Asymmetric Construction of Polycyclic Indole derivatives with Different Ring Connectivity by Organocatalysis Triggered Two-step Sequence

Chao-Chao Xie, ${ }^{\text {a }}$ Rui Tan, ${ }^{\text {b }}$ and Yan-Kai Liu*,a,
${ }^{a}$ Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
${ }^{\mathrm{b}}$ School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
${ }^{\text {c Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for }}$ Marine Science and Technology, Qingdao 266003, China.

Email: liuyankai@ouc.edu.cn

Supporting Information

Contents

A. General information 3
B. The synthesis of the substrate 1 5
C. Optimization of the reaction conditions 6
C1. Optimization of the Michael Addition 6
C2. Optimization of the second step 8
D. Scope of the reaction 9
D1. Synthesis of product $\mathbf{5 a}$ 9
D2. Synthesis of Polycyclic Indoles via C3-Alkylation Path 19
D3. Optimization of the reaction conditions 22
D4. Synthesis of Polycyclic Indoles via C2-Alkylation Path 23
E. Synthetic transformations 26
E1. Modification of C3 position of Indole Moiety in 4 26
E2. Modification of C3 position of Indole Moiety in 5a 29
E3. Useful Transformations of Product 5a 32
E4. Synthesis of Spiro-fused 2-Azido Indoline 17 via Radical-mediated dearomatization reaction 35
F. NMR spectra and HPLC traces 37
G. Single crystal X-Ray diffraction data 85
H. Absolute configuration of 15b 87
I. Absolute configuration of $\mathbf{1 7}$ 90

A. General information

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 500 MHz for ${ }^{1} \mathrm{H}$ and at 125 MHz for ${ }^{13} \mathrm{C}$. The chemical shifts (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are given in ppm relative to residual signals of the solvents $\left(\mathrm{CDCl}_{3}\right.$ at $7.26 \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR, $77.16 \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR.). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d , doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the Waters Q-Tof Ultima Global. X-ray data were obtained from Zhongke chemical technology service center. Optical rotations are reported as follows: $[\alpha]_{\mathrm{D}}{ }^{20}$ (c in g per 100 mL , solvent: CHCl_{3}).

Note: NMR signals containing common solvent contaminants were list. $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3} at $1.56 \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR; ethyl acetate in CDCl_{3} at 2.05 (s), 4.12 (q), 1.26 (t) ppm ${ }^{1} \mathrm{H}$ NMR; dichloromethane in CDCl_{3} at 5.30 (s) ppm ${ }^{1} \mathrm{H}$ NMR; acetone in CDCl_{3} at 2.17 (s) ppm ${ }^{1} \mathrm{H}$ NMR; diethyl ether in CDCl_{3} at 1.21 (t), 3.48 (q), ppm ${ }^{1} \mathrm{H}$ NMR

All the reactions were set up under air and using freshly distilled solvents, without any precautions to exclude moisture, unless otherwise noted open air chemistry on the benchtop. Chromatographic purification of products was accomplished using force-flow chromatography (FC) on silica gel (300-400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck pre-coated TLC plates (silica gel 60 GF254, 0.25 mm) were used, using UV light as the visualizing agent and an phosphomolybdic acid or basic aqueous potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ as stain developing solutions. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

HPLC analyses on chiral stationary phase were performed on an Hitachi Chromaste. Daicel Chiralpak IA, IB,orIC columns with n-hexane $/ i-\mathrm{PrOH}$ as the eluent were used. HPLC traces were compared to racemic samples which prepared by mixture of two enantiomeric final products obtained using (S) and (R) catalyst.

Commercial reagents and solvents were purchased from Sigma Aldrich, Fluka, and Alfa Aesar used as received, without further purification. (E)-2-(2-nitrovinyl)-1H-indoles (2a) were prepared from $1 H$-indole-2-carbaldehydes ${ }^{1}$. The tert-butyl (E)-3-(2-nitrovinyl)-1H-indole-1-carboxylate were prepared from tert-butyl 3-formyl-1H-indole-1-carboxylate ${ }^{2}$.

1. Enders, D.; Wang, C.; Yang, X.; Raabe, G., One-pot organocatalytic asymmetric synthesis of $1 H$-pyrrolo[1,2a]indol- $3(2 H)$-ones via a Michael-hemiaminalizationoxidation sequence. Synlett 2011, (4), 469-472.
2. Feng, H.-X.; Tan, R.; Liu, Y.-K., An Efficient One-Pot Approach to the Construction of Chiral Nitrogen-Containing Heterocycles under Mild Conditions. Org. Lett. 2015, 17 (15), 3794-3797.

B. The synthesis of the substrate 1

General procedure: A glass vial equipped with a magnetic stirring bar was charged with diethyl ketomalonate ($8.0 \mathrm{mmol}, 1.0$ equiv) and tricyclohexyl phosphine ($12.0 \mathrm{mmol}, 1.5$ equiv) in THF ($15.0 \mathrm{~mL}, \mathrm{THF}=$ tetrahydrofuran) at $25^{\circ} \mathrm{C}$. After the reaction was completed, solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel to provide the product diethyl 2hydroxymalonate. Then the product diethyl 2-hydroxymalonate ($8.0 \mathrm{mmol}, 1.0$ equiv) and acrolein (12.0 mmol, 1.5 equiv) were respectively dissolved in DMF ($12.0 \mathrm{ml}, \mathrm{DMF}=$ N, N-dimethylformamide.) at $25{ }^{\circ} \mathrm{C}$, and then $\mathrm{Et}_{3} \mathrm{~N}$ ($0.16 \mathrm{mmol}, 0.2$ equiv, $\mathrm{Et}_{3} \mathrm{~N}=$ triethylamine) was added to the reaction mixtures at the same temperature. After the reaction was completed, water was added and the aqueous layer was extracted with ethyl acetate twice. The combined organic extracts were washed with brine, dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel to provide the desired product $\mathbf{1}$ (1.04 g, 56\% in 2 steps).

C. Optimization of the reaction conditions

C1. Optimization of the Michael Addition

1) $3(20 \mathrm{~mol} \%)$, acid $(20 \mathrm{~mol} \%)$, solvent, $40^{\circ} \mathrm{C}$
2) p - $\mathrm{TsOH}(1.0 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$

Table S1. Optimization of the Michael Addition ${ }^{a}$

Entry	Solvent	Aci $\mathbf{t ~ (h)}^{b}$	Yield (\%) c	ee (\%) d	$\mathbf{d r}^{e}$	
$\mathbf{1}$	MeOH	A_{1}	20	28	>99	$>20: 1$
$\mathbf{2}$	MeCN	A_{1}	12	42	>99	$>18: 1$
$\mathbf{3}$	tetrahydrofuran	A_{1}	12	50	>99	$>20: 1$
$\mathbf{4}$	CHCl_{3}	$\mathrm{~A}_{1}$	16	49	>99	$>18: 1$
$\mathbf{5}$	toluene	A_{1}	10	70	>99	$>20: 1$
$\mathbf{6}$	toluene	A_{2}	14	62	>99	$>20: 1$
$\mathbf{7}$	toluene	A_{3}	14	54	>99	$>20: 1$
$\mathbf{8}$	toluene	A_{4}	16	49	>99	$>20: 1$

[a] Unless otherwise specified, all reations were carried out using $\mathbf{1}$ ($0.20 \mathrm{mmol}, 1.0$ equiv), 2a (0.24 mmol , 1.2 equiv) in solvent (0.6 mL) with 3 ($20 \mathrm{~mol} \%$) and acid ($20 \mathrm{~mol} \%$) at $40^{\circ} \mathrm{C}$. After workup, the mixture was purified by flash chromatography on silica gel to afford 4 . Compound 4 were respectively dissolved in redistilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{mmol}$ in 1 mL$)$ at $25^{\circ} \mathrm{C} . p-\mathrm{TsOH}(1.0 \mathrm{eq})$ was added, After full conversion of the second step, the residue was purified by flash chromatography on gel to give product $\mathbf{5 a}$. [b] For the first step. [c] Isolated yield of $\mathbf{5 a}$ over two steps. [d] Determined by HPLC analyses of isolated compound $\mathbf{5 a}$ on chiral stationary phases. [e] Determined by ${ }^{1} \mathrm{H}$ NMR. $\mathrm{MeOH}=$ methanol; $\mathrm{MeCN}=$ acetonitrile; $\mathrm{CHCl}_{3}=$ chloroform; p -$\mathrm{TsOH}=p$-Toluenesulfonic acid.

