Electronic Supplementary Material (ESI)

Facile preparation of tetraethylenepentamine-functionalized nanomagnetic composite material and its adsorption mechanism to anions: Competition or cooperation

Meiqin Hu, Haoyu Shen*, Si Ye, Yan Wang, Jiali Zhang, Shanshan Lv Ningbo Institute of Technology, Zhejiang University; Ningbo, Zhejiang, 315100, China

S1. Kinetic studies

Fig. S1 presented the adsorption kinetics of mono-component fluoride ion (F⁻), phosphate or Cr(VI) onto $nFe₃O₄(a)$ TEPA. As shown in Fig. S1(a), for all the three kinds of anions, the adsorption capacity increased rapidly and reached equilibrium in 10 min. This revealed that the presence of surface grafting of amino groupson adsorbents could effectively shorten the equilibrium time. Besides, the kinetic curve of nFe₃O₄@TEPAcould be divided into two portions, which could be described by intraparticle diffusion model (shown in Fig. S1(b)) and indicated that the intra-particle process¹ might not be involved in the rate-limiting steps. Therefore, in the present case, anions reached the $nFe₃O₄(a) TEPAeasily$ and took less time to reach adsorption equilibrium, implying that the surface grafting of amino groups and uniform structures of $nFe₃O₄(a)$ TEPA allowed efficient mass transport, thus overcoming some drawbacks of traditionally materials.

Fig. S1Effect of adsorption time on the adsorption of mono-componentfluoride ion $(F₋)$, phosphate or Cr(VI) onto nFe₃O₄@TEPA

Pseudo-first-order and pseudo-second-order models were used to describe the adsorption kinetic data. The correlation coefficient values indicated a better fit of the pseudo-second-order model with the experimental data compared to the pseudo-firstorder for all the studied anions. The equations and constants, including k_2 , $q_{e,cal}$, and initial adsorption rates $(k_2q_e^2)$ calculated from the equation, were listed in Table S1. The data exhibit good linearities for all the adsorbents with $R²$ above 0.998. The calculating equilibrium adsorption capacity $(q_{e,cal})$ from the pseudo-second-order model were very close to the experimental (q_e) .

fluoride ion (F) , phosphate or $Cr(VI)$							
anion	equations	k ₂	q_e (mg/g)	$q_{e,cal}$ (mg/g)	k_2 q_e^2	R^2	
		$(g/(mg \cdot min))$			$(mg/(g \cdot min))$		
fluoride	$t/q_1 = 0.0166 t$	0.013	59.74	60.24	47.61	0.9998	
	$+0.021$						
phosphate	$t/q_t = 0.0195t$	0.021	50.87	51.28	57.47	0.9998	
	$+0.0174$						
Cr(VI)	$t/q_t = 0.0159t$	0.014	62.29	62.89	56.18	0.9998	
	$+0.0178$						

Table S1Pseudo-second-order rate equations and constants of $\text{nFe}_3\text{O}_4(\text{Q})$ **TEPA for**

Adsorption kinetic at different temperatures (25 \textdegree C \sim 45 \textdegree C) were carried out. The Arhenius equation was applied to investigate the *E*^a for the adsorption process.

$$
k = Ae^{-E_a/RT}
$$
 (S1)

k refers to the pseudo-second-order rate constant $(g \cdot mg^{-1} \cdot min^{-1})$; E_a is the activation energy of anion adsorption $(kJ \cdot mol^{-1})$; *A* is the pre-exponential factor (frequency factor); *R* is the gas constant $(8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$; *T* is the adsorption temperature (K). The results of the linear relationships between ln*k* and 1/*T*were listed in Table S2. With the increasing of temperature, the pseudo-second-order rate constant for all the three kinds of anions increased, which infers that elevated temperature might be favorable a much faster the adsorption rate of $nFe₃O₄(a)TEPAto$ any of the fluoride ion (F-), phosphate or Cr(VI)anion. According to the pseudo-second-order rate constant*k*at different temperatures, the activation energies of the adsorption process, E_a are found to 19.56 kJ/mol, 23.71 kJ/mol, 25.35 kJ/mol for fluoride ion (F⁻), phosphate or Cr(VI), respectively. All are less than 42 kJ/mol, which indicate the diffusion process is the rate-controlled step.²

