Supporting Information

An ab initio study on coinage atom-inserted cyanide/isocyanide: XMCN/XMNC (M = coinage atoms; X = halogen)

Zhengguo Huang* Xiaohong Wang Jingbo Zhang* Yuqing Li Yuying Li

Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry, Tianjin Normal

University, Tianjin 300387, People's Republic of China

^{*} Corresponding author. E-mail address: hsxyhzg@126.com

^{*} Corresponding author. E-mail address: hxxyzjb@mail.tjnu.edu.cn

		XMC	CN			XMNC				
	v _{C-N}	$\Delta v_{\mathrm{C-N}}$ b	v _{M-C}	v_{X-M}		v _{C-N}	$\Delta v_{\mathrm{C-N}}$ b	v_{M-N}	v_{X-M}	
FAgCN	2338.6	-29.2	428.7	582.7	FAgNC	2115.2	-76.7	441.9	577.3	
ClAgCN	2188.4	-75.2	412.6	304.7	ClAgNC	2102.6	-34.8	435.8	265.5	
BrAgCN	2193.6	-47.0	403.3	164.8	BrAgNC	2113.1	-6.6	425.1	165.4	
IAgCN	2196.4	-24.0	395.8	136.5	IAgNC	2124.7	12.1	415.4	143.9	
FAuCN	2310.1	-57.7	461.5	576.8	FAuNC	2132.8	-59.1	484.4	595.5	
ClAuCN	2430.1	166.6	463.9	337.5	ClAuNC	2115.3	-22.1	475.4	559.2	
BrAuCN	2235.7	-4.9	451.2	208.4	BrAuNC	2086.4	-33.2	469.7	239.8	
IAuCN	2218.3	-2.1	444.1	156.5	IAuNC	2116.1	3.4	457.4	182.3	
FCN	2367.8				FNC	2191.9				
CICN	2263.6				CINC	2137.4				
BrCN	2240.6				BrNC	2119.7				
ICN	2220.4				INC	2112.6				

Table S1. The selected vibrational frequencies of XMCN and XMNC (X = halogens, M = Ag and Au) and the concerning precursors calculated at the CCSD(T) level ^a.

^a Frequencies are in cm⁻¹ and intensities (in parentheses) are in km·mol⁻¹.

^b Δv_{C-N} is the difference of the v_{C-N} between XMCN (or XMNC) and XCN (or XNC).

molecule	bond	ρ(r)	$ abla^2 ho(r)$	H(r)	V(r) /G(r)	molecule	bond	$\rho(\mathbf{r})$	$\nabla^2 \rho(\mathbf{r})$	H(r)	V(r) /G(r)
FAgCN	F–Ag	0.128	0.693	-0.045	1.207	FAgNC	F–Ag	0.132	0.698	-0.049	1.220
	Ag–C	0.139	0.279	-0.075	1.517		Ag–N	0.129	0.533	-0.052	1.280
	C–N	0.485	0.148	-0.948	1.963		C–N	0.460	-0.193	-0.882	2.058
ClAgCN	Cl–Ag	0.097	0.256	-0.031	1.330	ClAgNC	Cl–Ag	0.093	0.365	-0.028	1.233
	Ag–C	0.132	0.230	-0.066	1.533		Ag–N	0.120	0.525	-0.041	1.236
	C–N	0.480	0.189	-0.935	1.952		C–N	0.466	-0.254	-0.901	2.076
BrAgCN	Br–Ag	0.076	0.159	-0.021	1.348	BrAgNC	Br–Ag	0.081	0.138	-0.026	1.428
	Ag–C	0.126	0.232	-0.061	1.514		Ag–N	0.115	0.453	-0.041	1.264
	C–N	0.483	0.174	-0.940	1.956		C–N	0.460	-0.184	-0.882	2.055
IAgCN	I–Ag	0.055	0.142	-0.011	1.230	IAgNC	I–Ag	0.061	0.151	-0.013	1.259
	Ag–C	0.116	0.308	-0.049	1.389		Ag–N	0.110	0.491	-0.033	1.214
	C–N	0.487	0.056	-0.952	1.985		C–N	0.468	-0.232	-0.906	2.068

Table S2. The AIM results of XAgCN and XAgNC (X = halogens) calculated using the CCSD(T) method with all-electron relativistic basis sets ^a.

^a The recontracted scalar relativistic def2-TZVPP basis sets were used for all atoms.

molecule	bond	$\rho(r)$	$ abla^2 ho(r)$	H(r)	V(r) /G(r)	molecule	bond	$\rho(r)$	$ abla^2 ho(r)$	H(r)	V(r) /G(r)
FAuCN	F–Au	0.136	0.703	-0.049	1.217	FAuNC	F–Au	0.140	0.720	-0.052	1.226
	Au–C	0.163	0.278	-0.095	1.578		Au–N	0.150	0.580	-0.066	1.311
	C–N	0.485	0.157	-0.948	1.960		C–N	0.454	-0.077	-0.863	2.023
ClAuCN	Cl–Au	0.112	0.239	-0.049	1.451	ClAuNC	Cl–Au	0.135	0.288	-0.065	1.475
	Au–C	0.156	0.265	-0.088	1.569		Au–N	0.157	0.550	-0.070	1.337
	C–N	0.485	0.165	-0.946	1.958		C–N	0.449	-0.186	-0.855	2.058
BrAuCN	Br–Au	0.107	0.176	-0.047	1.515	BrAuNC	Br–Au	0.117	0.153	-0.057	1.599
	Au–C	0.161	0.252	-0.092	1.593		Au–N	0.147	0.564	-0.062	1.306
	C–N	0.482	0.151	-0.938	1.961		C–N	0.452	-0.132	-0.859	2.040
IAuCN	I–Au	0.084	0.130	-0.034	1.510	IAuNC	I–Au	0.094	0.130	-0.042	1.562
	Au–C	0.153	0.260	-0.083	1.562		Au–N	0.143	0.526	-0.057	1.303
	C–N	0.485	0.091	-0.949	1.976		C–N	0.459	-0.140	-0.879	2.041

Table S3. The AIM results of XAuCN and XAuNC (X = halogens) calculated using the CCSD(T) method with all-electron relativistic basis sets ^a.