Optimization of the catalyst

1) cat. ($20 \mathrm{~mol} \%$), $\mathbf{A}_{1}(20 \mathrm{~mol} \%)$, toluene, $40^{\circ} \mathrm{C}$
2) $p-\mathrm{TsOH}(1.0 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$

Table S2. Optimization of the catalyst ${ }^{a}$

Entry	Catalyst	Aci \mathbf{d} $\mathbf{t}(\mathbf{h})^{b}$	Yield (\%) c	ee (\%) d	$\mathbf{d r}^{e}$	
$\mathbf{1}$	$\mathbf{3 a}$	$\mathrm{~A}_{1}$	24	32	-18	$>20: 1$
$\mathbf{2}$	$\mathbf{3 b}$	$\mathrm{~A}_{1}$	12	51	92	$>20: 1$
$\mathbf{3}$	$\mathbf{3}$	$\mathrm{~A}_{1}$	10	71	>99	$>20: 1$
$\mathbf{4}$	$\mathbf{3 c}$	$\mathrm{~A}_{1}$	32	49	95	$>20: 1$
$\mathbf{5}$	$\mathbf{3 d}$	$\mathrm{~A}_{1}$	14	62	>99	$>20: 1$
$\mathbf{6}$	$\mathbf{3 e}$	$\mathrm{~A}_{1}$	16	58	99	$>20: 1$

[a] Unless otherwise specified, all reations were carried out using $\mathbf{1}$ ($0.20 \mathrm{mmol}, 1.0$ equiv), 2a (0.24 mmol , 1.2 equiv) in solvent (0.6 mL) with cat. ($20 \mathrm{~mol} \%$) and acid ($20 \mathrm{~mol} \%$) at $40{ }^{\circ} \mathrm{C}$. After workup, the mixture was purified by flash chromatography on silica gel to afford 4 . Compound 4 were respectively dissolved in redistilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{mmol}$ in 1 mL$)$ at $25^{\circ} \mathrm{C}$. $p-\mathrm{TsOH}(1.0 \mathrm{eq})$ was added, After full conversion of the second step, the residue was purified by flash chromatography on gel to give product $\mathbf{5 a}$. [b] For the first step. [c] Isolated yield of $\mathbf{5 a}$ over two steps. [d] Determined by HPLC analyses of isolated compound $\mathbf{5 a}$ on chiral stationary phases. TMS = trimethylsilyl; TES = triethylsilyl, TBS = tert-butyldimethylsilyl.

C2. Optimization of the second step

Table S3. Optimization of the second step ${ }^{a}$

Entry	Acid	Tem (${ }^{\circ} \mathbf{C}$)	$\mathbf{t}(\mathbf{h})$	Yield (\%) $^{\boldsymbol{b}}$	ee (\%) $^{\boldsymbol{c}}$
1	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{eq})$	0	4	60	>99
2	trifluoroacetic acid (1.0 eq)	0	3	43	>99
3	tiphenylphosphate (1.0 eq)	25	12	40	>99
4	methanesulfonic acid (1.0 eq)	25	0.5	29	>99
5	p-TsOH (1.0 eq)	0	24	64	>99
6	p-TsOH (0.4 eq)	25	12	65	>99
7	p-TsOH (0.8 eq)	25	6	69	>99
8	p-TsOH (1.0 eq)	25	2	76	>99

[a] Unless otherwise specified, all reations were carried out using 4 ($0.05 \mathrm{mmol}, 1.0$ equiv) in redistilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ with acid at corresponding temperature. After workup, the mixture was purified by flash chromatography on silica gel to afford 5a. [b] Isolated yield of 5a. [c] Determined by HPLC analyses of isolated compound 5a on chiral stationary phases. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}=$ boron trifluoride etherate

D. Scope of the reaction

D1. Synthesis of product 5a

General procedure: A glass vial equipped with a magnetic stirring bar was charged with lactols $\mathbf{1}$ ($0.20 \mathrm{mmol}, 1.0$ equiv), (E)-2-(2-nitrovinyl)-1 H -indole $\mathbf{2}$ ($0.24 \mathrm{mmol}, 1.2$ equiv), $3(0.04 \mathrm{mmol}, 0.2$ equiv $\mathrm{TMS}=$ trimethylsilyl $)$ and $\mathrm{BA}(0.04 \mathrm{mmol}, 0.2$ equiv $\mathrm{BA}=$ benzoic acid) in toluene (0.6 mL) at $40^{\circ} \mathrm{C}$. The resulting reaction mixture was kept under vigorous stirring until the consumption of lactols $\mathbf{1}$ (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 4. Then, compound 4 (1.0 equiv) were respectively dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.10 mmol in 1.0 mL) at $25^{\circ} \mathrm{C}$, and $p-\mathrm{TsOH}$ (1.0 equiv) was added to the reaction mixtures. After full conversion of the second step, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=9: 1$ to 7:1) to give product 5 .

diethyl (3aR,4R,10aR)-4-(nitromethyl)-3a,10a-dihydro-4Hfuro[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (5a)

5a was obtained as a colorless oil 56.3 mg in 70% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H})$, $6.59(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.06(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=14.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=$ $14.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.93$ (dddd, $J=11.0$, $5.3,4.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=14.1,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.35(\mathrm{dd}, J=14.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.25(\mathrm{~m}, 3 \mathrm{H}), 0.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0,167.7,139.4,133.5,132.0,122.1,121.0,120.9,111.3,94.5,92.0$, 87.7, 74.1, 62.8, 62.4, 48.8, 36.8, 32.8, 14.2, 13.2 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{+} 403.1500$ found 403.1503. $[\alpha]_{\mathrm{D}}{ }^{20}-53.19\left(c=1.28\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i$\operatorname{PrOH}=80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=31.84 \mathrm{~min}, t_{\text {minor }}=26.49 \mathrm{~min}$, ee $>\mathbf{9 9 \%} \%$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r}>\mathbf{2 0 : 1}$.

diethyl (3aR,4R,10aR)-6-bromo-4-(nitromethyl)-3a,10a-dihydro-4H-furo[$3^{\prime}, 2$ ':4,5]pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (5b)
$\mathbf{5 b}$ was obtained as a colorless oil 49.1 mg in 51% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=11 / 1) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{qd}, J=14.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.34-4.16(\mathrm{~m}, 3 \mathrm{H}), 3.99-3.88(\mathrm{~m}$, $1 \mathrm{H}), 3.58(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dq}, J=10.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=14.1,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37(\mathrm{dd}, J=14.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,167.4,139.9,133.7,132.1,123.7,122.8,114.1,110.3,94.8$,
92.1, 87.6, 73.6, 62.7, 62.3, 48.5, 36.7, 32.6, 14.0, 13.1 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{7}{ }^{+} 481.0605$ found 481.0610. [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}-39.65$ ($c=2.04$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n hexane $/ i-\mathrm{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=22.41 \mathrm{~min}, t_{\text {minor }}=39.19 \mathrm{~min}$, ee $\mathbf{> 9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

diethyl (3aR,4S,10aR)-7-methoxy-4-(nitromethyl)-3a,10a-dihydro-4Hfuro $\left[3^{\prime}, 22^{\prime}: 4,5\right]$ pyrrolo 1,2 -a]indole-2,2(3H)-dicarboxylate (5c)