Table S2 Pseudo-second-order rate constant at different temperatures (25 \textdegree C \sim 45 \textdegree C), Arhenius equation and activation energy of anion adsorption

S2. Adsorption capacity of nFe3O4@TEPAto anions

The adsorption capacities of $nFe₃O₄@\text{TEPA}$ tofluoride ion (F), phosphate or Cr(VI) mono-component were investigated by varying the initial concentration of each anion solutions from 50.0 mg/L to 1000 mg/L. Fig. S2 shows that the adsorption capacities of nFe₃O₄@TEPAto any offluoride ion (F⁻), phosphate or Cr(VI) increased with the increasing of the initial concentration of the studies anions. The represented parameters using Langmuir and Freundlich adsorption models indicated that for any of the anions,theLangmuirmodels fit better than those of Freundlich isotherms, suggesting a monolayer adsorption.Table S3 presented theLangmuir andFreundlich isotherm parameters as well as the correlation coefficients $(R²)$ of the adsorption data in the equations.

constants							
anion	Langmuir		Langmuir	$q_{\rm m}^{\rm b}$	Freundlich		Freundlich
	isotherm		constants	(mg/L)	isotherm		constants
		$K_{\rm L}$	$q_{\rm m,c}$			$K_{\rm F}$	1/n
		(L/mg)	(mg/L)				
	$C_e/q_e = 0.0061 C_e$	0.04	163.9	163.5	$\log q_e = 0.1345$	66.0	0.135
fluoride	$+0.1513$				$log C_e + 1.8196$		
	$R^2=0.996$				R^2 = 0.8844		
	$C_{\rm e}/q_{\rm e} = 0.0067 C_{\rm e}$	0.037	149.3	142.5	$log q_e = 0.2738$	28.1	0.274
phosphate	$+0.1794$				$log C_e + 1.448$		
	$R^2 = 0.998$				$R^2 = 0.7117$		
Cr(VI)	$C_{\rm e}/q_{\rm e}$ =	0.152	400	402.4	$logq_e = 0.2382$	110.3	0.238
	$0.0025C_{\rm e}$ +				$log C_e + 2.0426$		
	0.0164				$R^2 = 0.663$		
	R^2 = 0.9996						

Table S3Langmuirand Freundlich isotherm equations and corresponding

^b*q*^m obtained at an initial concentration of 1000.0 mg/L of each ion.

Fig. S2Adsorption isotherms of mono-componentfluoride ion (F⁻), phosphate or $Cr(VI)$ onthenFe₃O₄@TEPA

The thermodynamic parameters,*i.e.*, standard free energy change (ΔG^{θ}) , enthalpy change (ΔH^{θ}), and entropy change (ΔS^{θ}), were estimated to evaluate the feasibility and exothermic nature of the adsorption process. The Gibb's free energy change of the process is related to equilibrium constant by eq. (S2):

$$
\Delta G^{\theta} = -RT \ln K_D \tag{S2}
$$

where K_D is the distribution coefficient, which is defined as eq. (S3),

$$
K_D = \frac{q_e}{C_e} = \frac{\text{Amount of anions adsorbed on Fe}_3\text{O}_4\textcircled{a} \text{TEPA}}{\text{Amount of anions in solution}} \times \frac{V}{m} \text{ (S3)}
$$

According to thermodynamics, the Gibb's free energy change (ΔG^{θ}) is also

related to the enthalpy change (ΔH^{θ}) and entropy change (ΔS^{θ}) at constant temperature by eq. (S4):

$$
\Delta G^{\theta} = \Delta H^{\theta} - T\Delta S^{\theta}
$$
\n(S4)\n
$$
\ln K_D = \frac{\Delta S^{\theta}}{R} - \frac{\Delta H^{\theta}}{RT}
$$
\n(S5)

The values of enthalpy change (ΔH^{θ}) and entropy change (ΔS^{θ}) were calculated from the slope and intercept of the plot of $\ln K_D$ *vs* (1/*T*). The results were given in Table S3. As listed in Table 4, the enthalpy changes (ΔH^{θ}) for the fluoride ion (F), phosphate or Cr(VI)were found to be at 38.54, 13.89, 88.03 kJ/mol, respectively, which indicated that the adsorption was endothermic. The entropy changes (ΔS^{θ}) were at 151.2, 50.2, 333.5 J/(mol·K), respectively. The values of ΔG^{θ} were negative for the $nFe₃O₄(a) TEPA$ to all the studied anions, implying the spontaneous nature of the adsorption process.

