	18540915		

The HPLC of chiral 5g

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	11.447	7296	0.040	BB
2	35.600	18104908	99.960	BB
		18112204	100.000	

The ¹³C NMR spectrum of 5h (125 MHz, CDCl₃)

The HPLC of racemic 5h

Chrom Type: Fixed WL Chromatogram, 220 nm

BC BB

BB

Calculation Method: AREA%				
No.	RT	Area	Area %	
1	9.660	2915205	51.862	
0	24 752	0705000	10 100	

2	34.753	2705929	48.138	
		5621134	100.000	

The HPLC of chiral 5h

No.	RT	Area	Area %	BC
1 2	9.233 34.420	2316 4802458	0.048 99.952	BB BB
		4804774	100.000	

The ¹H NMR spectrum of 5i (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5i (125 MHz, CDCl₃)

The HPLC of racemic 5i

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	11.293 38.540	1727798 1858675	48.175 51.825	BB BB
-		3586473	100.000	

The HPLC of chiral 5i

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	11.447	135032	3.853	BB
2	37.720	3369849	96.147	BB
		3504881	100.000	

The ¹³C NMR spectrum of 5j (125 MHz, CDCl₃)

The HPLC of racemic 5j

Chrom Type: Fixed WL Chromatogram, 220 nm

The HPLC of chiral 5j

No.	RT	Area	Area %	BC
1 2	11.687 24.787	12085 5680218	0.212 99.788	BB BB
		5692303	100.000	

The ¹H NMR spectrum of 5k (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 5k (125 MHz, CDCl₃)

The HPLC of racemic 5k

No.	RT	Area	Area %	BC
1 2	10.607 12.293	7029852 7210163	49.367 50.633	BB BB
		14240015	100.000	

The HPLC of chiral 5k

No.	RT	Area	Area %	BC
1	10.653	17002046	99.547	BB
2	12.387	77372	0.453	BB
		17079418	100.000	

The ¹H NMR spectrum of 5l (500 MHz, CDCl₃)

The HPLC of racemic 51

2678328

100.000

The HPLC of chiral 51

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	10.900	5088984	99.916	BB
2	12.347	4278	0.084	BB
20		5093262	100.000	

The ¹³C NMR spectrum of 5m (125 MHz, CDCl₃)

The HPLC of racemic 5m

Chrom Type: Fixed WL Chromatogram, 220 nm 1.0 NO₂ 0.8 8.367 Absorbance (AU) 0.6 rac-5m 0.4 0.2 0.0 <u>.....</u> 1 8.5 6.0 6.5 7.0 7.5 8.0 9.0 Retention Time (min) Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	6.987	2500390	49.754	BB
2	8.367	2525164	50.246	BB
		5025554	100.000	

The HPLC of chiral 5m

Chrom Type: Fixed WL Chromatogram, 220 nm

No.	RT	Area	Area %	BC
1	6.993	8684474	98.823	BB
2	8.367	103405	1.177	BB
		8787879	100.000	

The ¹³C NMR spectrum of 5n (125 MHz, CDCl₃)

The HPLC of racemic 5n

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	24.533 40.280	1125836 1123935	50.042 49.958	BB BB
		2249771	100.000	

The HPLC of chiral 5n

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	24.200 39.260	13833 1091351	1.252 98.748	BB BB
		1105184	100.000	

The ¹H NMR spectrum of 6a (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 6a (125 MHz, CDCl₃)

The HPLC of racemic 6a

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	17.807 40.280	5430122 5449323	49.912 50.088	BB BB
		10879445	100.000	

The HPLC of chiral 6a

Chrom Type: Fixed WL Chromatogram, 220 nm

No.	RT	Area	Area %	BC
1 2	18.867 41.687	52802 9544140	0.550 99.450	BB BB
		9596942	100.000	

The ¹³C NMR spectrum of 6b (125 MHz, CDCl₃)

The HPLC of racemic 6b

NO.	RT	Area	Area 🗧	BC
1	24.153	4821764	50.032	BB
2	41.927	4815626	49.968	BB
		9637390	100.000	

The HPLC of chiral 6b

No.	RT	Area	Area %	BC
1 2	24.260 41.920	32727 5651557	0.576 99.424	BB BB
		5684284	100.000	

The ¹³C NMR spectrum of 6c (125 MHz, CDCl₃)

The HPLC of racemic 6c

Chrom Type: Fixed WL Chromatogram, 230 nm

No.	RT	Area	Area %	BC
1	12.973	774570	50.238	BB
2	33.933	767225	49.762	BB
		1541795	100.000	

The HPLC of chiral 6c

Chrom Type: Fixed WL Chromatogram, 230 nm EtOOC COOEt 0.14 -0.12 NO 1509765, 33.547 0.10 Absorbance (AU) 0.08 0.06 6c Λ 0.04 0.02 0.00 ահառևառևառևառևառևառ ЧT т ΠĽ հոսհո " ч т Ψ 22 24 30 32 14 16 18 26 28 34 36 38 12 20 Retention Time (min)

No.	RT	Area	Area %	BC
1	12.987	6282	0.414	BB
2	33.547	1509765	99.586	BB
		1516047	100.000	

The ¹H NMR spectrum of 8a (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 8a (125 MHz, CDCl₃)

The HPLC of racemic 8a

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	17.473 20.953	465811 481067	49.194 50.806	BB BB
		946878	100.000	