5c was obtained as a colorless oil 50.2 mg in 58% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=11 / 1) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.01(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{ddd}, J=20.0,14.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.37-4.14(\mathrm{~m}, 3 \mathrm{H})$, $4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dq}, J=10.7,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88(\mathrm{dd}, J=14.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=14.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.74(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,167.6,154.9,139.9,134.0$, 127.0, 111.8, 111.8, 102.9, 94.1, 92.0, 87.5, 73.9, 62.6, 62.2, 55.8, 48.5, 36.8, 32.6, 14.0, 13.2 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{+} 433.1605$ found 433.1600. $[\alpha]_{\mathrm{D}}{ }^{20}-32.58$ ($c=$ 0.83 in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=23.73 \mathrm{~min}$, $t_{\text {minor }}=14.11 \mathrm{~min}$, ee $>\mathbf{9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r}$ >20:1.

diethyl (3aR,4R,10aR)-7-chloro-4-(nitromethyl)-3a,10a-dihydro-4H-furo[$3^{\prime}, 2$ ':4,5]pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (5d)

5d was obtained as a colorless oil 53.3 mg in 61% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=13 / 1) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ (s, 1H), 5.04 (ddd, $J=20.2,14.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-4.14(\mathrm{~m}, 3 \mathrm{H}), 4.00-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.58$ $(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dq}, J=10.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=14.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (dd, $J=14.1,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7,167.4,140.8,134.3,130.2,126.6,122.2,120.2,112.1,94.1,91.9$, 87.6, 73.7, 62.7, 62.3, 48.6, 36.7, 32.5, 14.0, 13.1 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{7}{ }^{+} 437.1110$ found 437.1112. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}-57.38\left(c=0.68\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [nhexane $/ i-\operatorname{PrOH}=80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=37.08 \mathrm{~min}, t_{\text {minor }}=17.11 \mathrm{~min}$, ee $>\mathbf{9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

diethyl (3aR,4R,10aR)-7-bromo-4-(nitromethyl)-3a,10a-dihydro-4Hfuro $\left[3^{\prime}, 2^{\prime}: 4,5\right]$ pyrrolo 1,2 -a]indole-2,2(3H)-dicarboxylate (5e)

5e was obtained as a colorless oil 54.8 mg in 57% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=13 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ $(\mathrm{d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{qd}, J=14.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.34-4.16(\mathrm{~m}, 3 \mathrm{H}), 3.99-$ $3.88(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dq}, J=10.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=$ 14.1, 4.4 Hz, 1H), $2.37(\mathrm{dd}, J=14.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,167.4,140.6,134.9,130.5,124.6,123.3$, 114.2, 112.5, 94.0, $91.9,87.6,73.7,62.7,62.3,48.6,36.7,32.5,14.0,13.1$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{7}{ }^{+} 481.0605$ found 481.0604. $[\alpha]_{\mathrm{D}}{ }^{20}-73.38$ (c = 1.22 in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=24.03 \mathrm{~min}, t_{\text {minor }}=12.66$ $\min , \mathbf{e e}=\mathbf{9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \mathbf{> 2 0 : 1}$.

diethyl (3aR,4R,10aR)-8-methoxy-4-(nitromethyl)-3a,10a-dihydro-
4H-furo[3',2':4,5]pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (5f)
5f was obtained as a colorless oil 51.9 mg in 61% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=8 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.02 (s, 1H), 5.05 (ddd, $J=19.9,14.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.16(\mathrm{~m}, 3 \mathrm{H})$, $3.97-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dq}, J=10.7,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89(\mathrm{dd}, J=14.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=14.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,156.2,137.8,132.5,127.3$, $121.4,111.1,94.4,94.3,91.8,87.5,74.0,62.6,62.2,55.8,48.7,36.6,32.6,14.0,13.1 \mathrm{ppm}$. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{+} 433.1605$ found 433.1601. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}-48.63$ ($c=2.23$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=29.87 \mathrm{~min}, t_{\text {minor }}=$ $\mathbf{1 2 . 1 5} \mathbf{m i n}$, ee $\mathbf{> 9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r}>\mathbf{2 0 : 1}$.

diethyl (3aR,4R,10aR)-8-bromo-4-(nitromethyl)-3a,10a-dihydro-4Hfuro[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ pyrrolo $[1,2-a]$ indole-2,2(3H)-dicarboxylate (5 g)
$\mathbf{5 g}$ was obtained as a colorless oil 49.1 mg in 51% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=12 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{qd}, J=14.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.15(\mathrm{~m}, 3 \mathrm{H}), 3.99-3.87(\mathrm{~m}$, $1 \mathrm{H}), 3.58(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dq}, J=10.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.1,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36(\mathrm{dd}, J=14.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.7,167.4,140.0,132.4,132.1,124.1,122.0,115.3,114.1,94.6$, 91.8, 87.6, 73.8, 62.7, 62.4, 48.6, 36.6, 32.4, 14.0, 13.1 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{7}{ }^{+} 481.0605$ found 481.0606. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}-68.72\left(c=1.82\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The
enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n hexane $/ i-\mathrm{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=35.60 \mathrm{~min}, t_{\text {minor }}=11.45 \mathrm{~min}$, ee $\mathbf{> 9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

diethyl (3aR,4R,10aR)-4-(nitromethyl)-8-phenyl-3a,10a-dihydro-4H furo[3',2':4,5]pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (5h)

5h was obtained as a colorless oil 49.9 mg in 53% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=8 / 1) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H})$, 5.09 (ddd, $J=20.0,14.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $4.38-4.17$ (m, 3H), $4.00-3.91$ (m, 1H), 3.54 (dq, $J=$ $10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=14.1,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.61(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,167.6,141.8,140.0$, 135.4, 132.6, 132.4, 128.7, 127.3, 126.8, 121.0, 120.5, 109.6, 94.3, 91.9, 87.5, 73.9, 62.6, 62.2, 48.6, 36.7, 32.6, 14.0, 13.0 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{+} 479.1813$ found 479.1810. $[\alpha]_{\mathrm{D}}{ }^{20}-64.67\left(c=0.48\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\operatorname{PrOH}=60 / 40$, $1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=34.42 \mathrm{~min}, t_{\text {minor }}=9.23 \mathrm{~min}$, ee $>\mathbf{9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

diethyl (3aR,4R,10aR)-8-(furan-3-yl)-4-(nitromethyl)-3a,10a-dihydro-4H-furo[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (5i)
$5 \mathbf{i}$ was obtained as a colorless oil 43.3 mg in 46% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=6 / 1) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=6.6,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=6.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.08$ (ddd, $J=$
$20.0,14.5,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.39-4.18(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{dt}, J=11.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dq}, J=10.6$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{dd}, J=14.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,167.6,164.0,143.5,139.7$, 138.1, 132.4, 132.4, 127.1, 126.5, 121.1, 119.4, 113.7, 109.1, 108.2, 94.5, 91.9, 87.5, 73.9, 62.6, 62.3, 48.6, 36.7, 32.5, 14.0, 13.0 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{+} 469.1605$ found 469.1605. $[\alpha]_{\mathrm{D}}{ }^{20}-51.75\left(c=0.72\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=37.72 \mathrm{~min}, t_{\text {minor }}=11.45 \mathrm{~min}, \mathbf{e e}=\mathbf{9 3 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r}>\mathbf{2 0}: \mathbf{1}$.

diethyl (3aR,4S,10aR)-5-bromo-4-(nitromethyl)-3a,10a-dihydro-4H-furo[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (5j)
$\mathbf{5 j}$ was obtained as a colorless oil 39.4 mg in 41% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=12 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dt}, J=21.9,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.49$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.56(\mathrm{dd}, J=15.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (dd, $J=15.2,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-$ $4.14(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{dt}, J=10.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.89$ (dd, $J=14.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=14.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,167.4,135.1,132.0,131.6,123.2$, 121.6, 119.0, 111.3, 91.9, 87.6, 83.9, 72.2, 62.7, 62.3, 48.7, 36.8, 32.4, 14.0, 13.1 ppm . HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{7}{ }^{+} 481.0605$ found 481.0601. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}-12.00(c=1.25$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=24.79 \mathrm{~min}, t_{\text {minor }}=$ $11.69 \min$, ee $\mathbf{> 9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0 : 1}$.

