Electronic Supplementary Information for:

Preparation and recyclable catalysis performance of functional macroporous polyHIPE immobilized with gold nanoparticles on its surface

Weizhong Yuana*, Xiangnan Chen^a, Yifan Xu^a, Chuan Yan^a, Yang Liu ^a*, Weishuai Lian^a*, Yun Zhou^a* and Zhihong Li^b*

 ^a Tongji Hospital, School of Medicine, Department of Interventional and Vascular Surgeery of Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China. E-mail: yuanwz@tongji.edu.cn (W. Yuan),
25936615@qq.com (Y. Liu), lianweishuai@126.com (W. Lian), Zhouyunsy@126.com (Y. Zhou)

^b Division of General Surgery, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201200, P. R. China. E-mail: lance007@126.com (Z. Li)

Fig. S1 Pore size distribution of PHIPE-PGMA-TETA/Au by MIP.

Fig. S2 TEM micrograph of Au NPs.

Table S1.	Densities	and	porosities	of Poly	yHIPEs
					,

	PHIPE-PGMA-TETA	PHIPE-PGMA-TETA/Au
ρ^{a} , g cm ⁻³	0.2401	0.2882
δ^b , m ² g ⁻¹	43.2431	41.4738
V_g^c , ml g ⁻¹	0.2496	0.2288
D ^d , nm	25.63	26.24
$d_v \pm \sigma^e$, μm	2.3 ± 1.1	2.3 ± 1.0
Pf, %	86.7	86.4

^a Dry polyHIPE density.

 $^{\rm b}$ Specific surface area from BET treatment of N_2 adsorption data.

^c Pore volume from BET treatment of N₂ adsorption data.

^d Average pore size within the walls of the monoliths and obtained from BJH treatment of N₂ adsorption data.

^e Void diameter determined from SEM pictures of broken samples.

 $^{\rm f}\mbox{Porosity}$ of polyHIPE void structure from BET treatment of N_2 adsorption data.

Table S2. Comparison of the properties of nano-Au catalytic polymers based on

Support	$TOF(h^{-1})$	Recyclable	Separation of	Reference
11	()	performance	materials	
P4VP-g-CNC	3124.8	Not mentioned	Centrifugation	Carbohydrate Polymers 182 (2018) 61–68
Ionic cellulose	900	97% (5 times)	filtration with the addition of acetone	RSC Adv., 2018, 8, 1758–1763
HPEI-IBAm	120	95% (6 times)	Centrifugation	J. Mater. Chem., 2010, 20, 360– 368
PEI/PVA nanofibers	<1	97% (3 times)	filtration	J. Mater. Chem., 2011, 21, 4493
magnetic porous carbon	35.4	>97% (6 times)	magnetic separation	J. Mater. Chem. A, 2014, 2, 18775–18785
PHIPE-PGMA- TETA.	6.3	>96%(10 times)	Tweezers out	This work

the reduction of 4-Nitrophenol