Table S4Thermodynamic parameters for adsorption of $nFe₃O₄(ω)^TEPA$ **to fluoride ion**

anion	Thermodynamic equation	ΔG (kJ/mol)	ΔH (kJ/mol)	ΔS (J/(mol·K))
fluoride	$\ln K = -4635.2/T + 18.183$	$-6.47 - -9.52$	38.54	151.2
	$R^2 = 0.9976$			
phosphate	$ln K = -1671.4/T + 6.0366$	$-1.06 - 2.05$	13.89	50.2
	R^2 $= 0.9983$			
Cr(VI)	$\ln K = -10588/T + 40231$	-116 -183	88.03	333.5
	$R^2 = 0.9967$			

(F⁻), phosphate or Cr(VI) at different temperature (25 °C~45 °C)

S3. Quadratic models for the adsorption capacity of the fluoride ion (F-), phosphate or Cr(VI), based on BBD ofRSM:

$$
q(Cr)=196.35+148.22\times C(Cr(VI))+1.42\times C(F^-)-9.63\times C(P)+5.67\times C(Cr(VI))\times C(F^-)
$$
\n
$$
-2.25\times C(Cr(VI))\times C(P)-8.50\times C(F^-)\times C(P)+3.36\times C(Cr(VI))^2-10.79\times C(F^-)^2+1.29\times C(P)^2
$$
\n(S6)

$$
q(F)=110.49-0.30 \times C(Cr(VI))+39.49 \times C(F^-)-5.31 \times C(P)-8.18 \times C(Cr(VI)) \times C(F^-)
$$

+1.45×C(Cr(VI))×C(P)-7.39×C(F^-)×C(P)+0.65×C(Cr(VI))²-36.22×C(F^-)²+0.91×C(P)² (S7)

$$
q(P)=80.80-7.16 \times C(Cr(VI))-4.40 \times C(F^-)+38.30 \times C(P)+6.25 \times C(Cr(VI)) \times C(F^-)-8.50
$$

+C(Cr(VI))×C(P)-4.99×C(F^-)×C(P)+5.53×C(Cr(VI))²+11.12×C(F^-)²-23.27×C(P)² (S8)

S4.Analysis of variance (ANOVA) for the selected quadratic model

Table S5Process variables and their level for the adsorption ofco-existing ions by BBD

	Code value			Actual value			q Cr(VI)	qF	qP
N ₀			X_1C_0 Cr(VI)	X_2C_0F	X_3C_0P	(mg/g)	(mg/g)	(mg/g)	
	X_1 X_2		X_3	(mg/L) (mg/L) (mg/L)					
$\mathbf{1}$	$\boldsymbol{0}$	$+1$	-1	180	350	10	210.35	132.42	27.29
$\overline{2}$	$\boldsymbol{0}$	-1	$+1$	180	10	350	180.35	32.71	120.13
$\overline{3}$	$\boldsymbol{0}$	$+1$	$+1$	180	350	350	160.35	102.42	100.2
$\overline{\mathcal{A}}$	$+1$	$\mathbf{0}$	$+1$	350	180	350	350.67	112.49	80.2
5	$+1$	-1	$\boldsymbol{0}$	350	10	180	320.67	43.77	90.2
6	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	180	180	180	196.35	110.49	80.8
7	$+1$	$\boldsymbol{0}$	-1	350	180	10	360.68	115.6	26.8
8	$+1$	$+1$	$\boldsymbol{0}$	350	350	180	340.68	100.86	95.2
9	-1	-1	$\boldsymbol{0}$	10	10	180	48.48	32.6	112.2
10	-1	θ	$+1$	10	180	350	45.82	105.6	116.32
11	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	180	180	180	196.35	110.49	80.8
12	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	180	180	180	196.35	110.49	80.8
13	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	180	180	180	196.35	110.49	80.8
14	-1	$\boldsymbol{0}$	-1	10	180	10	46.82	114.49	28.92
15	$\boldsymbol{0}$	-1	-1	180	10	10	196.35	33.16	27.32
16	-1	$+1$	$\boldsymbol{0}$	10	350	180	45.82	122.42	92.2
17	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	180	180	180	196.35	110.49	80.8