(4aR,5R,11aR)-5-(nitromethyl)-3,4,4a,11a-tetrahydro-2H,5H-pyrano[3',2':4,5]pyrrolo[1,2-a]indole (5k)

5k was obtained as a white solid 34.5 mg in 65% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=15 / 1) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.10$ $(\mathrm{m}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=13.6,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=11.6,8.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (ddd, $J=12.9,8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.72(\operatorname{tdd}, J=12.3,5.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.60$ (ddd, $J=13.7,9.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6,132.8,132.5,123.0$, 120.9, 120.4, 110.3, 95.8, 84.6, 74.2, 62.8, 41.3, 38.4, 22.7, 21.2 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 273.1234$ found 273.1240. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}-125.31$ ($c=1.34$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n hexane $/ i-\mathrm{PrOH}=70 / 30,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=10.65 \mathrm{~min}, t_{\text {minor }}=12.39 \mathrm{~min}$, ee $\mathbf{> 9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \mathbf{> 2 0 : 1}$.

(2S,3aR,4R,10aR)-4-(nitromethyl)-2-phenyl-2,3,3a,10a-tetrahydro-4H-furo[$3^{\prime}, 2$ ':4,5]pyrrolo[1,2-a]indole (5I)

51 was obtained as a white solid 48.8 mg in 73% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{dd}, J=13.2,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.08$ (dd, $J=6.2,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=10.6,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.90(\mathrm{dd}, J=13.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=13.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dt}$, $J=12.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53 (ddd, $J=12.5,7.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=22.8,11.2 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.6,138.0,132.9,132.4,128.5,127.8,125.5,122.0$, 120.6, 120.5, 110.8, 94.9, 90.8, 84.9, 74.0, 50.5, 36.8, 36.0 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 335.1390$ found 335.1392. [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}-196.17$ ($c=1.78$ in CHCl_{3}). The
enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n hexane $/ i-\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=10.90 \mathrm{~min}, t_{\text {minor }}=12.35 \mathrm{~min}$, ee $>\mathbf{9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$

(5aR,12R,12aR)-12-(nitromethyl)-5a,12a-dihydro-12H,13H-chromeno[3',2':4,5]pyrrolo[1,2-a]indole (5m)
$\mathbf{5 m}$ was obtained as a colorless oil 40.2 mg in 63% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=12 / 1) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{dd}, J=8.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.15$ (ddd, $J=22.7,11.4,4.1 \mathrm{~Hz}, 4 \mathrm{H}$), $6.99-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.18 (s, 1H), $4.52-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{ddd}, \mathrm{J}=16.6,13.9,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78-3.69$ (m, 1H), 3.23 (dd, $J=16.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=16.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.6,140.7,132.9,132.4,128.5,128.4,122.8,122.2,122.0,121.2,120.9$, 117.9, 110.5, $96.0,83.4,75.6,43.2,37.5,24.4$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$ 321.1234 found 321.1235. $[\alpha]_{\mathrm{D}}{ }^{20}-168.34$ ($c=3.84$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column $[n$-hexane $/ i-\operatorname{PrOH}=$ $80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=6.99 \mathrm{~min}, t_{\text {minor }}=8.37 \mathrm{~min}$, ee $=\mathbf{9 8 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{= 5} \mathbf{5}$. .

benzyl (3aR,4R,10aR)-8-bromo-4-(nitromethyl)-2,3,3a,10a-
tetrahydropyrrolo $\left[3{ }^{\prime}, 2^{\prime}: 4,5\right]$ pyrrolo $[1,2$-a]indole-1(4H)-carboxylate (5n)
5n was obtained as a white solid 48.4 mg in 62% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, 7.39 - $7.34(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J$ $=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=13.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=13.7$,
$10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=17.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{dt}, J=$ $13.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dt}, J=20.9,10.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.7$, 139.3, 136.1, 132.8, 131.4, 128.7, 128.4, 128.2, 123.5, 121.7, 115.6, 114.9, 95.2, 74.5, 73.5, 67.9, 48.3, 47.4, 37.1, 25.2 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrN}_{3} \mathrm{O}_{4}{ }^{+} 470.0710$ found 470.0713. $[\alpha]_{\mathrm{D}}{ }^{20}+61.68\left(c=0.89\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=$ $220 \mathrm{~nm}, t_{\text {major }}=39.26 \mathrm{~min}, t_{\text {minor }}=24.2 \mathrm{~min}$, $\mathbf{e e}=\mathbf{9 8 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r}=\mathbf{7 : 1}$.

D2. Synthesis of Polycyclic Indoles via C3-Alkylation Path

General procedure: A glass vial equipped with a magnetic stirring bar was charged with lactols $\mathbf{1}$ ($0.20 \mathrm{mmol}, 1.0$ equiv), (E)-2-(2-nitrovinyl)- $1 H$-indole $\mathbf{2}^{\prime}$ ($0.24 \mathrm{mmol}, 1.2$ equiv), 3 ($0.04 \mathrm{mmol}, 0.2$ equiv) and $\mathrm{BA}\left(0.04 \mathrm{mmol}, 0.2\right.$ equiv) in toluene (0.6 mL) at $40^{\circ} \mathrm{C}$. The resulting reaction mixture was kept under vigorous stirring until the consumption of lactols 1 (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 4^{\prime}. Then, compound 4^{\prime} (1.0 equiv) were respectively dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{mmol}$ in 1 mL$)$ at $0{ }^{\circ} \mathrm{C}$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.2$ equiv) was added to the reaction mixtures. After full conversion of the second step, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=6: 1$ to $3: 1$) to give product 6 .

diethyl (3aR,4S,9cR)-5-methyl-4-(nitromethyl)-3a,4,5,9c-
tetrahydrofuro $\left[2^{\prime}, 3^{\prime}: 3,4\right]$ cyclopenta $[1,2-b]$ indole-2,2(3H)-dicarboxylate (6a)
6a was obtained as a white solid 35.2 mg in 42% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=4 / 1) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=6.4$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (dd, $J=13.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (dd, $J=12.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.18(\mathrm{~m}$, 2H), 4.08-3.97(m, 1H), 3.73-3.66(m, 1H), 3.65 (s, 3H), 3.49-3.42 (m, 1H), 3.25 (dq, J $=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=13.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=13.3,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,168.9,142.7$, 142.6, 123.1, 122.3, 120.4, 120.0, 118.9, 109.7, 93.4, 86.8, 83.0, 78.5, 62.2, 61.62, 52.5, 43.7, 39.7, 30.7, 14.0, 13.2 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{+}$ 417.1656 found 417.1660 . $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}-39.33$ ($c=1.27$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i$ - $\mathrm{PrOH}=80 / 20$, $1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=41.69 \mathrm{~min}, t_{\text {minor }}=18.87 \mathrm{~min}, \mathbf{e e}=\mathbf{9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

diethyl (3aR,4S,9cR)-5-benzyl-4-(nitromethyl)-3a,4,5,9c-
tetrahydrofuro[$\left.2^{\prime}, 3^{\prime}: 3,4\right]$ cyclopenta[1,2-b]indole-2,2(3H)-dicarboxylate (6b)
6b was obtained as a colorless oil 42.1 mg in 42% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=4 / 1) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.77-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.11(\mathrm{dd}, J=6.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{dd}, J=13.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (dd, $J=9.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=13.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.87(\mathrm{~m}$, $1 \mathrm{H}), 3.71(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dt}, J=10.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}$, 1H), 2.78 (dd, $J=13.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,142.5,142.3,136.5,129.1,128.1$,
$126.3,123.3,122.6,120.7,120.1,110.2,86.8,83.0,78.2,62.2,61.6,52.6,48.1,44.0,39.7$, 14.0, 13.3 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{+} 493.1969$ found 493.1964. $[\alpha]_{\mathrm{D}}{ }^{20}-45.74\left(c=0.86\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=$ $220 \mathrm{~nm}, t_{\text {major }}=41.92 \mathrm{~min}, t_{\text {minor }}=24.26 \mathrm{~min}, \mathbf{e e}=\mathbf{9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0 : 1}$.

