Supplementary Information

Heterostructured Ferromagnet-Topological Insulator with Dual-phase Magnetic Properties

Shu-Jui Chang¹, Pei-Yu Chuang², Cheong-Wei Chong³, Yu-Jung Chen⁴, Jung-Chun-Andrew Huang^{2,3,4}, Po-Wen Chen, and Yuan-Chieh Tseng¹*

(1) Dept. Materials Science & Engineering, National Chiao Tung University, Hsinchu, Taiwan.

(2) Dept. Physics, National Cheng Kung University, Tainan, Taiwan.

(3) Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan.

(4) Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei, Taiwan.

(5) Division of Physics, Institute of Nuclear Energy Research, Taoyuan, Taiwan.

E-mail address: yctseng21@mail.nctu.edu.tw.

Fig. S-1 SR-PES spectra of (a) Bi-4*f* and (b) Se-3*d* where highlighted areas are used for Bi/Se ratio calculation, with the use of following equation:

$$n = \frac{I}{S}$$

where

$S = f \sigma \theta y \lambda A T$

where f is the Photon flux of the x-ray, σ is the photoionization cross-section of peak of element, θ is the photoelectron emission angle, y is the photoelectron yield, λ is the inelastic electron mean-free path, A is analysis area and T is a analyzer transmission function. Here, we define S is the sensitivity factor of core level of element.

Hence, n is dependent on the peak area and sensitivity factor.

$$\frac{n_1}{n_2} = \frac{(I_1 / S_1)}{(I_2 / S_2)} \tag{1}$$

The calculated Bi/Se ratio is 1.49 very close to the ideal stoichiometry of Bi₂Se₃ formula.

Fig. S-2 Cross-sectional TEM images of (a) Py/Bi₂Se₃-5nm and (b) Py/Bi₂Se₃-20 nm samples. EDX analyses are shown below the corresponding TEM images, where EDX line-scanning was performed along the yellow dashed line which starts from A and ends at B. EDX shows Ni diffusion into Bi₂Se₃ and it formed an Ni-Se overlapping region.

Fig. S-3 Differentiation of Ni *K*-edge XANES for pure Py (black), Py/Bi₂Se₃-5nm, Py/Bi₂Se₃-20nm and Py/Bi₂Se₃-40nm samples. The edge characteristics can be decomposed into feature A and B upon differentiation. Feature A is allowed by quadrupole selection rules. The weak intensity corresponds to a quadrupole $1s \rightarrow 3d$ dipole-forbidden transitions as a characteristic of chemical environment in Ni valency in which the intensity strongly depends upon the coordination symmetry. Feature A becomes less intense in Ni:Bi₂Se₃ as compared to Py, suggesting a local-structural change to centro-symmetry in coordination [1-3]. Feature B is attributed to the $1s \rightarrow 4p$ transition, which arises from a chalcogen-based charge-transfer and indicates the presence of strong Ni-Se covalent bonds. Feature B is intensified with the increase of Bi₂Se₃ thickness, implying a more stabilized phase of Ni:Bi₂Se₃. On the contrary, feature B is heavily suppressed in pure Py, which is a straightforward indicator to the absence of Ni:Bi₂Se₃.

Fig. S-4 The dependence of remanence ratios (M_o/M_{sat}) on Bi₂Se₃ thickness, for in-plane and out-of-plane directions. M_o/M_{sat} was estimated from M-H curves.

Fig. S-5 The temperature dependence of magnetization of (a) Py/Bi₂Se₃-5 nm, (b) Py/Bi₂Se₃-20 nm, (c) Py/Bi₂Se₃-40 nm, for in-plane (black) and out-of-plane (red) directions.