^a The recontracted scalar relativistic def2-TZVPP basis sets were used for all atoms.

	FAgCN		ClA	gCN	BrA	.gCN	IAgCN		
	F->Ag	CN->Ag	Cl->Ag	CN->Ag	 Br->Ag	CN->Ag	I->Ag	CN->Ag	
d	0.2168	0.3113	0.1227	0.2639	0.3079	0.2391	0.1511	0.2933	
b	-0.0030	0.0179	0.0033	0.0083	0.0031	0.0130	0.0076	0.0093	
d-b	0.2198	0.2934	0.1194	0.2556	0.3048	0.2261	0.1435	0.2840	
r	-0.0650	-0.0644	-0.0866	-0.1473	-0.0321	-0.0381	-0.0573	-0.1139	
b+d	0.2138	0.3292	0.1259	0.2722	0.3111	0.2522	0.1587	0.3027	
	FAgNC		ClAgNC		BrA	gNC	IAgNC		
	F->Ag	NC->Ag	Cl->Ag	NC->Ag	Br->Ag	NC->Ag	I->Ag	NC->Ag	
d	0.2221	0.2420	0.3056	0.2049	0.3062	0.2109	0.1623	0.2169	
b	-0.0021	0.0054	0.0015	-0.0002	0.0048	0.0000	0.0092	-0.0049	
d-b	0.2242	0.2366	0.3041	0.2051	0.3014	0.2109	0.1532	0.2218	
r	-0.0655	-0.0819	-0.0184	-0.0610	-0.0168	-0.0610	-0.0673	-0.1190	
b+d	0.2200	0.2474	0.3071	0.2047	0.3110	0.2109	0.1715	0.2119	

Table S4. Charge decomposition analysis (CDA) results for XAgCN and XAgNC (X = F, Cl, Br and I) obtained using the MP2 level of theory.

	FAuCN		ClA	uCN	BrA	uCN	IAuCN		
	F->Au	CN->Au	Cl->Au	CN->Au	 Br->Au	CN->Au	I->Au	CN->Au	
d	0.2116	0.1847	0.2929	0.1629	0.3021	0.1372	0.3474	0.1174	
b	-0.0060	0.0133	0.0013	0.0122	0.0047	-0.0058	0.0060	-0.0088	
d-b	0.2175	0.1714	0.2916	0.1507	0.2973	0.1431	0.3414	0.1262	
r	-0.0693	-0.1297	-0.0651	-0.1208	-0.0442	-0.1294	-0.0404	-0.1515	
b+d	0.2056	0.1979	0.2941	0.1752	0.3068	0.1314	0.3534	0.1086	
	FAuNC		ClAuNC		BrA	uNC	IAuNC		
	F->Au	NC->Au	Cl->Au	NC->Au	Br->Au	NC->Au	I->Au	NC->Au	
d	0.2090	0.1790	0.3044	0.1587	0.2996	0.1150	0.3352	0.0762	
b	-0.0050	0.0013	0.0034	-0.0026	0.0093	0.0083	0.0101	0.0039	
d-b	0.2140	0.1777	0.3010	0.1613	0.2903	0.1067	0.3250	0.0723	
r	-0.0720	-0.1223	-0.0665	-0.1104	-0.0608	-0.1349	-0.0526	-0.1804	
b+d	0.2040	0.1804	0.3077	0.1561	0.3088	0.1233	0.3453	0.0800	

Table S5. Charge decomposition analysis (CDA) results for XAuCN and XAuNC (X = F, Cl, Br and I) obtained using the MP2 level of theory.

Figure S1. Contour line diagrams of $\nabla^2 \rho(r)$ for both XAgCN and XAgNC (X = halogens), obtained by CCSD(T) method with all-electron relativistic basis sets. Dashed lines indicate areas of charge concentration ($\nabla^2 \rho(r) < 0$) while solid lines show areas of charge depletion ($\nabla^2 \rho(r) > 0$). The bold brown solid lines connecting the atomic nuclei are the bond paths and the solid blue lines separating the atomic nuclei indicate the zero-flux surfaces in the molecular plane. The crossing points of the bond paths and zero-flux surfaces are the bond critical points (BCP).

Figure S2. Contour line diagrams of $\nabla^2 \rho(\mathbf{r})$ for both XAuCN and XAuNC (X = halogens), obtained by CCSD(T) method with all-electron relativistic basis sets. Dashed lines indicate areas of charge concentration ($\nabla^2 \rho(\mathbf{r}) < 0$) while solid lines show areas of charge depletion ($\nabla^2 \rho(\mathbf{r}) > 0$). The bold brown solid lines connecting the atomic nuclei are the bond paths and the solid blue lines separating the atomic nuclei indicate the zero-flux surfaces in the molecular plane. The crossing points of the bond paths and zero-flux surfaces are the bond critical points (BCP).