diethyl (3aR,4S,9cR)-5-allyl-4-(nitromethyl)-3a,4,5,9c-
tetrahydrofuro $\left[2^{\prime}, 3^{\prime}: 3,4\right]$ cyclopenta $\left.11,2-b\right]$ indole-2,2(3H)-dicarboxylate (6c)
$\mathbf{6 c}$ was obtained as a yellow oil 38.6 mg in 44% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.06-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.69$ $(\mathrm{m}, 1 \mathrm{H}), 4.69-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{dd}, J=10.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dq}, J$ $=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dt}, J=10.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dq}, J=10.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J$ $=13.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=13.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.0,168.9,142.2,142.1,132.9,123.3,122.5,120.6,120.1$, $119.4,117.4,110.1,86.8,82.9,78.4,62.2,61.6,52.6,46.9,43.9,39.7,14.0,13.2 \mathrm{ppm}$. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{+} 443.1813$ found 443.1814 . $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}$ -25.64 ($c=0.77$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=210 \mathrm{~nm}, t_{\text {major }}=$ $33.55 \mathrm{~min}, t_{\text {minor }}=12.99 \mathrm{~min}, \mathbf{e e}=\mathbf{9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \mathbf{> 2 0 : 1 .}$

D3. Optimization of the reaction conditions

1) cat. (20 mol \%), $\mathrm{BA}(20 \mathrm{~mol} \%)$, toluene, $40^{\circ} \mathrm{C}$
2) $p-\mathrm{TsOH}(1.2 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$

Table S4. Optimization of the reaction conditions ${ }^{a}$

Entry	Solvent	Catalys	$\mathbf{t ~ (h)}^{b}$	Yield (\%) c	ee (\%) d	$\mathbf{d r}^{e}$
1	toluene	$\mathbf{3}$	64	37	73	$>20: 1$
2	toluene	$\mathbf{3 a}$	NR	NR	NR	NR
3	toluene	$\mathbf{3 b}$	68	36	91	$>20: 1$
4	toluene	$\mathbf{3 c}$	64	38	90	$>20: 1$
5	toluene	$\mathbf{3 d}$	70	35	97	$>20: 1$
6	toluene	3e	72	33	96	$>20: 1$

[a] Unless otherwise specified, all reations were carried out using 1 ($0.20 \mathrm{mmol}, 1.0$ equiv), 7 ($0.24 \mathrm{mmol}, 1.2$ equiv) in solvent (0.6 mL) with cat. ($20 \mathrm{~mol} \%$) and $\mathbf{B A}(20 \mathrm{~mol} \%)$ at $40^{\circ} \mathrm{C}$. After workup, the mixture was purified by flash chromatography on silica gel to afford 7'. Compound 7' were respectively dissolved in redistilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{mmol}$ in 1 mL$)$ at $40^{\circ} \mathrm{C} . p-\mathrm{TsOH}(1.2 \mathrm{eq})$ was added, after full conversion of the second step, the residue was purified by flash chromatography on gel to give product 8. [b] For the first step. [c] Isolated yield of $\mathbf{8}$ over two steps. [d] Determined by HPLC analyses of isolated compound $\mathbf{8}$ on chiral stationary phases. [e] Determined by ${ }^{1} \mathrm{H}$ NMR. TMS $=$ trimethylsilyl; TES $=$ triethylsilyl, $\mathrm{TBS}=$ tertbutyldimethylsilyl.

D4. Synthesis of Polycyclic Indoles via C2-Alkylation Path

General procedure: A glass vial equipped with a magnetic stirring bar was charged with lactols 1 ($0.20 \mathrm{mmol}, 1.0$ equiv), (E)-3-(2-nitrovinyl)- $1 H$-indole 7 ($0.24 \mathrm{mmol}, 1.2$ equiv), 3d ($0.04 \mathrm{mmol}, 0.2$ equiv) and BA ($0.04 \mathrm{mmol}, 0.2$ equiv) in toluene (0.6 mL) at $40^{\circ} \mathrm{C}$. The resulting reaction mixture was kept under vigorous stirring until the consumption of lactols 1 (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$) to afford 7'. Then, compound 7' (1.0 equiv) were respectively dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{mmol}$ in 1.0 mL$)$ at $40{ }^{\circ} \mathrm{C}$, and p - TsOH (1.2 equiv) was added to the reaction mixtures. After full conversion of the second step, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=8: 1$ to $4: 1$) to give product 8.

diethyl (3aR,4S,9bR)-4-(nitromethyl)-3a,4,9,9b-
tetrahydrofuro[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ cyclopenta[1,2-b]indole-2,2(3H)-dicarboxylate (8a)
8a was obtained as a white solid 28.1 mg in 35% yield for two steps after column chromatography on silica gel (petroleum ether/dichloromethane= $1 / 3$). ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=13.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (dd, $J=13.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=9.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.87(\mathrm{~m}$, 1 H), $3.87-3.78$ (m, 1H), $3.50(\mathrm{dd}, J=14.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.80(\mathrm{dt}, J=15.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=13.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,168.4,142.2,141.0,122.9,122.5,120.3,119.0,118.1,112.7,87.7$, 81.9, 79.4, 62.4, 62.3, 52.5, 43.7, 39.7, 13.9, 13.7 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{+} 403.1500$ found 403.1502. $[\alpha]_{\mathrm{D}}{ }^{20}-24.71$ ($c=0.72$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n hexane $/ i-\mathrm{PrOH}=80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=20.69 \mathrm{~min}, t_{\text {minor }}=17.25 \mathrm{~min}$, ee $=\mathbf{9 7 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.(The absolute configuration of compound $\mathbf{8 a}$ is determined by the configuration of compound 17.)

(2S,3aR,4S,9bR)-4-(nitromethyl)-2-phenyl-2,3,3a,4,9,9bhexahydrofuro[$3^{\prime}, 2$ ':4,5]cyclopenta[1,2-b]indole (8b)
$\mathbf{8 b}$ was obtained as a white solid 26.7 mg in 40% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=8 / 1$). ${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{t}, J=$ $5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{td}, J=8.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.61$ (dd, $J=13.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.27-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{dq}, ~ J=11.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.37$ $(\mathrm{m}, 1 \mathrm{H}), 1.79(\mathrm{q}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,141.5,140.5$, 128.5, 128.1, 126.2, 126.0, 123.3, 122.5, 120.3, 118.7, 116.1, 112.5, 83.9, 79.9, 75.0, 51.6, 37.9, 37.6 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 335.1390$ found
335.1386. $[\alpha]_{\mathrm{D}}{ }^{20}+13.67\left(c=1.8\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane $/ i-\mathrm{PrOH}=90 / 10,1 \mathrm{~mL} / \mathrm{min}], \lambda=$ $220 \mathrm{~nm}, t_{\text {major }}=10.98 \mathrm{~min}, t_{\text {minor }}=11.72 \mathrm{~min}$, ee $\mathbf{> 9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{r} \mathbf{5 :} \mathbf{1}$.

