Supporting Information

Pressure-induced phase transition of 4aminobenzonitrile: the formation and enhancement of N-H···N weak hydrogen bonds

Yuxiang Dai,^{a,b} and Yang Qi*,a,b

^aInstitute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.

^bKey Laboratory for Anisotropy and Texture of Materials, Ministry of Education,

Northeastern University, Shenyang, 110819, China.

*Email: qiyang@imp.neu.edu.cn.

Fig. S1. The Raman spectra of 4-aminobenzonitrile and 4-aminobenzonitrile + silicone oil at 1 atm are same.

Fig. S2. Pawley refinements of the diffraction patterns collected at 1.6 GPa. Solid lines and asterisks represent the simulated and observed profiles, respectively.

Table S1 Lattice Parameters of 4-aminobenzonitrile at 1.6 GPa

symmetry	pressure (GPa)	a (Å)	<i>b</i> (Å)	c (Å)	β (deg)
monoclinic	1.6	6.50(6)	12.30(9)	5.91(1)	107.90(9)

Frequency (cm ⁻¹)	Assignment		
3480	NH ₂ v _{as}		
3373	NH_2v_s		
3070	CH stretching		
3058	CH stretching		
2211	C≡N stretching		
1622	NH ₂ scissoring		
1601	ring C=C stretching		
1519	ring C=C stretching		
1436	ring C=C stretching		
1334	ring C=C stretching		
1314	v _s (ph–N)		
1299	ring CH in-plane bending		
1212	v _s (ph–CN)		
1176	ring CH in-plane bending		
1138	ring CH in-plane bending		
965	ring CH out-plane bending		
841	ring breathing		
819	ring CH out-plane bending		
718	ring CH out-plane def.		
696	ring CCin-plane def.		
650	ring CCin-plane def.		
547	NH ₂ wagging		
481	NH_2 wagging		
418	ring CC in-plane def.		
387	ph-N in-plane bending		

 Table S2 Assignment of the Major Raman Bands of 4-Aminobenzonitrile

Fig. S3. Raman spectra of 4-aminobenzonitrile at 1 atm and the released samples.

Fig. S4. Representative synchrotron XRD patterns of 4-aminobenzonitrile at 1 atm and the released samples from 20.3 GPa.

Fig. S5. (a) Reduced lattice constants of calculated results, (b) calculated unit cell volume as a function of pressure: The results of the second-order Birch-Murnaghan equation fitting on the calculated unit cell volume by the free online program PASCal

from http://pascal.chem.ox.ac.uk/: $V_0 = 610.33(3) \text{ Å}^3$, $B_0 = 11.18(1) \text{ GPa}$, $B_0'= 4$ (fixed) (0-0.9 GPa); $V_0 = 590.43(8) \text{ Å}^3$, $B_0 = 17.70(7) \text{ GPa}$, $B_0'= 4$ (fixed) (1.0-6.0 GPa).