Fig. S-6 (left) Ni-XMCD and (right) Ni-XAS integrations applied in sum-rules analysis for the calculation of Ni's ΔE_{SO} . The orbital (m_{orb}) and spin (m_{spin}) moments are obtained by following equations:

$$m_{orb} = -4q(10 - n_{3d})/3r \tag{1}$$

$$m_{spin} = -(6p - 4q)(10 - n_{3d}) / r$$
⁽²⁾

Where

 $q = \int_{L_{3+L_{2}}} (\mu_{+} - \mu_{-}) d \sigma$ $r = \int_{L_{3+L_{2}}} (\mu_{+} + \mu_{-}) d \sigma$ $p = \int_{L_{3}} (\mu_{+} - \mu_{-}) d \sigma$

where μ_+ / μ_- is the x-ray absorption intensity with left/right circular polarization; n_{3d} is the number of 3d electron per cation and the p, q and r are integrated values obtained from XMCD and XAS.

The calculated Ni m_{orb} are 0.02, 0.018 and 0.01 for Py/Bi₂Se₃-5 nm, Py/Bi₂Se₃-20 nm, and Py/Bi₂Se₃-40 nm, respectively, along in-plane direction, which is denoted m_{orb}^{\parallel}

Ni m_{orb} are 0.07, 0.07, 0.06 for Py/Bi₂Se₃-5 nm, Py/Bi₂Se₃-20 nm, and Py/Bi₂Se₃-40 nm, respectively, for outof-plane direction, which is denoted m_{orb}^{\perp} .

In a simple model of Bruno [4][5], a relation between m_{orb} and ΔE_{SO} is derived as:

$$E_{so} = -\frac{1}{2} \frac{\xi}{2\mu_B} [m_{orb}^{\perp} + (m_{orb}^{\parallel} - m_{orb}^{\perp})\sin^2\theta]$$

The energy difference for the magnetization aligned along out-of-plane and in-plane directions is:

$$\Delta E_{so} = E_{so}(\theta = 0^\circ) - E_{so}(\theta = 90^\circ)$$

$$\Delta E_{SO} = -\frac{1}{2} \frac{\xi}{2\mu_B} [m_{orb}^{\perp} - m_{orb}^{\parallel}]$$

where ξ is spin-orbit coupling parameter for 3*d* electron and the values of m_{orb}^{\perp} and m_{orb}^{\parallel} are obtained by

sum-rules [6] along the out-of- and in-plane directions, respectively.

The calculated $m_{orb}^{\parallel} - m_{orb}^{\perp}$ values are 0.02795, 0.02907 and 0.02795, for Py/Bi₂Se₃-5 nm, Py/Bi₂Se₃-20 nm, and Py/Bi₂Se₃-40 nm, respectively.

The same method was used in the calculation of Fe's ΔE_{SO} .

References

- [1] F. E. Huggins, K. C. Galbreath, K. E. Eylands, L. L. Van Loon, J. A. Olson, E. J. Zillioux, S. G. Ward, P. A. Lynch, and P. Chu, Determination of nickel species in stack emissions from eight residual oil-fired utility steam-generating units, *Environ. Sci. Technol.* 45, 6188 (2011).
- [2] A. Kisiel, P. Zajdel, P. M. Lee, E. Burattini, and W. Giriat, XANES study of K edges of Fe, Co, Ni, and Se in transition metal selenides. Experiment and comparison with LMTO numerical calculations, *J. Alloys Compd.* 286, 61 (1999).
- [3] S. A. Yao, V. Martin-Diaconescu, I. Infante, K. M. Lancaster, A. W. Gotz, S. DeBeer, and J. F. Berry, Electronic structure of Ni₂E complexes (E = S, Se, Te) and a global analysis of M₂E₂ compounds: a case for quantized E₂ⁿ⁻ oxidation levels with n = 2, 3, or 4, *J. Am. Chem. Soc.* 137, 4993 (2015).
- [4] D. Weller, Y. Wu, J. Stöhr, M. G. Samant, B. D. Hermsmeier, and C. Chappert, Orbital magnetic moments of Co in multilayers with perpendicular magnetic anisotropy, *Phys. Rev. B* 49, 12888 (1994).
- [5] J. Stöhr, Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy, J. Magn. Magn. Mater. 200, 470 (1999).
- [6] P. Bruno, Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers, *Phys. Rev. B* 39, 865 (1989).