E. Synthetic transformations

E1. Modification of C3 position of Indole Moiety in 4

General procedure: To a suspension of 4 (1.0 equiv) were respectively dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{mmol}$ in 1.0 mL$)$ at $25^{\circ} \mathrm{C}$, and then p - $\mathrm{TsOH}(1.0$ equiv) was added to the reaction mixtures. After the compound 4 was completely consumed (TLC control), then the \mathbf{E} was added at the same temperature. After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel(petroleum ether/ethyl acetate $=10: 1$ to $6: 1$) to give the product 9 .

diethyl (3aR,4R,10aR)-5-((R)-1,4-dioxo-1,4-diphenylbutan-2-yl)-4-(nitromethyl)-3a,10a-dihydro-4H-furo[3',2':4,5]pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (9a)

9a was obtained as a colorless oil 33.5 mg in 51% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{dd}, J=17.4,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45$ (dd, $J=10.9,4.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.88(\mathrm{dd}, J=14.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.34(\mathrm{~m}, 1 \mathrm{H}), 4.27$ (ddq, J $=39.7,10.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=18.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dt}, J=14.3,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=18.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{td}, J=14.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=14.1,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.84-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=14.0,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.45$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 199.4, 198.2, 168.2, 167.4, 136.4, 136.3, 135.9, 133.4, 133.0, 132.1, 131.7, 128.6, 128.6, 128.6, 128.2, 122.5, 121.3, 118.6, 111.3, 106.1, $91.2,87.2,73.5,62.6,62.1,48.2,41.5,36.9,32.7,14.0,12.8$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{9}{ }^{+} 639.2337$ found 639.2334. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}-131$ ($\mathrm{c}=2.16$ in CHCl_{3}). The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane $/ i-\mathrm{PrOH}=80 / 20,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=30.92 \mathrm{~min}$, $t_{\text {minor }}=17.32 \mathrm{~min}$, ee $\mathbf{> 9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H} \mathrm{NMR} \boldsymbol{d r}$ >20:1. (The absolute configuration of compound 9 a is derived from the the X-ray data of

5n.)

diethyl (3aR,4R,10aR)-5-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-(nitromethyl)-3a,10a-dihydro-4H-furo[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (9b)

9b was obtained as a brown syrup 31.3 mg in 56% yield for two steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.19$ $(\mathrm{m}, 3 \mathrm{H}), 6.65(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=14.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.64$ (dd, $J=14.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{ddq}, J=39.6,10.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.67-$ $3.59(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dq}, J=10.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=$ $14.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.69(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $185.7,184.8,167.8,167.4,141.7,140.9,134.5,134.3,133.7,132.2,132.1,132.0,131.4$, $127.1,126.1,123.1,122.3,119.2,111.7,101.8,92.0,87.6,73.4,62.7,62.4,48.3,38.9,32.9$, 14.0, 13.1 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{9}{ }^{+} 559.1711$ found 559.1709. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0 : 1}$.

E2. Modification of C3 position of Indole Moiety in 5a

General procedure: To a suspension of $\mathbf{5 a}$ (1.0 equiv) were respectively dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.10 \mathrm{mmol}$ in 1.0 mL$)$ at $0{ }^{\circ} \mathrm{C}$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.0$ equiv) was added to the reaction mixtures, then the \mathbf{E} was added at the same temperature. After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=10: 1$ to $6: 1$) to give the product 9 .

diethyl (3aR,4R,10aR)-4-(nitromethyl)-5-(2,2,2-trifluoroacetyl)-3a,10a-dihydro-
4H-furo $3^{\prime}, 2^{\prime}: 4,5$]pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (9c)
9c was obtained as a colorless oil 26.4 mg in 53% yield for one steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=15.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=15.5,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.49$ $(\mathrm{m}, 1 \mathrm{H}), 4.38-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.21(\mathrm{~m}, 1 \mathrm{H})$, $2.89(\mathrm{dd}, J=14.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=14.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.70$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.8,167.7,166.9,151.9,132.1$, $128.3,124.5,124.3,121.3,118.0,115.7,112.2,105.9,92.5,91.7,87.9,71.4,62.9,62.6$, 48.0, 39.2, 32.7, 14.0, 13.1 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{+} 499.1323$ found 499.1322. $[\alpha]_{\mathrm{D}}{ }^{20}+45.56\left(c=0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

diethyl (3aR,4R,10aR)-5-acetyl-4-(nitromethyl)-3a,10a-dihydro-4H-furo[3',2':4,5]pyrrolo[1,2-a]indole-2,2(3H)-dicarboxylate (9d)

9d was obtained as a colorless oil 33.1 mg in 75% yield for one steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=15.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=15.6,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{ddd}, J=11.9$, 8.3, 4.0 Hz, 1H), $4.35-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.04$ (ddd, $J=10.9,9.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.67(\mathrm{dq}, J=10.8$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=14.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.38$ $(\mathrm{dt}, J=19.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.5,167.7,167.2,146.2,132.0,130.2,123.3,123.0,120.7,112.1,110.0$,
92.3, 87.8, $72.1,62.8,62.4,48.1,38.5,32.7,31.2,14.0,13.1 \mathrm{ppm}$. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{+} 445.1605$ found 445.1600 . $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}+56.95$ ($c=1.08$ in CHCl_{3}). The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

E3. Useful Transformations of Product 5a

General procedure: To a suspension of $\mathbf{5 a}\left(41.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($28.5 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.)) in 1.0 mL MeOH was carefully added NaBH_{4} (45.6 mg , $1.20 \mathrm{mmol}, 12.0$ equiv.) and stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated to give a yellow oil. Subsequently, the crude intermediate was dissolved in a solution of aldehyde ($0.30 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by adding TFA ($17.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv, $\mathrm{TFA}=$ trifluoroacetic acid). The mixture was stirred for 12 h at room temperature. The solution was quenched with sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated to give a white oil. the crude intermediate was dissolved in a solution of di-tert-butyl dicarbonate ($65.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by adding $\mathrm{Et}_{3} \mathrm{~N}\left(3.0 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.3\right.$ equiv, $\mathrm{Et}_{3} \mathrm{~N}=$ triethylamine $)$. After filtered and concentrated, the residue was purified by flash column chromatography to yield 15 as an brown syrup.

2-(tert-butyl) 5,5-diethyl (1S,3aR,3bR,6aR)-1-ethyl-3,3a,3b,6a-tetrahydrobenzo[b]furo[2,3-e]pyrido[3,4,5-gh]pyrrolizine-2,5,5(1H,4H)-tricarboxylate (15a)

15a was obtained as a colorless oil 20.5 mg in 41% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=4 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{dd}, J=6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{dq}, J=7.2,5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.69(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=7.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{dd}, J=12.8$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, \mathrm{J}=12.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.23$ (dq, $J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=21.7,13.9,9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.87-$ $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H) ppm. ${ }^{13}$ C NMR (125 MHz, CDCl_{3}) $\delta 168.5,166.5,155.7,143.5,134.3,131.5,120.9$, $120.3,118.6,112.5,109.4,95.3,89.0,79.8,62.4,61.8,54.0,53.8,42.7,31.8,31.6,30.2,28.5$, 14.0, 13.4, 10.0 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{+} 513.2595$ found 513.2597. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}-68.68\left(c=1.43\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

2-(tert-butyl) 5,5-diethyl (1S,3aR,3bR,6aR)-1-phenyl-3,3a,3b,6a-tetrahydrobenzo[b]furo[2,3-e]pyrido[3,4,5-gh]pyrrolizine-2,5,5(1H,4H)-tricarboxylate (15b)

15b was obtained as a colorless oil 25.2 mg in 46% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=4 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{dd}, J=15.5,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H})$, 4.25 (dddd, $J=25.0,10.7,7.1,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.88-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.53$ $(\mathrm{tt}, J=13.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dq}, J=14.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=13.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ $(\mathrm{dd}, J=13.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 11 \mathrm{H}), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (125
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,166.6,156.1,145.1,142.9,134.5,130.6,128.3,126.3,125.9,121.1$, $120.3,118.4,112.5,108.9,95.5,88.9,80.3,62.4,61.8,57.1,53.2,43.9,32.6,31.5,28.2$, 14.0, 13.4 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{+} 561.2595$ found 561.2591. $[\alpha]_{\mathrm{D}}{ }^{20}-33.52\left(c=1.26\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{>} \mathbf{2 0}$: 1.

