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Fig. S-1 SR-PES spectra of (a) Bi-4f and (b) Se-3d where highlighted areas are used for Bi/Se ratio calculation, 

with the use of following equation: 
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S f y AT    

where f  is the Photon flux of the x-ray,   is the photoionization cross-section of peak of element,   is 

the photoelectron emission angle, y  is the photoelectron yield,   is the inelastic electron mean-free path, 

A  is analysis area and T  is a analyzer transmission function. Here, we define S  is the sensitivity factor 

of core level of element. 

Hence, n  is dependent on the peak area and sensitivity factor. 
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The calculated Bi/Se ratio is 1.49 very close to the ideal stoichiometry of Bi2Se3 formula. 

 

 

Fig. S-2 Cross-sectional TEM images of (a) Py/Bi2Se3-5nm and (b) Py/Bi2Se3-20 nm samples. EDX analyses 

are shown below the corresponding TEM images, where EDX line-scanning was performed along the yellow 

dashed line which starts from A and ends at B. EDX shows Ni diffusion into Bi2Se3 and it formed an Ni-Se 

overlapping region. 

 

 

 



 
Fig. S-3 Differentiation of Ni K-edge XANES for pure Py (black), Py/Bi2Se3-5nm, Py/Bi2Se3-20nm and 

Py/Bi2Se3-40nm samples. The edge characteristics can be decomposed into feature A and B upon 

differentiation. Feature A is allowed by quadrupole selection rules. The weak intensity corresponds to a 

quadrupole 1s→3d dipole-forbidden transitions as a characteristic of chemical environment in Ni valency in 

which the intensity strongly depends upon the coordination symmetry. Feature A becomes less intense in 

Ni:Bi2Se3 as compared to Py, suggesting a local-structural change to centro-symmetry in coordination [1-3]. 

Feature B is attributed to the 1s→4p transition, which arises from a chalcogen-based charge-transfer and 

indicates the presence of strong Ni-Se covalent bonds. Feature B is intensified with the increase of Bi2Se3 

thickness, implying a more stabilized phase of Ni:Bi2Se3. On the contrary, feature B is heavily suppressed in 

pure Py, which is a straightforward indicator to the absence of Ni:Bi2Se3. 

 

 

 

 

 



 

 

Fig. S-4 The dependence of remanence ratios (Mo/Msat) on Bi2Se3 thickness, for in-plane and out-of-plane 

directions. Mo/Msat was estimated from M-H curves. 

 

 

 

Fig. S-5 The temperature dependence of magnetization of (a) Py/Bi2Se3-5 nm, (b) Py/Bi2Se3-20 nm, (c) 

Py/Bi2Se3-40 nm, for in-plane (black) and out-of-plane (red) directions.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. S-6 (left) Ni-XMCD and (right) Ni-XAS integrations applied in sum-rules analysis for the calculation of 

Ni’s ΔESO. The orbital (morb) and spin (mspin) moments are obtained by following equations:  

34 (10 ) / 3orb dm q n r                                   (1) 

3(6 4 )(10 ) /spin dm p q n r                               (2) 

Where 

3 2 ( )dL Lq        

3 2 ( )dL Lr        

3( )dLp       

where /  
is the x-ray absorption intensity with left/right circular polarization; 3dn is the number of 3d 

electron per cation and the p, q and r are integrated values obtained from XMCD and XAS.  

The calculated Ni morb are 0.02, 0.018 and 0.01 for Py/Bi2Se3-5 nm, Py/Bi2Se3-20 nm, and Py/Bi2Se3-40 nm, 

respectively, along in-plane direction, which is denoted 
orbm  

Ni morb are 0.07, 0.07, 0.06 for Py/Bi2Se3-5 nm, Py/Bi2Se3-20 nm, and Py/Bi2Se3-40 nm, respectively, for out-

of-plane direction, which is denoted 
orbm . 

In a simple model of Bruno [4][5], a relation between morb and ΔESO is derived as: 
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The energy difference for the magnetization aligned along out-of-plane and in-plane directions is: 
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where   is spin-orbit coupling parameter for 3d electron and the values of 
orbm   and 

orbm  are obtained by 



sum-rules [6] along the out-of- and in-plane directions, respectively. 

The calculated 
orb orbm m  values are 0.02795, 0.02907 and 0.02795, for Py/Bi2Se3-5 nm, Py/Bi2Se3-20 nm, 

and Py/Bi2Se3-40 nm, respectively. 

 

The same method was used in the calculation of Fe’s ΔESO. 
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