Table S6 Experimental design matrix and response

Source	Sum of	df	Mean	FValue	p-value	
	Squares		Square		Prob > F	
Model	$1.775E + 005$	9	19719.45	177.03	${}< 0.0001$	significant
$A-C(Cr(VI))$	$1.758E + 005$	$\mathcal{I}_{\mathcal{I}}$	$1.758E + 005$	1577.81	${}< 0.0001$	\ast
$B-C(F-)$	16.10	1	16.10	0.14	0.7151	
$C-C(P)$	741.32	$\mathcal{I}_{\mathcal{I}}$	741.32	6.66	0.0365	\ast
AB	128.48	1	128.48	1.15	0.3185	
AC	20.30	1	20.30	0.18	0.6823	
BC	289.00	\mathcal{I}	289.00	2.59	0.1513	
A^2	47.39	$\mathfrak l$	47.39	0.43	0.5350	
B ²	490.43	1	490.43	4.40	0.0741	
C^2	7.03	$\mathcal{I}_{\mathcal{I}}$	7.03	0.063	0.8088	
Residual	779.73	7	111.39			
Lack of Fit	779.73	\mathfrak{Z}	259.91			
Pure Error	0.000	$\overline{4}$	0.000			
Cor Total	$1.783E + 005$	16				

Table S7ANOVA for Response Surface Quadratic Model (Response1 q(Cr))

 $R^2 = 0.9956$, Adj $R^2 = 0.9900$, Pred $R^2 = 0.9300$, Adeq Precision = 40.107 * significant

						$T \rightarrow$
Sum of	Squares	Mean	$\mathbf F$		p -value $Prob > F$	
Source		df	Square	Value		
Model	18728.99	9	2081.00	100.01	${}< 0.0001$	significant
$A-C(Cr(VI))$	0.71	1	0.71	0.034	0.8583	
$B-C(F-)$	12472.52	1	12472.52	599.41	< 0.0001	\ast
C - $C(P)$	225.25	$\mathcal{I}_{\mathcal{I}}$	225.25	10.83	0.0133	\ast
AB	267.81	\mathfrak{I}	267.81	12.87	0.0089	\ast
AC	8.35		8.35	$0.40\,$	0.5465	
BC	218.30	1	218.30	10.49	0.0143	\ast
A^2	1.75		1.75	0.084	0.7801	
B ²	5524.50		5524.50	265.50	≤ 0.0001	\ast
C^2	3.49	\boldsymbol{l}	3.49	0.17	0.6945	
Residual	145.65	7	20.81			
Lack of Fit	145.65	\mathfrak{Z}	48.55			
Pure Error	0.000	$\overline{4}$	0.000			
Cor Total	18874.65	16				

Table S8 ANOVA for Response Surface Quadratic Model (Response 2 q(F))

 $R^{2} = 0.9923$, Adj $R^{2} = 0.9824$, Pred $R^{2} = 0.8765$, Adeq Precision = 28.530; * significant

Table S9 ANOVA for Response Surface Quadratic Model (Response 3 q(P))

 $R^2 = 0.9920$, Adj $R^2 = 0.9817$, Pred $R^2 = 0.8717$, Adeq Precision = 28.714 * significant

Table S10 The relative percentages of the main elements relatively weight (w%) of nFe3O4@TEPA before and afteradsorption

Elements relatively weight $(w\%)$	before adsorption	afteradsorption
Fe 2p	29.28	28.62
O _{1s}	26.02	25.12
N _{1s}	17.52	15.65
C _{1s}	27.23	27.03
Cr 2P	θ	1.88
P 2p	θ	1.01
F1s	θ	0.78

(a) (b)

Fig. S3 The effect of the co-existing fluoride ion to the adsorption of Cr(VI) (a),the effect of the co-existing phosphate to the adsorption of $Cr(VI)$ (b), the effect of the co-

existing Cr(VI)to the adsorption of fluoride ion (c),the effect of the co-existing phosphateto the adsorption of fluoride ion (d),the effect of the co-existing Cr(VI)to the adsorption of phosphate (e),the effect of the co-existing fluoride ionto the adsorption of phosphate (f)

Fig.S4 High-resolution XPS spectra of $nFe₃O₄(QTEPA)$ after adsorption of the coexisting the three anions (a) Cr2P; (b)P1p; (c) F1s; (d) N1s; (e) O1; (f) C1s.