2-(tert-butyl) 5,5-diethyl (1S,3aR,3bR,6aS)-1-(pyridin-4-yl)-3,3a,3b,6a-tetrahydrobenzo[b]furo[2,3e]pyrido $[3,4,5-g h]$ pyrrolizine-2,5,5(1H,4H)-tricarboxylate (15c)

15c was obtained as a colorless oil 26.4 mg in 47% yield for three steps after column chromatography on silica gel (petroleum ether/ethyl acetate $=2 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.50-8.43(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.07(\mathrm{dtd}, J=14.9,7.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}$, $1 \mathrm{H}), 4.30-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.89$ (ddt, $J=10.8,7.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=15.9,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{dq}, J=10.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=14.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}$, $J=14.0,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{dd}, J=8.2,6.0 \mathrm{~Hz}, 12 \mathrm{H}), 0.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 168.1,166.6,156.0,149.8,142.9,134.0,129.8,121.4,120.6,120.5$, $118.1,112.6,110.0,95.6,88.8,81.0,62.5,61.8,57.1,52.6,45.0,32.7,31.4,28.1,14.0,13.4$ ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{+} 562.2548$ found 562.2549 . $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}-48.03\left(c=1.66\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r}$ >20:1.

E4. Synthesis of Spiro-fused 2-Azido Indoline 17 via Radical-mediated

 dearomatization reaction

1) 3 ($20 \mathrm{~mol} \%$), BA ($20 \mathrm{~mol} \%$), toluene, $25^{\circ} \mathrm{C}$
2) $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{2}\right)_{6}, \mathrm{NaN}_{3}, \mathrm{MeCN}, 0^{\circ} \mathrm{C}$

General procedure: A glass vial equipped with a magnetic stirring bar was charged with lactols 1 ($0.20 \mathrm{mmol}, 1.0$ equiv), tert-butyl (E)-3-(2-nitrovinyl)-1H-indole-1-carboxylate Boc-7 ($0.24 \mathrm{mmol}, 1.2$ equiv), 3 ($0.04 \mathrm{mmol}, 0.2$ equiv) and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(0.04 \mathrm{mmol}, 0.2$ equiv) in toluene (0.6 mL) at $25^{\circ} \mathrm{C}$. The resulting reaction mixture was kept under vigorous stirring until the consumption of lactols $\mathbf{1}$ (monitored by TLC analysis). After completion of the reaction, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to afford 16. To a suspension of $16(52.2 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{NaN}_{3}(9.4 \mathrm{mg}, 0.15 \mathrm{mmol} \mathrm{NaN} 3=$ sodium azide) in MeCN (2.0 mL) was slowly added a solution of ceric ammonium nitrate (0.08 M in acetonitrile) ($3.75 \mathrm{~mL}, 0.30 \mathrm{mmol}$) under N_{2} at $0^{\circ} \mathrm{C}$. Upon stirring at $0^{\circ} \mathrm{C}$ for 3 h, the reaction mixture was quenched with water, extracted with ethyl acetate, washed with water, dried over MgSO_{4}, filtered, concentrated, and was separated by C - 18 column $\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=70 / 30, \mathrm{t}_{\mathrm{R}}=52 \mathrm{~min}\right)$ to give 17 as white oil ($15.0 \mathrm{mg}, 28 \%$ yield $)$.

1'-(tert-butyl) 5,5-diethyl (2S,2'S,3R,3aR,6aR)-2'-azido-3-(nitromethyl)-3a,6a-dihydro-3H-spiro[furo[2,3-6]furan-2,3'-indoline]-1',5,5(4H)-tricarboxylate (17)

17 was obtained as a colorless oil 15.0 mg in 28% yield for two steps after separated by $\mathrm{C}-18$ column $\left(\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=70 / 30, \mathrm{t}_{\mathrm{R}}=52 \mathrm{~min}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H})$, $7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~d}$,
$J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.32-4.23(\mathrm{~m}$, $3 H), 3.73-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=13.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.65(\mathrm{~m}$, 1H), 1.61 (s, 9H), $1.40-1.27(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 168.9,167.2$, 132.1, 123.8, 123.1, 116.3, 110.1, 87.2, 83.4, 80.2, 72.3,62.7, 62.5, 45.1, 43.8, 33.1, 28.1, 14.0, 14.0 ppm. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. For Chemical Formula: Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{NaO}_{10}{ }^{+} 584.1963$ found 584.1967. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}+74.10\left(c=2.58\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [n hexane $/ i-\mathrm{PrOH}=75 / 25,1 \mathrm{~mL} / \mathrm{min}], \lambda=220 \mathrm{~nm}, t_{\text {major }}=5.50 \mathrm{~min}, t_{\text {minor }}=5.88 \mathrm{~min}$, ee $>\mathbf{9 9 \%}$. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{d r} \boldsymbol{> 2 0 : 1}$.

F. NMR spectra and HPLC traces

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The HPLC of racemic 5a

The HPLC of chiral 5a

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	26.493	20851	0.076	BB
2	31.840	27576719	99.924	BB
		27597570	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}\left(500 \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

IUVU

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 b}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The HPLC of racemic 5b

The HPLC of chiral 5b

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA Calculation Method: AREA응

No.	RT	Area	Area \%	BC
1	22.407	28815336	99.942	BB
2	39.187	16614	0.058	BB
		28831950	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 c}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5c

Chrom Type: Fixed WL Chromatogram, 220 nm

Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	13.913	3783904	49.054	BB
2	23.773	3929925	50.946	$B B$
		7713829	100.000	

The HPLC of chiral 5c

Chrom Type: Fixed WL Chromatogram, 220 nm

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $5 \mathrm{~d}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{~d}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5d

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	16.840	11011523	52.143	BB
2	36.700	10106446	47.857	BB
		21117969	100.000	

The HPLC of chiral 5d

Chrom Type: Fixed WL Chromatogram, 220 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 e} \mathbf{(5 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{e}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5e

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	12.440	5133343	48.644	BB
2	23.653	5419633	51.356	BB
		10552976	100.000	

The HPLC of chiral 5e

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	12.660	31506	0.669	BB
2	24.027	4677388	99.331	BB
		4708894	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left.\mathbf{5 f} \mathbf{(5 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\left.\mathbf{5 f} \mathbf{(1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $5 f$

Chrom Type: Fixed WL Chromatogram, 220 nm

The HPLC of chiral $5 f$
Chrom Type: Fixed WL Chromatogram, 220 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 g}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{~g}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5 g

Chrom Type: Fixed WL Chromatogram, 220 nm

Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	11.353	9156122	49.383	BB
2	35.793	9384793	50.617	BB
		18540915	100.000	

The HPLC of chiral 5g

The ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{5 h}\left(500 \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{~h}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5h

The HPLC of chiral 5h

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	9.233	2316	0.048	BB
2	34.420	4802458	99.952	BB
		4804774	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 i}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{i}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5 i

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA웅

No.	RT	Area	Area \%	BC
1	11.293	1727798	48.175	BB
2	38.540	1858675	51.825	BB
	3586473	100.000		