The HPLC of chiral 8a

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1 2	17.247 20.693	5845 398651	1.445 98.555	BB BB
-		404496	100.000	

The ¹H NMR spectrum of 8b (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 8b (125 MHz, CDCl₃)

The HPLC of racemic 8b

 No.
 RT
 Area
 Area %
 BC

 1
 10.987
 906260
 48.167
 BV

 2
 11.720
 975235
 51.833
 VB

 1881495
 100.000
 100.000
 100.000

The HPLC of chiral 8b

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	10.953	2447372	100.000	BB
		2447372	100.000	

The ¹³C NMR spectrum of 9a (125 MHz, CDCl₃)

The HPLC of racemic 9a

No.	RT	Area	Area %	BC
1	17.313	8649027	50.612	BB
2	31.233	8439877	49.388	BB
		17088904	100.000	

The HPLC of chiral 9a

Chrom Type: Fixed WL Chromatogram, 220 nm Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %	BC
1	17.320	43508	0.226	BB
2	30.920	19190608	99.774	BB
		19234116	100.000	

The ¹³C NMR spectrum of 9b (125 MHz, CDCl₃)

The ¹H NMR spectrum of 9b (500 MHz, CDCl₃)

The ¹H NMR spectrum of 9c (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 9c (125 MHz, CDCl₃)

The ¹H NMR spectrum of 9d (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 9d (125 MHz, CDCl₃)

The ¹³C NMR spectrum of 15a (125 MHz, CDCl₃)

The ¹H NMR spectrum of 15b (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 15b (125 MHz, CDCl₃)

The ¹H NMR spectrum of 15c (500 MHz, CDCl₃)

The ¹H NMR spectrum of 17 (500 MHz, CDCl₃)

The ¹³C NMR spectrum of 17 (125 MHz, CDCl₃)

The HPLC of racemic 17

BC No. RT Area Area % 5.500 12 497751 49.239 BV 5.880 50.761 513141 VB 1010892 100.000

The HPLC of chiral 17

G. Single crystal X-Ray diffraction data

[CCDC 1877710-1877711 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.].

Absolute configuration of **5n** - CCDC 1877710

		Br NO ₂ Cbz ^{/N} 5n	
Bond precision:	C-C = 0.0060 A	Wavelength=0.710	73
Cell:	a=9.2282(14) alpha=90 120 K	b=9.1743(14) c=12 beta=109.724(3) gamm	.829(2) a=90
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 1022.4(3) P 21 P 2yb C22 H20 Br N3 04 C22 H20 Br N3 04 470.31 1.528 2 2.045 480.0 479.63 11,11,16 4674[2483]	Reported 1022.4(3) P 1 21 1 P 2yb 4 C22 H20 Br N3 O 470.31 1.528 2 2.045 480.0 11,11,16 4202 0.570,0.746	4
Correction metho AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.570 Tmax=0	.746
Data completeness= 1.69/0.90 Theta(max) = 27.485			
R(reflections) =	0.0326(3248)	<pre>wR2(reflections) = 0.073</pre>	0(4202)
S = 0.839	Npar=	289	

Absolute configuration of **6a** - 1877711

Bond precision:	C-C = 0.0057 A	Wave	length=0.71073	
Cell:	a=9.6264(13) alpha=90	b=10.8580(14) beta=113.736(2	c=11.2163(14) gamma=90	
Temperature:	120 K			
	Calculated	Rep	orted	
Volume	1073.2(2)	107	3.2(2)	
Space group	P 21	P 1	21 1	
Hall group	P 2yb	P 2	yb	
Moiety formula	C21 H24 N2 O7	C21	H24 N2 O7	
Sum formula	C21 H24 N2 O7	C21	H24 N2 O7	
Mr	416.42	416	.42	
Dx,g cm-3	1.289	1.2	89	
Z	2	2		
Mu (mm-1)	0.097	0.0	97	
F000	440.0	440	. 0	
F000'	440.25			
h,k,lmax	12,14,14	12,	14,14	
Nref	4985[2624]	464	6	
Tmin, Tmax		0.6	81,0.746	
Tmin'				
Correction method= # Reported T Limits: Tmin=0.681 Tmax=0.746 AbsCorr = MULTI-SCAN				
Data completeness= 1.77/0.93 Theta(max)= 27.607				
R(reflections) =	0.0496(3074)	wR2(reflect	ions)= 0.1161(4646)	
S = 1.057	Npar=	= 304		

H. Absolute configuration of 15b

The NOE correlation of H-1/H-4a and the NOESY correlation of H-4a/H-6a incated they are in same side. The NOESY correlations of H-5/H-6b incated that they are in another side. The absolute configurations of C-1, C-2, C-3 was same as **5n**. Thus, the absolute configurations of compound **5n** was determined as 1R, 2R, 3R, 5S repectively.

The NOE analysisof compound 15b

The gCOSY analysisof compound 15b

I. Absolute configuration of 17

The large coupiling contant (5.9 Hz) between H-1 and H-2 and NOESY correlation of H-1 and H-3 incated that they are in same side. While the NOESY correlations of H-6, H-4 and H-7 incated that H-6 are in another side. Thus, the relative configurations of compound **17** was determined as 1^*R , 2^*R , 3^*R , 5^*S , 6^*S . The absolute configuration of C-2 could be determined as R by the X-ray data of **5n**. So the absolute configurations of compound **17** was determined as 1R, 2R, 3R, 5S, 6S repectively.

The gCOSY analysisof compound 17

Key COSY correlations of 17