The HPLC of chiral 5 i

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	11.447	135032	3.853	BB
2	37.720	3369849	96.147	BB
		3504881	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 j} \mathbf{(5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 j} \mathbf{(1 2 5 ~ M H z}, \mathrm{CDCl}_{3}$)

The HPLC of racemic $\mathbf{5 j}$

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREAㅇㅇㅇ

No.	RT	Area	Area \%	BC
1	12.187	3713563	53.089	BB
2	26.040	3281403	46.911	BB
		6994966	100.000	

The HPLC of chiral $5 \mathbf{j}$

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $5 \mathrm{k}\left(500 \mathbf{M H z}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{k}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5k

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA응

No.	RT	Area	Area \%	BC
1	10.607	7029852	49.367	BB
2	12.293	7210163	50.633	BB
		14240015	100.000	

The HPLC of chiral 5 k

Chrom Type: Fixed WL Chromatogram, 220 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $51\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $51\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 51

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area $\%$	BC
1	10.920	1298095	48.467	BB
2	12.300	1380233	51.533	BB
		2678328	100.000	

The HPLC of chiral 51

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA응

No.	RT	Area	Area \%	BC
1	10.900	5088984	99.916	BB
2	12.347	4278	0.084	BB
		5093262	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{~m}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{~m}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 5 m

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA

No.	RT	Area	Area \%	BC
1	6.987	2500390	49.754	BB
2	8.367	2525164	50.246	BB

5025554100.000

The HPLC of chiral 5m

Chrom Type: Fixed WL Chromatogram, 220 nm

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $5 \mathrm{n}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $5 \mathrm{n}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic $5 n$

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA응

No.	RT	Area	Area \%	BC
1	24.533	1125836	50.042	BB
2	40.280	1123935	49.958	BB
		2249771	100.000	

The HPLC of chiral 5n
Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA Calculation Method: AREA응

No.	RT	Area	Area \%	BC
1	24.200	13833	1.252	BB
2	39.260	1091351	98.748	BB
		1105184	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 a}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $6 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 6a

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	17.807	5430122	49.912	BB
2	40.280	5449323	50.088	BB
		10879445	100.000	

The HPLC of chiral 6a

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 b} \mathbf{(5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\begin{array}{cc}\text { CARBON_01 } & - \\ \mathrm{XC}-\mathrm{N}-\mathrm{Bn}^{2} & \infty \\ & \infty \\ & 0 \\ & 1\end{array}$
$\stackrel{\sim}{\sim}{ }_{\sim}^{\infty} \stackrel{N}{\sim} \underset{\sim}{N} \stackrel{N}{\sim}$

The HPLC of racemic 6b

The HPLC of chiral 6b

Chrom Type: Fixed WL Chromatogram, 220 nm

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{6 c}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{\mathbf{3}}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 6c

Chrom Type: Fixed WL Chromatogram, 230 nm

Chrom Type: Fixed WL Chromatogram, 230 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	12.973	774570	50.238	BB
2	33.933	767225	49.762	BB
		1541795	100.000	

The HPLC of chiral 6c

Chrom Type: Fixed WL Chromatogram, 230 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $8 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The HPLC of racemic 8a

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area $\%$	BC
1	17.473	465811	49.194	BB
2	20.953	481067	50.806	BB
	946878	100.000		

The HPLC of chiral 8a

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	17.247	5845	1.445	BB
2	20.693	398651	98.555	BB
		404496	100.000	

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{8 b}\left(500 \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $8 \mathrm{~b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 8b

Chrom Type: Fixed WL Chromatogram, 220 nm

The HPLC of chiral 8b

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA응

No.	RT	Area	Area \%	BC
1	10.953	2447372	100.000	BB
		2447372	100.000	

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 a}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $9 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The HPLC of racemic 9 a

The HPLC of chiral 9a

Chrom Type: Fixed WL Chromatogram, 220 nm

The ${ }^{1} \mathrm{H}$ NMR spectrum of $9 \mathrm{~b}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $9 \mathrm{~b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{9 c} \mathbf{(5 0 0 ~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{9 c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 d}\left(500 \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $9 \mathrm{~d}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{1 5 a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $15 \mathrm{a}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{1 5 b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 5 b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{1 5 c} \mathbf{(5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 5 c}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The HPLC of racemic 17

Chrom Type: Fixed WL Chromatogram, 220 nm

Chrom Type: Fixed WL Chromatogram, 220 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%	BC
1	5.500	497751	49.239	BV
2	5.880	513141	50.761	VB
		1010892	100.000	

The HPLC of chiral 17

Chrom Type: Fixed WL Chromatogram, 220 nm

G. Single crystal X-Ray diffraction data

[CCDC 1877710-1877711 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.].

Absolute configuration of 5n-CCDC 1877710

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0060 \mathrm{~A}$	Wavelength=0.71073
Cell:	$a=9.2282$ (14)	$\mathrm{b}=9.1743$ (14) $\mathrm{C}=12.829$ (2)
	alpha=90	beta=109.724(3) gamma $=90$
Temperature:	120 K	
	Calculated	Reported
Volume	1022.4(3)	1022.4(3)
Space group	P 21	P 11211
Hall group	P 2yb	P 2 yb
Moiety formula	C 22 H 20 Br N 3 O 4	C 22 H 20 Br N3 O4
Sum formula	C 22 H 20 Br N3 O4	C 22 H 20 Br N3 O4
Mr	470.31	470.31
Dx,g cm-3	1.528	1.528
Z	2	2
Mu (mm-1)	2.045	2.045
F000	480.0	480.0
F000'	479.63	
h, k, lmax	11,11,16	11,11,16
Nref	4674 [2483]	4202
Tmin, Tmax		0.570,0.746
Tmin'		
Correction method= \# Reported T Limits: Tmin=0.570 Tmax=0.746 AbsCorr = MULTI-SCAN		
Data completene	$s s=1.69 / 0.90$	Theta $(\max)=27.485$
$\mathrm{R}($ reflections $)=$	$0.0326(3248)$	wR2 (reflections) $=0.0730(4202)$
$S=0.839$	Npar=	289

Absolute configuration of 6a-1877711

H. Absolute configuration of $\mathbf{1 5 b}$

The NOE correlation of $\mathrm{H}-1 / \mathrm{H}-4 \mathrm{a}$ and the NOESY correlation of $\mathrm{H}-4 \mathrm{a} / \mathrm{H}-6 \mathrm{a}$ incated they are in same side. The NOESY correlations of H-5/H-6b incated that they are in another side. The absolute configurations of C-1, C-2, C-3 was same as $\mathbf{5 n}$. Thus, the absolute configurations of compound $\mathbf{5 n}$ was determined as $1 R, 2 R, 3 R, 5 S$ repectively.

The NOESY analysisof compound 15b

The NOE analysisof compound 15b

The gCOSY analysisof compound 15b

Key COSY correlations of 15b

I. Absolute configuration of 17

17
The large coupiling contant (5.9 Hz) between $\mathrm{H}-1$ and $\mathrm{H}-2$ and NOESY correlation of $\mathrm{H}-1$ and H-3 incated that they are in same side. While the NOESY correlations of H-6, H-4 and H-7 incated that H-6 are in another side. Thus, the relative configurations of compound 17 was determined as $1^{*} R, 2^{*} R, 3^{*} R, 5^{*} S, 6^{*} S$. The absolute configuration of C-2 could be determined as R by the X-ray data of $\mathbf{5 n}$. So the absolute configurations of compound $\mathbf{1 7}$ was determined as $1 R, 2 R, 3 R, 5 S, 6 S$ repectively.

The NOE analysisof compound 17

The gCOSY analysisof compound 17

Key COSY correlations of $\mathbf{1 7}$

